onnx.cpp 77.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23
24
25
26
27

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
28
29
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
30
31
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
32
33
34
    program prog            = program();
    bool is_pytorch         = false;
    unsigned int batch_size = 1;
Paul's avatar
Paul committed
35
36

    std::unordered_map<std::string, op_func> ops;
37
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
38
39
40

    onnx_parser()
    {
41
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
42
        add_generic_op("Abs", op::abs{});
43
44
45
46
47
48
49
50
51
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
52
        add_generic_op("Erf", op::erf{});
53
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
54
        add_generic_op("Dropout", op::identity{});
55
56
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
57
        add_generic_op("Identity", op::identity{});
58
59
60
61
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
62
        add_generic_op("Sin", op::sin{});
63
        add_generic_op("Sinh", op::sinh{});
64
        add_generic_op("Sqrt", op::sqrt{});
65
66
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
67

Khalique's avatar
Khalique committed
68
69
70
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
71
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
72
        add_binary_op("PRelu", op::prelu{});
73
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
74

Khalique's avatar
Khalique committed
75
76
77
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
78

79
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
80
81
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
82
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
83
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
84
        add_mem_op("Clip", &onnx_parser::parse_clip);
85
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
86
        add_mem_op("Constant", &onnx_parser::parse_constant);
87
88
89
90
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
91
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
92
93
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
94
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
95
        add_mem_op("Gather", &onnx_parser::parse_gather);
Paul's avatar
Paul committed
96
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
97
98
99
100
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
101
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
102
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
103
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
104
105
106
107
        add_mem_op("LRN", &onnx_parser::parse_lrn);
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
108
109
110
111
112
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
113
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
114
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
115
116
117
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
118
119
120
121
122
123
124
125
126
127
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Pad", &onnx_parser::parse_pad);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
128
129
130
131
132
133
134

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
135
136
137
138
139
140
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
141
142
143
144
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
145
146
147
148
149
150
151
152
153
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
154
155
156
157
158
159
160
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
161
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
162
163
164
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
165

166
    template <class T>
Khalique's avatar
Khalique committed
167
    void add_binary_op(std::string name, T x)
168
    {
Paul's avatar
Paul committed
169
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
170
            if(args.size() != 2)
Paul's avatar
Paul committed
171
                MIGRAPHX_THROW("binary operators should have 2 operands");
172
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
173
174
175
176
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
177
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
178
179
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
180
181
                    return prog.add_instruction(x, args[0], l);
                }
182
                return prog.add_instruction(x, args);
183
            }
Paul's avatar
Paul committed
184
            else
185
            {
Khalique's avatar
Khalique committed
186
                return add_broadcastable_binary_op(args[0], args[1], x);
187
188
189
190
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
191
192
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
193
194
195
196
197
198
199
200
201
202
203
204
205
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
206
        if(s0.size() > s1.size())
207
208
209
210
211
212
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
213
214
215
216
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
217
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
218
                           if(a != b and a != 1 and b != 1)
219
                           {
Shucai Xiao's avatar
Shucai Xiao committed
220
221
222
223
224
225
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
226
227
228
229

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
230
231
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
232
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
233
234
235
236
237
238
239
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
240
241
242
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
243
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
244
245
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
246
247
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
248
            auto out_lens = compute_broadcasted_lens(s0, s1);
249
250
251
252
253
254
255
256
257

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
258
259
260
261
262
263
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
264
265
    }

Paul's avatar
Paul committed
266
    template <class T>
Paul's avatar
Paul committed
267
268
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
269
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
270
271
272
273
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
274
    template <class T>
Khalique's avatar
Khalique committed
275
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
276
    {
Paul's avatar
Paul committed
277
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
278
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
279
280
281
282
283
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
284
        });
Khalique's avatar
Khalique committed
285
286
    }

kahmed10's avatar
kahmed10 committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
                            std::vector<int64_t>& padding,
                            Op& op,
                            float pad_val = 0)
    {
        if(padding[0] != padding[2] || padding[1] != padding[3])
        {
            padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
            ins     = prog.add_instruction(op::pad{padding, pad_val}, ins);
        }
        else
        {
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
        }
    }

