onnx.cpp 77.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
31
32
33
    program prog            = program();
    bool is_pytorch         = false;
    unsigned int batch_size = 1;
Paul's avatar
Paul committed
34
35

    std::unordered_map<std::string, op_func> ops;
36
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
37
38
39

    onnx_parser()
    {
40
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
41
        add_generic_op("Abs", op::abs{});
42
43
44
45
46
47
48
49
50
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
51
        add_generic_op("Erf", op::erf{});
52
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
53
        add_generic_op("Dropout", op::identity{});
54
55
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
56
        add_generic_op("Identity", op::identity{});
57
58
59
60
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
61
        add_generic_op("Sin", op::sin{});
62
        add_generic_op("Sinh", op::sinh{});
63
        add_generic_op("Sqrt", op::sqrt{});
64
65
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
68
69
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
70
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
71
        add_binary_op("PRelu", op::prelu{});
72
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
73

Khalique's avatar
Khalique committed
74
75
76
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
77

78
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
79
80
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
81
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
82
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
83
        add_mem_op("Clip", &onnx_parser::parse_clip);
84
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
85
        add_mem_op("Constant", &onnx_parser::parse_constant);
86
87
88
89
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
90
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
91
92
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
93
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
94
        add_mem_op("Gather", &onnx_parser::parse_gather);
Paul's avatar
Paul committed
95
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
96
97
98
99
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
100
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
101
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
102
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
103
104
105
106
        add_mem_op("LRN", &onnx_parser::parse_lrn);
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
107
108
109
110
111
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
112
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
113
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
114
115
116
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
117
118
119
120
121
122
123
124
125
126
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Pad", &onnx_parser::parse_pad);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
127
128
129
130
131
132
133

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
134
135
136
137
138
139
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
140
141
142
143
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
144
145
146
147
148
149
150
151
152
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
153
154
155
156
157
158
159
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
160
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
161
162
163
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
164

165
    template <class T>
Khalique's avatar
Khalique committed
166
    void add_binary_op(std::string name, T x)
167
    {
Paul's avatar
Paul committed
168
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
169
            if(args.size() != 2)
Paul's avatar
Paul committed
170
                MIGRAPHX_THROW("binary operators should have 2 operands");
171
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
172
173
174
175
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
176
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
177
178
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
179
180
                    return prog.add_instruction(x, args[0], l);
                }
181
                return prog.add_instruction(x, args);
182
            }
Paul's avatar
Paul committed
183
            else
184
            {
Khalique's avatar
Khalique committed
185
                return add_broadcastable_binary_op(args[0], args[1], x);
186
187
188
189
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
190
191
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
192
193
194
195
196
197
198
199
200
201
202
203
204
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
205
        if(s0.size() > s1.size())
206
207
208
209
210
211
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
212
213
214
215
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
216
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
217
                           if(a != b and a != 1 and b != 1)
218
                           {
Shucai Xiao's avatar
Shucai Xiao committed
219
220
221
222
223
224
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
225
226
227
228

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
229
230
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
231
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
232
233
234
235
236
237
238
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
239
240
241
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
242
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
243
244
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
245
246
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
247
            auto out_lens = compute_broadcasted_lens(s0, s1);
248
249
250
251
252
253
254
255
256

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
257
258
259
260
261
262
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
263
264
    }

Paul's avatar
Paul committed
265
    template <class T>
Paul's avatar
Paul committed
266
267
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
268
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
269
270
271
272
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
273
    template <class T>
Khalique's avatar
Khalique committed
274
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
275
    {
Paul's avatar
Paul committed
276
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
277
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
278
279
280
281
282
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
283
        });
Khalique's avatar
Khalique committed
284
285
    }

kahmed10's avatar
kahmed10 committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

Khalique's avatar
Khalique committed
305
306
307
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
308
309
310
311
312
313
314
315
316
317
318
319
320
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
321
    template <class Op>
322
    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
323
324
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
325
    {
326
        int64_t axis = 1;
327
328
329
330
331
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

