onnx.cpp 56.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
67
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
68
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
69
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
70
71
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
72
73
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
74
75
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
76
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
77
78
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
79
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
80
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
81
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
82
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
83
84
85
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
86
        add_mem_op("Concat", &onnx_parser::parse_concat);
87
88
89
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
90
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
91
        add_mem_op("RNN", &onnx_parser::parse_rnn);
92
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
93
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
94
        add_mem_op("Pad", &onnx_parser::parse_pad);
95
96
97
98
99
100
101

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
102
103
104
105
106
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
107
108
109
110
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
111
112
113
114
115
116
117
118
119
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
120
121
122
123
124
125
126
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
127
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
128
129
130
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
131

132
    template <class T>
Khalique's avatar
Khalique committed
133
    void add_binary_op(std::string name, T x)
134
    {
Paul's avatar
Paul committed
135
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
136
            if(args.size() != 2)
Paul's avatar
Paul committed
137
                MIGRAPHX_THROW("binary operators should have 2 operands");
138
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
139
140
141
142
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
143
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
144
145
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
146
147
                    return prog.add_instruction(x, args[0], l);
                }
148
                return prog.add_instruction(x, args);
149
            }
Paul's avatar
Paul committed
150
            else
151
            {
Khalique's avatar
Khalique committed
152
                return add_broadcastable_binary_op(args[0], args[1], x);
153
154
155
156
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
157
158
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
159
160
161
162
163
164
165
166
167
168
169
170
171
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
172
        if(s0.size() > s1.size())
173
174
175
176
177
178
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
179
180
181
182
183
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
                       [](auto a, auto b) { return std::max(a, b); });
184
185
186
187

        return out_lens;
    }

Khalique's avatar
Khalique committed
188
189
190
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
191
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
192
193
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
194
195
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
196
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
197
198
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
199
200
201
202
203
204
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
205
206
    }

Paul's avatar
Paul committed
207
    template <class T>
Paul's avatar
Paul committed
208
209
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
210
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
211
212
213
214
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
215
    template <class T>
Khalique's avatar
Khalique committed
216
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
217
    {
Paul's avatar
Paul committed
218
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
219
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
220
221
222
223
224
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
225
        });
Khalique's avatar
Khalique committed
226
227
    }

Paul's avatar
Paul committed
228
    instruction_ref
Paul's avatar
Paul committed
229
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
230
231
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
232
233
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
234
235
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
236
237
    }

Shucai Xiao's avatar
Shucai Xiao committed
238
239
240
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
241
242
243
244
245
246
247
248
249
250
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
251
    instruction_ref
Paul's avatar
Paul committed
252
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
253
    {
254
        op::convolution op;
255
        auto l0 = args[0];
Paul's avatar
Paul committed
256
257
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
258
            if(contains(attributes, "auto_pad"))
259
            {
Paul's avatar
Paul committed
260
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
261
            }
262
263
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
264
            if(padding.size() != 4)
265
            {
Paul's avatar
Paul committed
266
                MIGRAPHX_THROW("padding should have 4 values");
267
            }
Scott Thornton's avatar
Scott Thornton committed
268
            if(padding[0] != padding[2] || padding[1] != padding[3])
269
            {
270
271
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
272
                l0      = prog.add_instruction(op::pad{padding}, l0);
273
            }
274
275
276
277
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
278
            }
Paul's avatar
Paul committed
279
        }
Paul's avatar
Paul committed
280
281
282
283
284
285
286
287
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
288
        if(contains(attributes, "auto_pad"))
289
290
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
291
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
292
            {
Paul's avatar
Paul committed
293
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
294
295
            }

wsttiger's avatar
fixes  
wsttiger committed
296
            if(s.find("SAME") != std::string::npos)
297
            {
298
                op.padding_mode = op::padding_mode_t::same;
299
300
            }
        }
Khalique's avatar
Khalique committed
301
302
303
304
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
305
306
307
308
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
309
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
310
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
311
        }
312
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
313
    }
Paul's avatar
Paul committed
314

Paul's avatar
Paul committed
315
316
317
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
318
    {
Khalique's avatar
Khalique committed
319
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
320
        auto l0 = args[0];
Khalique's avatar
Khalique committed
321
        if(starts_with(name, "Global"))
322
        {
Khalique's avatar
Khalique committed
323
324
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
325
        }
Paul's avatar
Paul committed
326
327
        if(contains(attributes, "pads"))
        {
328
329
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
330
            if(padding.size() != 4)
331
            {
Paul's avatar
Paul committed
332
                MIGRAPHX_THROW("padding should have 4 values");
333
            }
Scott Thornton's avatar
Scott Thornton committed
334
            if(padding[0] != padding[2] || padding[1] != padding[3])
335
            {
336
337
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
338
                l0      = prog.add_instruction(op::pad{padding}, l0);
339
340
341
342
343
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
344
            }
Paul's avatar
Paul committed
345
346
347
348
349
350
351
352
353
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
354
        if(contains(attributes, "auto_pad"))
355
356
        {
            auto s = attributes["auto_pad"].s();
357
            if(s.find("SAME_UPPER") == std::string::npos)
358
            {
359
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
360
            }
361
            op.padding_mode = op::padding_mode_t::same;
362
363
        }