Khalique's avatar
Khalique committed
324
325
326
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
327
328
329
330
331
332
333
334
335
336
337
338
339
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
340
    template <class Op>
341
    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
342
343
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
344
    {
345
        int64_t axis = 1;
346
347
348
349
350
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

351
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
352
353
    }

Shucai Xiao's avatar
Shucai Xiao committed
354
    template <class Op>
355
    instruction_ref parse_arg_op(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
356
357
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
358
    {
359
        int64_t axis = 0;
360
361
        if(contains(attributes, "axis"))
        {
362
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
363
364
        }

Shucai Xiao's avatar
Shucai Xiao committed
365
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
366
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
367
368
369
370
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
371
        if(keep_dims == 0)
372
        {
373
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
374
            return prog.add_instruction(op::squeeze{{axis}}, ins);
375
376
377
        }
        else
        {
378
            return prog.add_instruction(Op{axis}, std::move(args));
379
        }
380
381
    }

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
                                               attribute_map& attributes,
                                               Op& op,
                                               const std::vector<std::size_t>& in_lens)
    {
        if(!contains(attributes, "auto_pad"))
        {
            return ins;
        }

        auto auto_pad = attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            // calculate the padding
            std::array<std::size_t, 2> out_lens;
            out_lens[0] = (in_lens[2] + op.stride[0] - 1) / op.stride[0];
            out_lens[1] = (in_lens[3] + op.stride[1] - 1) / op.stride[1];

            std::array<std::size_t, 2> explicit_pads;
            explicit_pads[0] = (out_lens[0] - 1) * op.stride[0] + op.lengths[0] - in_lens[2];
            explicit_pads[1] = (out_lens[1] - 1) * op.stride[1] + op.lengths[1] - in_lens[3];
            op.padding[0]    = explicit_pads[0] / 2;
            op.padding[1]    = explicit_pads[1] / 2;
            explicit_pads[0] -= 2 * op.padding[0];
            explicit_pads[1] -= 2 * op.padding[1];
            std::vector<std::int64_t> pads(8, 0);
            if(explicit_pads[0] != 0 or explicit_pads[1] != 0)
            {
                if(auto_pad == "SAME_UPPER")
                {
                    pads[6] = explicit_pads[0];
                    pads[7] = explicit_pads[1];
                }
                else if(auto_pad == "SAME_LOWER")
                {
                    pads[2] = explicit_pads[0];
                    pads[3] = explicit_pads[1];
                }

                // MaxPool
                if(op.mode == "max")
                {
                    ins = prog.add_instruction(op::pad{pads, std::numeric_limits<float>::lowest()},
                                               ins);
                }
                // AveragePool
                else
                {
                    ins = prog.add_instruction(op::pad{pads}, ins);
                }
            }

            op.padding_mode = op::padding_mode_t::same;
        }

        return ins;
    }

441
    template <class Op>
Paul's avatar
Paul committed
442
    instruction_ref
Paul's avatar
Paul committed
443
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
444
    {
445
        Op op;
446
447
        auto l0      = args[0];
        auto weights = args[1];
Paul's avatar
Paul committed
448
449
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
450
            if(contains(attributes, "auto_pad"))
451
            {
452
453
454
455
456
                auto s = attributes["auto_pad"].s();
                if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
457
            }
458
459
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
460
            if(padding.size() != 4)
461
            {
Paul's avatar
Paul committed
462
                MIGRAPHX_THROW("padding should have 4 values");
463
            }
464
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
465
        }
Paul's avatar
Paul committed
466
467
468
469
470
471
472
473
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
474
        if(contains(attributes, "auto_pad"))
475
476
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
477
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
478
            {
Paul's avatar
Paul committed
479
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
480
481
            }