332
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
333
334
    }

Shucai Xiao's avatar
Shucai Xiao committed
335
    template <class Op>
336
    instruction_ref parse_arg_op(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
337
338
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
339
    {
340
        int64_t axis = 0;
341
342
        if(contains(attributes, "axis"))
        {
343
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
344
345
        }

Shucai Xiao's avatar
Shucai Xiao committed
346
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
347
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
348
349
350
351
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
352
        if(keep_dims == 0)
353
        {
354
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
355
            return prog.add_instruction(op::squeeze{{axis}}, ins);
356
357
358
        }
        else
        {
359
            return prog.add_instruction(Op{axis}, std::move(args));
360
        }
361
362
    }

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
                                               attribute_map& attributes,
                                               Op& op,
                                               const std::vector<std::size_t>& in_lens)
    {
        if(!contains(attributes, "auto_pad"))
        {
            return ins;
        }

        auto auto_pad = attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            // calculate the padding
            std::array<std::size_t, 2> out_lens;
            out_lens[0] = (in_lens[2] + op.stride[0] - 1) / op.stride[0];
            out_lens[1] = (in_lens[3] + op.stride[1] - 1) / op.stride[1];

            std::array<std::size_t, 2> explicit_pads;
            explicit_pads[0] = (out_lens[0] - 1) * op.stride[0] + op.lengths[0] - in_lens[2];
            explicit_pads[1] = (out_lens[1] - 1) * op.stride[1] + op.lengths[1] - in_lens[3];
            op.padding[0]    = explicit_pads[0] / 2;
            op.padding[1]    = explicit_pads[1] / 2;
            explicit_pads[0] -= 2 * op.padding[0];
            explicit_pads[1] -= 2 * op.padding[1];
            std::vector<std::int64_t> pads(8, 0);
            if(explicit_pads[0] != 0 or explicit_pads[1] != 0)
            {
                if(auto_pad == "SAME_UPPER")
                {
                    pads[6] = explicit_pads[0];
                    pads[7] = explicit_pads[1];
                }
                else if(auto_pad == "SAME_LOWER")
                {
                    pads[2] = explicit_pads[0];
                    pads[3] = explicit_pads[1];
                }

                // MaxPool
                if(op.mode == "max")
                {
                    ins = prog.add_instruction(op::pad{pads, std::numeric_limits<float>::lowest()},
                                               ins);
                }
                // AveragePool
                else
                {
                    ins = prog.add_instruction(op::pad{pads}, ins);
                }
            }

            op.padding_mode = op::padding_mode_t::same;
        }

        return ins;
    }

422
    template <class Op>
Paul's avatar
Paul committed
423
    instruction_ref
Paul's avatar
Paul committed
424
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
425
    {
426
        Op op;
427
        auto l0 = args[0];
Paul's avatar
Paul committed
428
429
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
430
            if(contains(attributes, "auto_pad"))
431
            {
432
433
434
435
436
                auto s = attributes["auto_pad"].s();
                if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
437
            }
438
439
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
440
            if(padding.size() != 4)
441
            {
Paul's avatar
Paul committed
442
                MIGRAPHX_THROW("padding should have 4 values");
443
            }
Scott Thornton's avatar
Scott Thornton committed
444
            if(padding[0] != padding[2] || padding[1] != padding[3])
445
            {
446
447
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
448
                l0      = prog.add_instruction(op::pad{padding}, l0);
449
            }
450
451
452
453
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
454
            }
Paul's avatar
Paul committed
455
        }
Paul's avatar
Paul committed
456
457
458
459
460
461
462
463
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
464
        if(contains(attributes, "auto_pad"))
465
466
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
467
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
468
            {
Paul's avatar
Paul committed
469
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
470
471
            }