364
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
365
366
    }

Paul's avatar
Paul committed
367
    instruction_ref
Paul's avatar
Paul committed
368
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
369
    {
370
        op::reshape op;
Paul's avatar
Paul committed
371
372
373
374
375
376
377
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
378
            auto s = args[1]->eval();
Paul's avatar
Paul committed
379
            if(s.empty())
Paul's avatar
Paul committed
380
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
381
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
382
        }
Paul's avatar
Paul committed
383
384
385
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
386
    instruction_ref
Paul's avatar
Paul committed
387
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
388
    {
389
        uint64_t axis = 1;
Paul's avatar
Paul committed
390
391
392
393
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
394
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
395
396
    }

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
415
416
417
418
419
420
421
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
422

423
424
425
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
426
        int axis = 0;
427
428
429
430
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
431
        op::gather op{axis};
432
433
434
        return prog.add_instruction(op, std::move(args));
    }

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
455
456
457
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
458
    {
Shucai Xiao's avatar
Shucai Xiao committed
459
        literal v     = parse_value(attributes.at("value"));
460
461
462
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
463
        {
464
            migraphx::shape scalar_shape{v.get_shape().type()};
465
466
467
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
468
469
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
470

Paul's avatar
Paul committed
471
    instruction_ref
Paul's avatar
Paul committed
472
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
473
474
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
475
        float beta  = 1.0f;
Paul's avatar
Paul committed
476
477
478
479
480
481
482
483
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
484
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
485
486
487
488
489
490
491
492
493
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
494

495
496
497
498
499
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

500
501
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
502
503
        if(args.size() == 3)
        {
504
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
505
            {
Shucai Xiao's avatar
Shucai Xiao committed
506
                auto out_lens   = l1->get_shape().lens();
507
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
508
509
510
                auto l3         = args[2];
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
511
                {
512
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
513
                }
514
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
515
            }
Paul's avatar
Paul committed
516
        }
517

Shucai Xiao's avatar
Shucai Xiao committed
518
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
519
520
    }

521
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
522
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
523
    {
Shucai Xiao's avatar
Shucai Xiao committed
524
525
        auto l0      = args[0];
        auto l1      = args[1];
526
527
528
529
530
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
531
        if(l0_lens.size() == 1)
532
533
534
535
536
537
538
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
539
        if(l1_lens.size() == 1)
540
541
542
543
544
545
546
547
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
548
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
549
550
551
552
553
554
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
555
            l0_broadcasted_lens = output_lens;
556
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
557
            l1_broadcasted_lens = output_lens;
558
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
559
            if(l0_lens != l0_broadcasted_lens)
560
561
562
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
563
            if(l1_lens != l1_broadcasted_lens)
564
565
566
567
568
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
569
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
570
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
571
        if(is_a_prepended)
572
573
574
575
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
576
        if(is_b_appended)
577
578
579
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
580

581
582
583
        return dot_res;
    }

584
    instruction_ref
Paul's avatar
Paul committed
585
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
586
    {
Scott Thornton's avatar
Scott Thornton committed
587
588
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
589
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
590
        bool is_test                                      = false;
591
592
593
594
595
596
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
597
            momentum = parse_value(attributes.at("momentum")).at<float>();
598
599
600
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
601
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
602
603
604
        }
        if(contains(attributes, "spatial"))
        {
605
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
606
607
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
608
        }
Paul's avatar
Paul committed
609
        (void)is_test;
Paul's avatar
Paul committed
610
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
611
        return prog.add_instruction(op, std::move(args));
612
613
    }

614
615
616
617
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
618
        float alpha = 0.01; // default alpha val for leaky relu
619
620
621
622
623
624
625
626
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
627
628
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
629
630
631
632
633
634
635
636
637
638
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
639
640
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
641
642
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
643
644
645
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
646
647
648
649
650
651
652
653
654
655
656
657
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
674
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
675

Khalique's avatar
Khalique committed
676
677
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
678
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
679

680
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
681
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
682
        auto bias_bcast =
683
            prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
684
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
685
    }
Khalique's avatar
Khalique committed
686