wsttiger's avatar
fixes  
wsttiger committed
482
            if(s.find("SAME") != std::string::npos)
483
            {
484
485
486
487
488
489
490
491
492
493
494
495
496
                op.padding_mode                 = op::padding_mode_t::same;
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> padding(input_dims.size());
                calculate_padding(
                    0, padding, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(
                    1, padding, input_dims[3], op.stride[1], op.dilation[1], weight_w);

                check_asym_padding(l0, padding, op);
497
498
            }
        }
Khalique's avatar
Khalique committed
499
500
501
502
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
kahmed10's avatar
kahmed10 committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

    instruction_ref parse_conv_transpose(const std::string&,
                                         attribute_map attributes,
                                         std::vector<instruction_ref> args)
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
        if(contains(attributes, "pads"))
        {
            if(contains(attributes, "auto_pad"))
            {
                auto s = attributes["auto_pad"].s();
                if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
            copy(attributes["pads"].ints(), std::back_inserter(padding));
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
Paul's avatar
Paul committed
546
        {
kahmed10's avatar
kahmed10 committed
547
            copy(attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
548
        }
kahmed10's avatar
kahmed10 committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        if(contains(attributes, "auto_pad"))
        {
            auto s = attributes["auto_pad"].s();
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

        if(contains(attributes, "output_padding"))
        {
            std::vector<int64_t> output_padding;
            copy(attributes["output_padding"].ints(), std::back_inserter(output_padding));
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

        if(contains(attributes, "output_shape"))
        {
            std::vector<int64_t> output_shape;
            copy(attributes["output_shape"].ints(), std::back_inserter(output_shape));
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
611
    }
Paul's avatar
Paul committed
612

Paul's avatar
Paul committed
613
614
615
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
616
    {
Khalique's avatar
Khalique committed
617
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
618
        auto l0 = args[0];
Khalique's avatar
Khalique committed
619
        if(starts_with(name, "Global"))
620
        {
Khalique's avatar
Khalique committed
621
622
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
623
        }
624

Paul's avatar
Paul committed
625
626
        if(contains(attributes, "pads"))
        {
627
628
629
630
631
632
633
634
635
636
            if(contains(attributes, "auto_pad"))
            {
                auto s = attributes["auto_pad"].s();
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

637
638
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
639
            if(padding.size() != 4)
640
            {
641
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
642
            }
643
644
645
646
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
Paul's avatar
Paul committed
647
        }
648

Paul's avatar
Paul committed
649
650
651
652
653
654
655
656
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
657

Scott Thornton's avatar
Scott Thornton committed
658
        if(contains(attributes, "auto_pad"))
659
        {
660
661
            auto in_lens = args[0]->get_shape().lens();
            l0           = process_auto_pad_attribute(l0, attributes, op, in_lens);
662
663
        }

664
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
665
666
    }

Paul's avatar
Paul committed
667
    instruction_ref
Paul's avatar
Paul committed
668
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
669
    {
670
        op::reshape op;
Paul's avatar
Paul committed
671
672
        if(args.size() == 1)
        {
673
674
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
675
676
677
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
678
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
679
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
680
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
681
        }
682

Shucai Xiao's avatar
Shucai Xiao committed
683
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
684
685
    }

Paul's avatar
Paul committed
686
    instruction_ref
Paul's avatar
Paul committed
687
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
688
    {
689
        int64_t axis = 1;
Paul's avatar
Paul committed
690
691
692
693
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
694
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
695
696
    }

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
715
716
717
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Shucai Xiao's avatar
Shucai Xiao committed
718
719
720
721
722
723
724
        // change to hande axis to be negative values
        if(!contains(attributes, "axis"))
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

        int axis = parse_value(attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
725
726
727
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
728

729
730
731
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
732
        int axis = 0;
733
734
735
736
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
737

738
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
739
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
740
741
    }