wsttiger's avatar
fixes  
wsttiger committed
472
            if(s.find("SAME") != std::string::npos)
473
            {
474
                op.padding_mode = op::padding_mode_t::same;
475
476
            }
        }
Khalique's avatar
Khalique committed
477
478
479
480
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
kahmed10's avatar
kahmed10 committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

    instruction_ref parse_conv_transpose(const std::string&,
                                         attribute_map attributes,
                                         std::vector<instruction_ref> args)
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
        if(contains(attributes, "pads"))
        {
            if(contains(attributes, "auto_pad"))
            {
                auto s = attributes["auto_pad"].s();
                if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
            copy(attributes["pads"].ints(), std::back_inserter(padding));
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
Paul's avatar
Paul committed
524
        {
kahmed10's avatar
kahmed10 committed
525
            copy(attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
526
        }
kahmed10's avatar
kahmed10 committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        if(contains(attributes, "auto_pad"))
        {
            auto s = attributes["auto_pad"].s();
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

        if(contains(attributes, "output_padding"))
        {
            std::vector<int64_t> output_padding;
            copy(attributes["output_padding"].ints(), std::back_inserter(output_padding));
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

        if(contains(attributes, "output_shape"))
        {
            std::vector<int64_t> output_shape;
            copy(attributes["output_shape"].ints(), std::back_inserter(output_shape));
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
589
    }
Paul's avatar
Paul committed
590

Paul's avatar
Paul committed
591
592
593
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
594
    {
Khalique's avatar
Khalique committed
595
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
596
        auto l0 = args[0];
Khalique's avatar
Khalique committed
597
        if(starts_with(name, "Global"))
598
        {
Khalique's avatar
Khalique committed
599
600
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
601
        }
602

Paul's avatar
Paul committed
603
604
        if(contains(attributes, "pads"))
        {
605
606
607
608
609
610
611
612
613
614
            if(contains(attributes, "auto_pad"))
            {
                auto s = attributes["auto_pad"].s();
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

615
616
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
617
            if(padding.size() != 4)
618
            {
619
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
620
            }
Scott Thornton's avatar
Scott Thornton committed
621
            if(padding[0] != padding[2] || padding[1] != padding[3])
622
            {
623
624
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
625
626
627
628
629
630
631
632
633
634
635
                // MaxPool
                if(op.mode == "max")
                {
                    l0 = prog.add_instruction(
                        op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
                }
                // AveragePool
                else
                {
                    l0 = prog.add_instruction(op::pad{padding}, l0);
                }
636
637
638
639
640
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
641
            }
Paul's avatar
Paul committed
642
        }
643

Paul's avatar
Paul committed
644
645
646
647
648
649
650
651
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
652

Scott Thornton's avatar
Scott Thornton committed
653
        if(contains(attributes, "auto_pad"))
654
        {
655
656
            auto in_lens = args[0]->get_shape().lens();
            l0           = process_auto_pad_attribute(l0, attributes, op, in_lens);
657
658
        }

659
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
660
661
    }

Paul's avatar
Paul committed
662
    instruction_ref
Paul's avatar
Paul committed
663
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
664
    {
665
        op::reshape op;
Paul's avatar
Paul committed
666
667
        if(args.size() == 1)
        {
668
669
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
670
671
672
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
673
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
674
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
675
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
676
        }
677

Shucai Xiao's avatar
Shucai Xiao committed
678
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
679
680
    }

Paul's avatar
Paul committed
681
    instruction_ref
Paul's avatar
Paul committed
682
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
683
    {
684
        int64_t axis = 1;
Paul's avatar
Paul committed
685
686
687
688
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
689
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
690
691
    }

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
710
711
712
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Shucai Xiao's avatar
Shucai Xiao committed
713
714
715
716
717
718
719
        // change to hande axis to be negative values
        if(!contains(attributes, "axis"))
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

        int axis = parse_value(attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
720
721
722
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
723

724
725
726
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
727
        int axis = 0;
728
729
730
731
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
732

733
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
734
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
735
736
    }