Khalique's avatar
Khalique committed
687
688
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
689
690
691
692
693
694
695
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
696
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
697
698
    }

Khalique's avatar
Khalique committed
699
700
701
702
703
704
705
706
707
708
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
709
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
710
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
711
712
713
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
714
715
716
717
718
719
720
721
722
723
724
725
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
726
727
728
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
729
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
730
731
    {
        if(args.size() != 1)
732
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
769
770
        if(contains(attributes, "extra_shape"))
        {
771
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
772
773
        }

774
775
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
776
            if(args.size() != 1)
777
            {
778
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
779
780
            }

Shucai Xiao's avatar
Shucai Xiao committed
781
782
            if(contains(attributes, "shape"))
            {
783
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
784
                               "at the same time");
785
786
            }

787
788
789
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
790
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
791
            }
792

793
794
795
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
796
797
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
798
799
800
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
801
802
            if(!contains(attributes, "shape"))
            {
803
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
804
805
806
            }

            literal ls = parse_value(attributes.at("shape"));
807
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
808
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
809
            migraphx::shape s{type, dims};
810
811
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
812
813
814
        }
        else
        {
815
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
816
817
818
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
819
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
820
821
822
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
823
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
824
825
826

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
827
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
828
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
829
830
831
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
832
833
834
835
836
837
838
839
840
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

841
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
842
843
        if(direction == "bidirectional")
        {
844
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
845
846
847
        }
        else if(direction == "reverse")
        {
848
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
849
850
        }

851
852
853
854
855
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
856
            vec_names.resize(names.size());
857
            std::copy(names.begin(), names.end(), vec_names.begin());
858
859
        }

860
861
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
862
        });
Shucai Xiao's avatar
Shucai Xiao committed
863
        if(name_it != vec_names.end())
864
865
866
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
867

Shucai Xiao's avatar
Shucai Xiao committed
868
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
869
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
870
        // if only one actv function is provided, we use it in both
871
        // forward and reverse direction
872
        if(dirct == op::rnn_direction::bidirectional)
873
        {
Shucai Xiao's avatar
Shucai Xiao committed
874
            if(vec_names.size() == 1)
875
876
877
878
879
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
880
881
882
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
883
        });
Shucai Xiao's avatar
Shucai Xiao committed
884

Shucai Xiao's avatar
Shucai Xiao committed
885
886
887
888
889
890
891
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

892
893
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
894
        if(args.size() < 6)
895
896
897
898
899
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
900
901
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
902
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
903

904
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
905
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
906

Shucai Xiao's avatar
Shucai Xiao committed
907
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
908
909
    }

910
    std::vector<instruction_ref>
911
912
913
914
915
916
917
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
918
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
919
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
920
921
922
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
923
924
925
926
927
928
929
930
931
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

932
        op::rnn_direction dirct = op::rnn_direction::forward;
933
934
        if(direction == "bidirectional")
        {
935
            dirct = op::rnn_direction::bidirectional;
936
937
938
        }
        else if(direction == "reverse")
        {
939
            dirct = op::rnn_direction::reverse;
940
941
        }

942
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
943
944
        if(contains(attributes, "activations"))
        {
945
            auto names = attributes.at("activations").strings();
946
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
947
            vec_names.resize(names.size());
948
            std::copy(names.begin(), names.end(), vec_names.begin());
949
950
        }

951
        // need 4 activation functions
952
        if(dirct == op::rnn_direction::bidirectional)
953
        {
Shucai Xiao's avatar
Shucai Xiao committed
954
            // 4 activation functions are used in the bidirectional
955
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
956
957
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
958
959
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
960
961
962
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
963
            if(vec_names.size() == 1)
964
            {
965
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
966
            }
967
            else if(vec_names.size() == 2)
968
            {
969
970
971
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
972
            }
973
            else if(vec_names.size() == 3)
974
            {
975
                vec_names.push_back(vec_names.at(2));
976
977
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
978
        else
979
        {
980
            if(vec_names.size() == 1)
981
            {
982
                vec_names.push_back(vec_names.at(0));
983
984
985
            }
        }

986
987
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
Shucai Xiao's avatar
Shucai Xiao committed
988
        });
Shucai Xiao's avatar
Shucai Xiao committed
989
990
        if(name_it != vec_names.end())
        {
991
992
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
993

Shucai Xiao's avatar
Shucai Xiao committed
994
995
996
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
997
        });
998
999
1000
1001
1002
1003
1004
1005

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1006
        if(contains(attributes, "linear_before_reset"))
1007
1008
1009
1010
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1011
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1012
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1013
1014
1015
1016
1017
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1018
1019
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1020
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1021
            std::move(args));
1022
1023