742
743
744
745
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
Khalique's avatar
Khalique committed
746
        std::vector<size_t> dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
747
        size_t num_dims          = dims.size();
748
749
750
751
752
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Khalique's avatar
Khalique committed
753
754
755
756
757
        else
        {
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
        }
Khalique's avatar
Khalique committed
758

Khalique's avatar
Khalique committed
759
        if(contains(attributes, "ends"))
760
        {
Paul's avatar
Paul committed
761
            op.ends = get_indices(attributes.at("ends"));
762
        }
Khalique's avatar
Khalique committed
763
        if(contains(attributes, "starts"))
764
765
766
767
768
769
770
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
771
772
773
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
774
    {
Shucai Xiao's avatar
Shucai Xiao committed
775
        literal v = parse_value(attributes.at("value"));
776
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
777
        if(v.get_shape().elements() == 0)
778
779
780
781
        {
            return prog.add_literal(literal{});
        }

782
783
784
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
785
        {
786
            migraphx::shape scalar_shape{v.get_shape().type()};
787
788
789
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
790
791
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
792

Paul's avatar
Paul committed
793
    instruction_ref
Paul's avatar
Paul committed
794
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
795
796
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
797
        float beta  = 1.0f;
Paul's avatar
Paul committed
798
799
800
801
802
803
804
805
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
806
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
807
808
809
810
811
812
813
814
815
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
816
817
818
819
820
821

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

822
823
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
824
825
        if(args.size() == 3)
        {
826
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
827
            {
Shucai Xiao's avatar
Shucai Xiao committed
828
                auto out_lens   = l1->get_shape().lens();
829
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
830
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
831
832
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
833
                {
834
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
835
                }
836
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
837
            }
Paul's avatar
Paul committed
838
        }
839
840

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
841
842
    }

843
    template <class Op>
844
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
845
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
846
    {
Shucai Xiao's avatar
Shucai Xiao committed
847
848
        auto l0      = args[0];
        auto l1      = args[1];
849
850
851
852
853
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
854
        if(l0_lens.size() == 1)
855
856
857
858
859
860
861
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
862
        if(l1_lens.size() == 1)
863
864
865
866
867
868
869
870
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
871
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
872
873
874
875
876
877
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
878
            l0_broadcasted_lens = output_lens;
879
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
880
            l1_broadcasted_lens = output_lens;
881
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
882
            if(l0_lens != l0_broadcasted_lens)
883
884
885
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
886
            if(l1_lens != l1_broadcasted_lens)
887
888
889
890
891
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

892
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
893
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
894
        if(is_a_prepended)
895
896
897
898
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
899
        if(is_b_appended)
900
901
902
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
903

904
905
906
        return dot_res;
    }

907
    instruction_ref
Paul's avatar
Paul committed
908
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
909
    {
Scott Thornton's avatar
Scott Thornton committed
910
911
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
912
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
913
914
915
916
917
918
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
919
            momentum = parse_value(attributes.at("momentum")).at<float>();
920
921
922
        }
        if(contains(attributes, "spatial"))
        {
923
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
924
925
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
926
        }
Paul's avatar
Paul committed
927
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
928
        return prog.add_instruction(op, std::move(args));
929
930
    }

kahmed10's avatar
kahmed10 committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    instruction_ref parse_instancenorm(const std::string&,
                                       attribute_map attributes,
                                       std::vector<instruction_ref> args)
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

967
968
969
970
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
971
        float alpha = 0.01; // default alpha val for leaky relu
972
973
974
975
976
977
978
979
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
980
981
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
982
983
984
985
986
987
988
989
990
991
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
992
993
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
994
995
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
996
997
998
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1027
1028
1029
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1030

Shucai Xiao's avatar
Shucai Xiao committed
1031
1032
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1033

1034
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1035
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1036
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1037
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1038
    }
Khalique's avatar
Khalique committed
1039

Khalique's avatar
Khalique committed
1040
1041
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1042
1043
1044
1045
1046
1047
1048
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1049
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1050
1051
    }