737
738
739
740
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
Khalique's avatar
Khalique committed
741
        std::vector<size_t> dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
742
        size_t num_dims          = dims.size();
743
744
745
746
747
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Khalique's avatar
Khalique committed
748
749
750
751
752
        else
        {
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
        }
Khalique's avatar
Khalique committed
753

Khalique's avatar
Khalique committed
754
        if(contains(attributes, "ends"))
755
        {
Paul's avatar
Paul committed
756
            op.ends = get_indices(attributes.at("ends"));
757
        }
Khalique's avatar
Khalique committed
758
        if(contains(attributes, "starts"))
759
760
761
762
763
764
765
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
766
767
768
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
769
    {
Shucai Xiao's avatar
Shucai Xiao committed
770
        literal v = parse_value(attributes.at("value"));
771
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
772
        if(v.get_shape().elements() == 0)
773
774
775
776
        {
            return prog.add_literal(literal{});
        }

777
778
779
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
780
        {
781
            migraphx::shape scalar_shape{v.get_shape().type()};
782
783
784
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
785
786
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
787

Paul's avatar
Paul committed
788
    instruction_ref
Paul's avatar
Paul committed
789
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
790
791
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
792
        float beta  = 1.0f;
Paul's avatar
Paul committed
793
794
795
796
797
798
799
800
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
801
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
802
803
804
805
806
807
808
809
810
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
811
812
813
814
815
816

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

817
818
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
819
820
        if(args.size() == 3)
        {
821
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
822
            {
Shucai Xiao's avatar
Shucai Xiao committed
823
                auto out_lens   = l1->get_shape().lens();
824
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
825
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
826
827
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
828
                {
829
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
830
                }
831
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
832
            }
Paul's avatar
Paul committed
833
        }
834
835

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
836
837
    }

838
    template <class Op>
839
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
840
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
841
    {
Shucai Xiao's avatar
Shucai Xiao committed
842
843
        auto l0      = args[0];
        auto l1      = args[1];
844
845
846
847
848
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
849
        if(l0_lens.size() == 1)
850
851
852
853
854
855
856
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
857
        if(l1_lens.size() == 1)
858
859
860
861
862
863
864
865
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
866
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
867
868
869
870
871
872
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
873
            l0_broadcasted_lens = output_lens;
874
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
875
            l1_broadcasted_lens = output_lens;
876
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
877
            if(l0_lens != l0_broadcasted_lens)
878
879
880
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
881
            if(l1_lens != l1_broadcasted_lens)
882
883
884
885
886
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

887
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
888
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
889
        if(is_a_prepended)
890
891
892
893
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
894
        if(is_b_appended)
895
896
897
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
898

899
900
901
        return dot_res;
    }

902
    instruction_ref
Paul's avatar
Paul committed
903
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
904
    {
Scott Thornton's avatar
Scott Thornton committed
905
906
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
907
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
908
909
910
911
912
913
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
914
            momentum = parse_value(attributes.at("momentum")).at<float>();
915
916
917
        }
        if(contains(attributes, "spatial"))
        {
918
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
919
920
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
921
        }
Paul's avatar
Paul committed
922
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
923
        return prog.add_instruction(op, std::move(args));
924
925
    }

kahmed10's avatar
kahmed10 committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    instruction_ref parse_instancenorm(const std::string&,
                                       attribute_map attributes,
                                       std::vector<instruction_ref> args)
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

962
963
964
965
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
966
        float alpha = 0.01; // default alpha val for leaky relu
967
968
969
970
971
972
973
974
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
975
976
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
977
978
979
980
981
982
983
984
985
986
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
987
988
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
989
990
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
991
992
993
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1022
1023
1024
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1025

Shucai Xiao's avatar
Shucai Xiao committed
1026
1027
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1028

1029
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1030
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1031
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1032
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1033
    }
Khalique's avatar
Khalique committed
1034

Khalique's avatar
Khalique committed
1035
1036
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1037
1038
1039
1040
1041
1042
1043
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1044
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1045
1046
    }