        // second output for last gru output
1024
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1025

Shucai Xiao's avatar
Shucai Xiao committed
1026
        return {hidden_states, last_output};
1027
1028
    }

Shucai Xiao's avatar
Shucai Xiao committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1051
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1052
1053
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1054
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1055
1056
1057
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1058
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1059
        }
Shucai Xiao's avatar
Shucai Xiao committed
1060
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1061
        {
Shucai Xiao's avatar
Shucai Xiao committed
1062
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
1075
            std::copy(names.begin(), names.end(), vec_names.begin());
Shucai Xiao's avatar
Shucai Xiao committed
1076
1077
1078
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1079
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1080
1081
1082
1083
1084
1085
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1086
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1087
1088
1089
1090
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1091
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1092
1093
1094
1095
1096
1097
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1098
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1099
1100
1101

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1102
1103
1104
1105
1106
1107
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1108
1109
1110
1111
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1112
1113
1114
1115
1116
1117
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1118
1119
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
1122
1123
1124
1125
1126
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1127
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1128

Shucai Xiao's avatar
Shucai Xiao committed
1129
1130
1131
1132
1133
1134
1135
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1136
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1137

Shucai Xiao's avatar
Shucai Xiao committed
1138
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1139
1140
1141
1142
1143
1144
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1145
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1146
1147
1148

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1149
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1150
1151
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1152
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1153
1154
1155
            }
        }

1156
1157
1158
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1159
        if(name_it != vec_names.end())
1160
1161
1162
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1185
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1186
1187
1188
1189
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1190
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1191
1192

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1193
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1194
1195
1196
1197
1198
1199
1200

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1213
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1214
1215
1216
1217
1218
1219
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1220
1221
1222
1223
1224
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1225
1226
1227
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1240
        }
Paul's avatar
Paul committed
1241
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1242
        {
Paul's avatar
Paul committed
1243
            this->parse_node(output.name());
Paul's avatar
Paul committed
1244
1245
1246
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1247
    void parse_undefined(const std::string& name)
1248
    {
Shucai Xiao's avatar
Shucai Xiao committed
1249
        auto ins           = prog.add_instruction(op::undefined{});
1250
1251
1252
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1253
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1254
    {
Paul's avatar
Paul committed
1255
        if(name.empty())
Paul's avatar
Paul committed
1256
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1257
1258
1259
1260
1261
1262
1263
1264
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1265
1266
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1267
                }
Shucai Xiao's avatar
Shucai Xiao committed
1268
                else if(input.empty())
Paul's avatar
Paul committed
1269
                {
1270
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1271
                }
1272
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1273
            }
Paul's avatar
Paul committed
1274
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1275
1276
            if(ops.count(node.op_type()) == 0)
            {
1277
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1278
1279
1280
            }
            else
            {
Paul's avatar
Paul committed
1281
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1282
            }
Paul's avatar
Paul committed
1283
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1284
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1285
1286
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1287
1288
1289
            }
            else
            {
Paul's avatar
Paul committed
1290
1291
1292
1293
1294
1295
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1313
        std::size_t n = 0;
Paul's avatar
Paul committed
1314
1315
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1316
            if(node.output().empty())
Paul's avatar
Paul committed
1317
            {
Paul's avatar
Paul committed
1318
                if(node.name().empty())
Paul's avatar
Paul committed
1319
1320
1321
1322
1323
1324
1325
1326
1327
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1353
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1354
1355
1356
1357
1358
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1359
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1360
1361
1362
1363
1364
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
1365
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1366
        if(dims.empty())
Khalique's avatar
Khalique committed
1367
1368
1369
        {
            dims = {1};
        }
1370
1371
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1372
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
1385
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
1386
1387
1388
1389
1390
1391
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1392
            MIGRAPHX_THROW("Invalid tensor type");
1393
        }
Paul's avatar
Paul committed
1394
1395
1396
1397
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
1398
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1399
1400
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
1401
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1402
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
1403
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1404
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
1405
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1406
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1407
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1408
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
1409
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
1410
1411
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
1412
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1413
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1414
        {
Khalique's avatar
Khalique committed
1415
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1416
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1417
1418
1419
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1420
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1421
            return literal{{shape::half_type, dims}, data_half.begin(), data_half.end()};
Khalique's avatar
Khalique committed
1422
        }
Paul's avatar
Paul committed
1423
1424
1425
1426
1427
1428
1429
1430
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1431
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1453
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1463
        auto&& tensor_dims = t.tensor_type().shape().dim();
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1475
1476
        return {shape_type, dims};
    }
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1522
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1523
} // namespace migraphx