Khalique's avatar
Khalique committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1062
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1063
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1064
1065
1066
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1079
1080
1081
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1082
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1083
1084
    {
        if(args.size() != 1)
1085
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
Shucai Xiao's avatar
Shucai Xiao committed
1110
        shape::type_t type = get_type(dtype);
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1122
1123
        if(contains(attributes, "extra_shape"))
        {
1124
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1125
1126
        }

1127
1128
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1129
            if(args.size() != 1)
1130
            {
1131
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1132
1133
            }

Shucai Xiao's avatar
Shucai Xiao committed
1134
1135
            if(contains(attributes, "shape"))
            {
1136
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1137
                               "at the same time");
1138
1139
            }

1140
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1141
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1142

1143
1144
1145
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1146
1147
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1148
1149
1150
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1151
1152
            if(!contains(attributes, "shape"))
            {
1153
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1154
1155
1156
            }

            literal ls = parse_value(attributes.at("shape"));
1157
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1158
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1159
            migraphx::shape s{type, dims};
1160
1161
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1162
1163
1164
        }
        else
        {
1165
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1166
1167
1168
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1169
1170
1171
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
1172
1173
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
1174
        if(contains(attributes, "value"))
1175
1176
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1177
            if(l_val.get_shape().elements() != 1)
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1189

Shucai Xiao's avatar
Shucai Xiao committed
1190
        if(args.empty())
1191
        {
Shucai Xiao's avatar
Shucai Xiao committed
1192
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1193
1194
1195
        }
        else
        {
1196
1197
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1198
            if(args[0]->get_shape().elements() == 0)
1199
            {
1200
                s = migraphx::shape{type, {1}, {0}};
1201
            }
1202
1203
1204
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1205
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1206

1207
1208
1209
1210
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1211

Shucai Xiao's avatar
Shucai Xiao committed
1212
            literal l_out{};
1213
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1214
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1215
                // l_val contains only one element
1216
                std::vector<val_type> out_vec(s.elements(), val.front());
1217
1218
1219
1220
1221
1222
1223
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1224
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1225
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1226
    {
Shucai Xiao's avatar
Shucai Xiao committed
1227
        auto in_lens             = args[0]->get_shape().lens();
1228
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1229
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1230
1231
1232
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1233
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1234
1235
    }

Shucai Xiao's avatar
Shucai Xiao committed
1236
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1237
1238
1239
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1240
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1241
1242
1243

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1244
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1245
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1246
1247
1248
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1249
1250
1251
1252
1253
1254
1255
1256
1257
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1258
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1259
1260
        if(direction == "bidirectional")
        {
1261
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1262
1263
1264
        }
        else if(direction == "reverse")
        {
1265
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1266
1267
        }

1268
        std::vector<std::string> vec_names{"tanh"};
1269
1270
1271
1272
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1273
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1274
1275
1276
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1277
1278
        }

1279
1280
1281
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1282
        if(name_it != vec_names.end())
1283
1284
1285
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1286

Shucai Xiao's avatar
Shucai Xiao committed
1287
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1288
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1289
        // if only one actv function is provided, we use it in both
1290
        // forward and reverse direction
1291
        if(dirct == op::rnn_direction::bidirectional)
1292
        {
Shucai Xiao's avatar
Shucai Xiao committed
1293
            if(vec_names.size() == 1)
1294
1295
1296
1297
1298
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1299
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1300
1301
1302
1303
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1304

Shucai Xiao's avatar
Shucai Xiao committed
1305
1306
1307
1308
1309
1310
1311
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1312
1313
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1314
        if(args.size() < 6)
1315
1316
1317
1318
1319
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1320
1321
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1322
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1323

1324
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1325
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1326

Shucai Xiao's avatar
Shucai Xiao committed
1327
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1328
1329
    }