Khalique's avatar
Khalique committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1057
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1058
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1059
1060
1061
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1074
1075
1076
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1077
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1078
1079
    {
        if(args.size() != 1)
1080
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
Shucai Xiao's avatar
Shucai Xiao committed
1105
        shape::type_t type = get_type(dtype);
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1117
1118
        if(contains(attributes, "extra_shape"))
        {
1119
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1120
1121
        }

1122
1123
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1124
            if(args.size() != 1)
1125
            {
1126
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1127
1128
            }

Shucai Xiao's avatar
Shucai Xiao committed
1129
1130
            if(contains(attributes, "shape"))
            {
1131
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1132
                               "at the same time");
1133
1134
            }

1135
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1136
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1137

1138
1139
1140
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1141
1142
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1143
1144
1145
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1146
1147
            if(!contains(attributes, "shape"))
            {
1148
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1149
1150
1151
            }

            literal ls = parse_value(attributes.at("shape"));
1152
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1153
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1154
            migraphx::shape s{type, dims};
1155
1156
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1157
1158
1159
        }
        else
        {
1160
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1161
1162
1163
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1164
1165
1166
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
1167
1168
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
1169
        if(contains(attributes, "value"))
1170
1171
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1172
            if(l_val.get_shape().elements() != 1)
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1184

Shucai Xiao's avatar
Shucai Xiao committed
1185
        if(args.empty())
1186
        {
Shucai Xiao's avatar
Shucai Xiao committed
1187
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1188
1189
1190
        }
        else
        {
1191
1192
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1193
            if(args[0]->get_shape().elements() == 0)
1194
            {
1195
                s = migraphx::shape{type, {1}, {0}};
1196
            }
1197
1198
1199
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1200
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1201

1202
1203
1204
1205
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1206

Shucai Xiao's avatar
Shucai Xiao committed
1207
            literal l_out{};
1208
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1209
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1210
                // l_val contains only one element
1211
                std::vector<val_type> out_vec(s.elements(), val.front());
1212
1213
1214
1215
1216
1217
1218
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1219
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1220
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1221
    {
Shucai Xiao's avatar
Shucai Xiao committed
1222
        auto in_lens             = args[0]->get_shape().lens();
1223
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1224
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1225
1226
1227
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1228
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1229
1230
    }

Shucai Xiao's avatar
Shucai Xiao committed
1231
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1232
1233
1234
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1235
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1236
1237
1238

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1239
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1240
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1241
1242
1243
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1253
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1254
1255
        if(direction == "bidirectional")
        {
1256
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1257
1258
1259
        }
        else if(direction == "reverse")
        {
1260
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1261
1262
        }

1263
        std::vector<std::string> vec_names{"tanh"};
1264
1265
1266
1267
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1268
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1269
1270
1271
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1272
1273
        }

1274
1275
1276
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1277
        if(name_it != vec_names.end())
1278
1279
1280
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1281

Shucai Xiao's avatar
Shucai Xiao committed
1282
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1283
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1284
        // if only one actv function is provided, we use it in both
1285
        // forward and reverse direction
1286
        if(dirct == op::rnn_direction::bidirectional)
1287
        {
Shucai Xiao's avatar
Shucai Xiao committed
1288
            if(vec_names.size() == 1)
1289
1290
1291
1292
1293
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1294
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1295
1296
1297
1298
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1299

Shucai Xiao's avatar
Shucai Xiao committed
1300
1301
1302
1303
1304
1305
1306
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1307
1308
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1309
        if(args.size() < 6)
1310
1311
1312
1313
1314
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1315
1316
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1317
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1318

1319
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1320
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1321

Shucai Xiao's avatar
Shucai Xiao committed
1322
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1323
1324
    }

1325
    std::vector<instruction_ref>
1326
1327
1328
1329
1330
1331
1332
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1333
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1334
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1335
1336
1337
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1338
1339
1340
1341
1342
1343
1344
1345
1346
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1347
        op::rnn_direction dirct = op::rnn_direction::forward;
1348
1349
        if(direction == "bidirectional")
        {
1350
            dirct = op::rnn_direction::bidirectional;
1351
1352
1353
        }
        else if(direction == "reverse")
        {
1354
            dirct = op::rnn_direction::reverse;
1355
1356
        }

1357
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1358
1359
        if(contains(attributes, "activations"))
        {
1360
            auto names = attributes.at("activations").strings();
1361
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1362
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1363
1364
1365
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1366
1367
        }

1368
        // need 4 activation functions
1369
        if(dirct == op::rnn_direction::bidirectional)
1370
        {
Shucai Xiao's avatar
Shucai Xiao committed
1371
            // 4 activation functions are used in the bidirectional
1372
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1373
1374
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1375
1376
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1377
1378
1379
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1380
            if(vec_names.size() == 1)
1381
            {
1382
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1383
            }
1384
            else if(vec_names.size() == 2)
1385
            {
1386
1387
1388
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1389
            }
1390
            else if(vec_names.size() == 3)
1391
            {
1392
                vec_names.push_back(vec_names.at(2));
1393
1394
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1395
        else
1396
        {
1397
            if(vec_names.size() == 1)
1398
            {
1399
                vec_names.push_back(vec_names.at(0));
1400
1401
1402
            }
        }

1403
1404
1405
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1406
        if(name_it != vec_names.end())
1407
1408
1409
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1410

Shucai Xiao's avatar
Shucai Xiao committed
1411
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1412
1413
1414
1415
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1416
1417
1418
1419
1420
1421
1422
1423

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1424
        if(contains(attributes, "linear_before_reset"))
1425
1426
1427
1428
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1429
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1430
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1431
1432
1433
1434
1435
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1436
1437
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1438
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1439
            std::move(args));
1440
1441

        // second output for last gru output
1442
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1443

Shucai Xiao's avatar
Shucai Xiao committed
1444
        return {hidden_states, last_output};
1445
1446
    }

Shucai Xiao's avatar
Shucai Xiao committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1469
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1470
1471
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1472
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1473
1474
1475
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1476
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1477
        }
Shucai Xiao's avatar
Shucai Xiao committed
1478
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1479
        {
Shucai Xiao's avatar
Shucai Xiao committed
1480
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1481
1482
1483
1484
1485
1486
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1487
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1488
1489
1490
1491
1492
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1493
1494
1495
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1496
1497
1498
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1499
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1500
1501
1502
1503
1504
1505
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1506
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1507
1508
1509
1510
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1511
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1512
1513
1514
1515
1516
1517
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1518
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1519
1520
1521

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1522
1523
1524
1525
1526
1527
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1528
1529
1530
1531
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1532
1533
1534
1535
1536
1537
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1538
1539
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1540
1541
1542
1543
1544
1545
1546
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1547
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1548

Shucai Xiao's avatar
Shucai Xiao committed
1549
1550
1551
1552
1553
1554
1555
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1556
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1557

Shucai Xiao's avatar
Shucai Xiao committed
1558
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1559
1560
1561
1562
1563
1564
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1565
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1566
1567
1568

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1569
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1570
1571
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1572
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1573
1574
1575
            }
        }

1576
1577
1578
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1579
        if(name_it != vec_names.end())
1580
1581
1582
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1583
1584

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1585
1586
1587
1588
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1606
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1607
1608
1609
1610
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1611
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1612
1613

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1614
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1615
1616
1617
1618
1619
1620

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1621

Shucai Xiao's avatar
Shucai Xiao committed
1622
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1623
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1624
1625
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1626
1627
1628
1629
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1630
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1631
1632
1633
1634
1635
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1636
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1647
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1648
1649
1650
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1651
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1652
            return prog.add_instruction(op::squeeze{axes}, ins);
1653
1654
        }
    }
1655