1330
    std::vector<instruction_ref>
1331
1332
1333
1334
1335
1336
1337
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1338
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1339
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1340
1341
1342
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1343
1344
1345
1346
1347
1348
1349
1350
1351
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1352
        op::rnn_direction dirct = op::rnn_direction::forward;
1353
1354
        if(direction == "bidirectional")
        {
1355
            dirct = op::rnn_direction::bidirectional;
1356
1357
1358
        }
        else if(direction == "reverse")
        {
1359
            dirct = op::rnn_direction::reverse;
1360
1361
        }

1362
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1363
1364
        if(contains(attributes, "activations"))
        {
1365
            auto names = attributes.at("activations").strings();
1366
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1367
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1368
1369
1370
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1371
1372
        }

1373
        // need 4 activation functions
1374
        if(dirct == op::rnn_direction::bidirectional)
1375
        {
Shucai Xiao's avatar
Shucai Xiao committed
1376
            // 4 activation functions are used in the bidirectional
1377
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1378
1379
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1380
1381
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1382
1383
1384
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1385
            if(vec_names.size() == 1)
1386
            {
1387
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1388
            }
1389
            else if(vec_names.size() == 2)
1390
            {
1391
1392
1393
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1394
            }
1395
            else if(vec_names.size() == 3)
1396
            {
1397
                vec_names.push_back(vec_names.at(2));
1398
1399
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1400
        else
1401
        {
1402
            if(vec_names.size() == 1)
1403
            {
1404
                vec_names.push_back(vec_names.at(0));
1405
1406
1407
            }
        }

1408
1409
1410
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1411
        if(name_it != vec_names.end())
1412
1413
1414
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1415

Shucai Xiao's avatar
Shucai Xiao committed
1416
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1417
1418
1419
1420
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1421
1422
1423
1424
1425
1426
1427
1428

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1429
        if(contains(attributes, "linear_before_reset"))
1430
1431
1432
1433
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1434
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1435
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1436
1437
1438
1439
1440
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1441
1442
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1443
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1444
            std::move(args));
1445
1446

        // second output for last gru output
1447
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1448

Shucai Xiao's avatar
Shucai Xiao committed
1449
        return {hidden_states, last_output};
1450
1451
    }

Shucai Xiao's avatar
Shucai Xiao committed
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1474
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1475
1476
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1477
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1478
1479
1480
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1481
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1482
        }
Shucai Xiao's avatar
Shucai Xiao committed
1483
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1484
        {
Shucai Xiao's avatar
Shucai Xiao committed
1485
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1486
1487
1488
1489
1490
1491
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1492
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1493
1494
1495
1496
1497
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1498
1499
1500
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1501
1502
1503
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1504
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1505
1506
1507
1508
1509
1510
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1511
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1512
1513
1514
1515
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1516
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1517
1518
1519
1520
1521
1522
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1523
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1524
1525
1526

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1527
1528
1529
1530
1531
1532
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1533
1534
1535
1536
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1537
1538
1539
1540
1541
1542
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1543
1544
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1545
1546
1547
1548
1549
1550
1551
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1552
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1553

Shucai Xiao's avatar
Shucai Xiao committed
1554
1555
1556
1557
1558
1559
1560
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1561
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1562

Shucai Xiao's avatar
Shucai Xiao committed
1563
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1564
1565
1566
1567
1568
1569
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1570
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1571
1572
1573

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1574
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1575
1576
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1577
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1578
1579
1580
            }
        }

1581
1582
1583
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1584
        if(name_it != vec_names.end())
1585
1586
1587
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1588
1589

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1590
1591
1592
1593
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1611
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1612
1613
1614
1615
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1616
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1617
1618

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1619
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1620
1621
1622
1623
1624
1625

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1626

Shucai Xiao's avatar
Shucai Xiao committed
1627
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1628
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1629
1630
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1631
1632
1633
1634
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1635
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1636
1637
1638
1639
1640
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1641
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1652
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1653
1654
1655
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1656
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1657
            return prog.add_instruction(op::squeeze{axes}, ins);
1658
1659
        }
    }
1660