Shucai Xiao's avatar
Shucai Xiao committed
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
    instruction_ref
    parse_reduce_l1(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
        return parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {abs_ins});
    }

    instruction_ref
    parse_reduce_l2(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {square_ins});
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

    instruction_ref parse_reduce_log_sum(const std::string&,
                                         attribute_map attributes,
                                         std::vector<instruction_ref> args)
    {
        auto sum_ins =
            parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), std::move(args));
        return prog.add_instruction(op::log{}, sum_ins);
    }

    instruction_ref parse_reduce_log_sum_exp(const std::string&,
                                             attribute_map attributes,
                                             std::vector<instruction_ref> args)
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {exp_ins});
        return prog.add_instruction(op::log{}, sum_ins);
    }

    instruction_ref parse_reduce_sum_square(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
        return parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {square_ins});
    }

Shucai Xiao's avatar
Shucai Xiao committed
1697
1698
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1699
    {
Shucai Xiao's avatar
Shucai Xiao committed
1700
        if(!contains(attributes, "to"))
1701
1702
1703
1704
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1705
        int to_type        = parse_value(attributes.at("to")).at<int>();
1706
1707
1708
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1709

Paul's avatar
Paul committed
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1722
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1723
1724
1725
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
1742
1743
1744
    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1745
        for(auto&& f : graph.initializer())
1746
1747
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
1748
1749
1750
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1751
1752
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
1753
1754
            {
                // TODO: Get shape of input parameter
1755
                shape s            = parse_type(input.type(), batch_size);
1756
1757
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1758
        }
Paul's avatar
Paul committed
1759
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1760
        {
Paul's avatar
Paul committed
1761
            this->parse_node(output.name());
Paul's avatar
Paul committed
1762
        }
Shucai Xiao's avatar
Shucai Xiao committed
1763

1764
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
1765
        auto prog_output = graph.output();
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
1786
1787
    }

Shucai Xiao's avatar
Shucai Xiao committed
1788
    void parse_undefined(const std::string& name)
1789
    {
Shucai Xiao's avatar
Shucai Xiao committed
1790
        auto ins           = prog.add_instruction(op::undefined{});
1791
1792
1793
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1794
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1795
    {
Paul's avatar
Paul committed
1796
        if(name.empty())
Paul's avatar
Paul committed
1797
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1798
1799
1800
1801
1802
1803
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1804
                if(input.empty())
Paul's avatar
Paul committed
1805
                {
Shucai Xiao's avatar
Shucai Xiao committed
1806
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1807
                }
Shucai Xiao's avatar
Shucai Xiao committed
1808
                else if(nodes.count(input) > 0)
Paul's avatar
Paul committed
1809
                {
Shucai Xiao's avatar
Shucai Xiao committed
1810
1811
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1812
                }
1813
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1814
            }
Paul's avatar
Paul committed
1815
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1816
1817
            if(ops.count(node.op_type()) == 0)
            {
1818
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1819
1820
1821
            }
            else
            {
Paul's avatar
Paul committed
1822
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1823
            }
Paul's avatar
Paul committed
1824
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1825
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1826
1827
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1828
1829
1830
            }
            else
            {
1831
                auto output_num = std::min<std::size_t>(node.output().size(), result.size());
Shucai Xiao's avatar
Shucai Xiao committed
1832
                std::transform(node.output().begin(),
1833
                               node.output().begin() + output_num,
Shucai Xiao's avatar
Shucai Xiao committed
1834
                               result.begin(),
Paul's avatar
Paul committed
1835
                               std::inserter(instructions, instructions.end()),
Shucai Xiao's avatar
Shucai Xiao committed
1836
                               [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1854
        std::size_t n = 0;
Paul's avatar
Paul committed
1855
1856
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1857
            if(node.output().empty())
Paul's avatar
Paul committed
1858
            {
Paul's avatar
Paul committed
1859
                if(node.name().empty())
Paul's avatar
Paul committed
1860
1861
1862
1863
1864
1865
1866
1867
1868
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1869
1870
1871
1872
1873
1874
1875
1876
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
1877
1878
1879
1880
1881
1882
    static std::vector<int64_t> get_indices(const onnx::AttributeProto& attr)
    {
        std::vector<int64_t> result;
        literal s = parse_value(attr);
        s.visit([&](auto v) { copy(v, std::back_inserter(result)); });
        // Clamp large indices to -1
Paul's avatar
Paul committed
1883
1884
1885
1886
1887
        std::replace_if(
            result.begin(),
            result.end(),
            [](auto x) { return x > int64_t{std::numeric_limits<std::int32_t>::max()} / 2; },
            -1);
Paul's avatar
Paul committed
1888
1889
1890
        return result;
    }