Shucai Xiao's avatar
Shucai Xiao committed
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
    instruction_ref
    parse_reduce_l1(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
        return parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {abs_ins});
    }

    instruction_ref
    parse_reduce_l2(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {square_ins});
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

    instruction_ref parse_reduce_log_sum(const std::string&,
                                         attribute_map attributes,
                                         std::vector<instruction_ref> args)
    {
        auto sum_ins =
            parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), std::move(args));
        return prog.add_instruction(op::log{}, sum_ins);
    }

    instruction_ref parse_reduce_log_sum_exp(const std::string&,
                                             attribute_map attributes,
                                             std::vector<instruction_ref> args)
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {exp_ins});
        return prog.add_instruction(op::log{}, sum_ins);
    }

    instruction_ref parse_reduce_sum_square(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
        return parse_reduce_oper<op::reduce_sum>({}, std::move(attributes), {square_ins});
    }

Shucai Xiao's avatar
Shucai Xiao committed
1702
1703
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1704
    {
Shucai Xiao's avatar
Shucai Xiao committed
1705
        if(!contains(attributes, "to"))
1706
1707
1708
1709
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1710
        int to_type        = parse_value(attributes.at("to")).at<int>();
1711
1712
1713
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1714

Paul's avatar
Paul committed
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1727
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1728
1729
1730
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
1747
1748
1749
    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1750
        for(auto&& f : graph.initializer())
1751
1752
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
1753
1754
1755
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1756
1757
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
1758
1759
            {
                // TODO: Get shape of input parameter
1760
                shape s            = parse_type(input.type(), batch_size);
1761
1762
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1763
        }
Paul's avatar
Paul committed
1764
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1765
        {
Paul's avatar
Paul committed
1766
            this->parse_node(output.name());
Paul's avatar
Paul committed
1767
        }
Shucai Xiao's avatar
Shucai Xiao committed
1768

1769
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
1770
        auto prog_output = graph.output();
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
1791
1792
    }

Shucai Xiao's avatar
Shucai Xiao committed
1793
    void parse_undefined(const std::string& name)
1794
    {
Shucai Xiao's avatar
Shucai Xiao committed
1795
        auto ins           = prog.add_instruction(op::undefined{});
1796
1797
1798
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1799
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1800
    {
Paul's avatar
Paul committed
1801
        if(name.empty())
Paul's avatar
Paul committed
1802
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1803
1804
1805
1806
1807
1808
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1809
                if(input.empty())
Paul's avatar
Paul committed
1810
                {
Shucai Xiao's avatar
Shucai Xiao committed
1811
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1812
                }
Shucai Xiao's avatar
Shucai Xiao committed
1813
                else if(nodes.count(input) > 0)
Paul's avatar
Paul committed
1814
                {
Shucai Xiao's avatar
Shucai Xiao committed
1815
1816
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1817
                }
1818
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1819
            }
Paul's avatar
Paul committed
1820
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1821
1822
            if(ops.count(node.op_type()) == 0)
            {
1823
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1824
1825
1826
            }
            else
            {
Paul's avatar
Paul committed
1827
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1828
            }
Paul's avatar
Paul committed
1829
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1830
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1831
1832
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1833
1834
1835
            }
            else
            {
1836
                auto output_num = std::min<std::size_t>(node.output().size(), result.size());
Shucai Xiao's avatar
Shucai Xiao committed
1837
                std::transform(node.output().begin(),
1838
                               node.output().begin() + output_num,
Shucai Xiao's avatar
Shucai Xiao committed
1839
                               result.begin(),
Paul's avatar
Paul committed
1840
                               std::inserter(instructions, instructions.end()),
Shucai Xiao's avatar
Shucai Xiao committed
1841
                               [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1859
        std::size_t n = 0;
Paul's avatar
Paul committed
1860
1861
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1862
            if(node.output().empty())
Paul's avatar
Paul committed
1863
            {
Paul's avatar
Paul committed
1864
                if(node.name().empty())
Paul's avatar
Paul committed
1865
1866
1867
1868
1869
1870
1871
1872
1873
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1874
1875
1876
1877
1878
1879
1880
1881
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
1882
1883
1884
1885
1886
1887
    static std::vector<int64_t> get_indices(const onnx::AttributeProto& attr)
    {
        std::vector<int64_t> result;
        literal s = parse_value(attr);
        s.visit([&](auto v) { copy(v, std::back_inserter(result)); });
        // Clamp large indices to -1
Paul's avatar
Paul committed
1888
1889
1890
1891
1892
        std::replace_if(
            result.begin(),
            result.end(),
            [](auto x) { return x > int64_t{std::numeric_limits<std::int32_t>::max()} / 2; },
            -1);
Paul's avatar
Paul committed
1893
1894
1895
        return result;
    }