Paul's avatar
Paul committed
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1905
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1906
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1907
1908
1909
1910
1911
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
1912
1913
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
1914
1915
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1916
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1917
1918
1919
1920
1921
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1922
1923
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1924
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1925
1926
            switch(t.data_type())
            {
1927
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
1928
1929
1930
1931
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1932
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1933
1934
1935
1936
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1937
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1938
1939
1940
1941
1942
1943
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1944
1945
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1946
            MIGRAPHX_THROW("Invalid tensor type");
1947
        }
Paul's avatar
Paul committed
1948
1949
1950
1951
1952
1953
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1954
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1955
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1956
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1957
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1958
1959
1960
1961
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1962
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1963
        {
Khalique's avatar
Khalique committed
1964
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1965
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1966
1967
1968
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1969
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1970
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1971
        }
Paul's avatar
Paul committed
1972
1973
1974
1975
1976
1977
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1978
1979
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1980
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1981
1982
    }

Khalique's avatar
Khalique committed
1983
    static literal
1984
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1985
    {
Khalique's avatar
Khalique committed
1986
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1987
        if(dims.empty())
1988
            return literal{{shape_type}, data};
1989
1990
1991
        return literal{{shape_type, dims}, data};
    }

1992
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1993
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1994
1995
    {
        if(dims.empty())
1996
            return literal{{shape_type}, data.begin(), data.end()};
1997
        return literal{{shape_type, dims}, data.begin(), data.end()};
1998
1999
    }

2000
    static shape parse_type(const onnx::TypeProto& t, const unsigned int batch_size)
Paul's avatar
Paul committed
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2011
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2012
2013
2014
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
2015
2016
2017
2018
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2019
2020
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2021
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2022
2023
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2024
        auto&& tensor_dims = t.tensor_type().shape().dim();
2025
2026
2027
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2028
2029
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2030
                           {
2031
2032
2033
                               if(static_cast<int>(d.dim_value()) <= 0)
                                   return batch_size;
                               return d.dim_value();
2034
                           }
2035
                           return batch_size;
2036
                       });
2037
2038
2039
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2040
2041
        return {shape_type, dims};
    }
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2064
2065
2066

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2067
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2068
2069
2070
2071
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2072
2073
};

Paul Fultz II's avatar
Paul Fultz II committed
2074
2075
template <class... Ts>
program parse_onnx_from(onnx_options options, Ts&&... xs)
Paul's avatar
Paul committed
2076
2077
{
    onnx_parser parser;
2078
    parser.batch_size = options.batch_size;
Paul's avatar
Paul committed
2079
2080
2081
2082
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
Paul Fultz II's avatar
Paul Fultz II committed
2083
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2084
2085
2086
2087
2088
2089
2090
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
Paul Fultz II's avatar
Paul Fultz II committed
2091
    parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2092
2093
2094
2095
#endif
    return std::move(parser.prog);
}

Paul Fultz II's avatar
Paul Fultz II committed
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
program parse_onnx(const std::string& name, onnx_options options)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

program parse_onnx_buffer(const std::string& buffer, onnx_options options)
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

program parse_onnx_buffer(const void* data, std::size_t size, onnx_options options)
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2112
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2113
} // namespace migraphx