Paul's avatar
Paul committed
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1910
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1911
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1912
1913
1914
1915
1916
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
1917
1918
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
1919
1920
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1921
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1922
1923
1924
1925
1926
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1927
1928
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1929
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1930
1931
            switch(t.data_type())
            {
1932
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
1933
1934
1935
1936
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1937
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1938
1939
1940
1941
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1942
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1943
1944
1945
1946
1947
1948
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1949
1950
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1951
            MIGRAPHX_THROW("Invalid tensor type");
1952
        }
Paul's avatar
Paul committed
1953
1954
1955
1956
1957
1958
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1959
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1960
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1961
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1962
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1963
1964
1965
1966
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1967
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1968
        {
Khalique's avatar
Khalique committed
1969
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1970
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1971
1972
1973
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1974
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1975
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1976
        }
Paul's avatar
Paul committed
1977
1978
1979
1980
1981
1982
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1983
1984
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1985
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1986
1987
    }

Khalique's avatar
Khalique committed
1988
    static literal
1989
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1990
    {
Khalique's avatar
Khalique committed
1991
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1992
        if(dims.empty())
1993
            return literal{{shape_type}, data};
1994
1995
1996
        return literal{{shape_type, dims}, data};
    }

1997
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1998
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1999
2000
    {
        if(dims.empty())
2001
            return literal{{shape_type}, data.begin(), data.end()};
2002
        return literal{{shape_type, dims}, data.begin(), data.end()};
2003
2004
    }

2005
    static shape parse_type(const onnx::TypeProto& t, const unsigned int batch_size)
Paul's avatar
Paul committed
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2016
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2017
2018
2019
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
2020
2021
2022
2023
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2024
2025
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2026
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2027
2028
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2029
        auto&& tensor_dims = t.tensor_type().shape().dim();
2030
2031
2032
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2033
2034
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2035
                           {
2036
2037
2038
                               if(static_cast<int>(d.dim_value()) <= 0)
                                   return batch_size;
                               return d.dim_value();
2039
                           }
2040
                           return batch_size;
2041
                       });
2042
2043
2044
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2045
2046
        return {shape_type, dims};
    }
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2069
2070
2071

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2072
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2073
2074
2075
2076
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2077
2078
};

Paul Fultz II's avatar
Paul Fultz II committed
2079
2080
template <class... Ts>
program parse_onnx_from(onnx_options options, Ts&&... xs)
Paul's avatar
Paul committed
2081
2082
{
    onnx_parser parser;
2083
    parser.batch_size = options.batch_size;
Paul's avatar
Paul committed
2084
2085
2086
2087
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
Paul Fultz II's avatar
Paul Fultz II committed
2088
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2089
2090
2091
2092
2093
2094
2095
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
Paul Fultz II's avatar
Paul Fultz II committed
2096
    parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2097
2098
2099
2100
#endif
    return std::move(parser.prog);
}

Paul Fultz II's avatar
Paul Fultz II committed
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
program parse_onnx(const std::string& name, onnx_options options)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

program parse_onnx_buffer(const std::string& buffer, onnx_options options)
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

program parse_onnx_buffer(const void* data, std::size_t size, onnx_options options)
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2117
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2118
} // namespace migraphx