onnx.cpp 31 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>

namespace migraphx {
Paul's avatar
Paul committed
20
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
46
    program prog    = program();
47
    bool is_pytorch = false;
Paul's avatar
Paul committed
48
49
50
51
52

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
53
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
54
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
55
56
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Khalique's avatar
Khalique committed
57
58
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
59
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
60
61
62
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
63
64
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
65
        add_generic_op("Tanh", op::tanh{});
66
67
68
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
69

Khalique's avatar
Khalique committed
70
71
72
73
74
75
76
77
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

        add_mem_op("Sum", &onnx_parser::parse_sum);
        add_mem_op("Max", &onnx_parser::parse_max);
        add_mem_op("Min", &onnx_parser::parse_min);
Paul's avatar
Paul committed
78

Khalique's avatar
Khalique committed
79
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
80
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
81
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
82
83
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
84
85
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
86
87
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
88
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
89
90
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
91
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
92
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
93
94
95
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
96
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
97
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
113

114
    template <class T>
Khalique's avatar
Khalique committed
115
    void add_binary_op(std::string name, T x)
116
117
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
118
            if(args.size() != 2)
Paul's avatar
Paul committed
119
                MIGRAPHX_THROW("binary operators should have 2 operands");
120
121
122
123
124
125
126
127
128
129
130
131
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
132
                return prog.add_instruction(x, args);
133
            }
Khalique's avatar
Khalique committed
134
            else
135
            {
Khalique's avatar
Khalique committed
136
137
138
139
140
141
142
143
144
145
                return add_broadcastable_binary_op(args[0], args[1], x);
            }
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
146
147
148
149
150
151
152
153
154
155
156
157
158
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
159
160
161
162
163
164
165
166
167
168
169
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(s1->size());
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
170
171
172
173
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
174
175
176
177
178
179
180
181
182

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
183
184
    }

Paul's avatar
Paul committed
185
    template <class T>
Paul's avatar
Paul committed
186
187
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
188
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
189
190
191
192
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
193
194
195
    instruction_ref
    parse_sum(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
196
197
198
199
200
201
        return std::accumulate(std::next(args.begin()),
                               args.end(),
                               args.front(),
                               [this](instruction_ref a, instruction_ref b) {
                                   return add_broadcastable_binary_op(a, b, op::add{});
                               });
Khalique's avatar
Khalique committed
202
203
204
205
206
    }

    instruction_ref
    parse_max(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
207
208
209
210
211
212
        return std::accumulate(std::next(args.begin()),
                               args.end(),
                               args.front(),
                               [this](instruction_ref a, instruction_ref b) {
                                   return add_broadcastable_binary_op(a, b, op::max{});
                               });
Khalique's avatar
Khalique committed
213
214
215
216
217
    }

    instruction_ref
    parse_min(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
218
219
220
221
222
223
        return std::accumulate(std::next(args.begin()),
                               args.end(),
                               args.front(),
                               [this](instruction_ref a, instruction_ref b) {
                                   return add_broadcastable_binary_op(a, b, op::min{});
                               });
Khalique's avatar
Khalique committed
224
225
    }

Paul's avatar
Paul committed
226
    instruction_ref
Paul's avatar
Paul committed
227
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
228
229
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
230
231
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
232
233
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
234
235
    }

Paul's avatar
Paul committed
236
    instruction_ref
Paul's avatar
Paul committed
237
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
238
    {
239
        op::convolution op;
Paul's avatar
Paul committed
240
241
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
242
            if(contains(attributes, "auto_pad"))
243
            {
Paul's avatar
Paul committed
244
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
245
246
247
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
248
            if(padding.size() != 4)
249
            {
Paul's avatar
Paul committed
250
                MIGRAPHX_THROW("padding should have 4 values");
251
            }
Scott Thornton's avatar
Scott Thornton committed
252
            if(padding[0] != padding[2] || padding[1] != padding[3])
253
            {
Paul's avatar
Paul committed
254
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
255
256
257
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
258
        }
Paul's avatar
Paul committed
259
260
261
262
263
264
265
266
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
267
        if(contains(attributes, "auto_pad"))
268
269
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
270
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
271
            {
Paul's avatar
Paul committed
272
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
273
274
            }

wsttiger's avatar
fixes  
wsttiger committed
275
            if(s.find("SAME") != std::string::npos)
276
277
278
279
            {
                op.padding_mode = op::convolution::same;
            }
        }
Paul's avatar
Paul committed
280
281
282
283
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
284
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
285
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
286
        }
Paul's avatar
Paul committed
287
288
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
289

Paul's avatar
Paul committed
290
291
292
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
293
    {
Khalique's avatar
Khalique committed
294
295
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
296
        {
Khalique's avatar
Khalique committed
297
298
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
299
        }
Paul's avatar
Paul committed
300
301
        if(contains(attributes, "pads"))
        {
302
303
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
304
            if(padding.size() != 4)
305
            {
Paul's avatar
Paul committed
306
                MIGRAPHX_THROW("padding should have 4 values");
307
            }
Scott Thornton's avatar
Scott Thornton committed
308
            if(padding[0] != padding[2] || padding[1] != padding[3])
309
            {
Paul's avatar
Paul committed
310
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
311
312
313
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
314
315
316
317
318
319
320
321
322
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
323
        if(contains(attributes, "auto_pad"))
324
325
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
326
            if(to_upper(s) != "NOTSET")
327
            {
Paul's avatar
Paul committed
328
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
329
330
331
            }
        }

Paul's avatar
Paul committed
332
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
333
334
    }

Paul's avatar
Paul committed
335
    instruction_ref
Paul's avatar
Paul committed
336
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
337
    {
338
        op::reshape op;
Paul's avatar
Paul committed
339
340
341
342
343
344
345
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
346
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
347
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
348
        }
Paul's avatar
Paul committed
349
350
351
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
352
    instruction_ref
Paul's avatar
Paul committed
353
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
354
355
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
356
357
358
359
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
360
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
361
362
    }

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
381
382
383
384
385
386
387
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
409
410
411
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
412
413
414
415
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
416

Paul's avatar
Paul committed
417
    instruction_ref
Paul's avatar
Paul committed
418
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
441
442
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
443
444
445
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
446
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
447
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
448
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
449
        }
Shucai Xiao's avatar
Shucai Xiao committed
450
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
451
452
    }

453
    instruction_ref
Paul's avatar
Paul committed
454
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
455
    {
Scott Thornton's avatar
Scott Thornton committed
456
457
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
458
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
459
        bool is_test                                      = false;
460
461
462
463
464
465
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
466
            momentum = parse_value(attributes.at("momentum")).at<float>();
467
468
469
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
470
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
471
472
473
        }
        if(contains(attributes, "spatial"))
        {
474
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
475
476
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
477
        }
Paul's avatar
Paul committed
478
        (void)is_test;
Paul's avatar
Paul committed
479
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
480
        return prog.add_instruction(op, std::move(args));
481
482
    }

483
484
485
486
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
487
        float alpha = 0.01; // default alpha val for leaky relu
488
489
490
491
492
493
494
495
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
496
497
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
498
499
500
501
502
503
504
505
506
507
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
525

Khalique's avatar
Khalique committed
526
527
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
528
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
529

Paul's avatar
Paul committed
530
531
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
532
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
533
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
534
    }
Khalique's avatar
Khalique committed
535

Khalique's avatar
Khalique committed
536
537
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
538
539
540
541
542
543
544
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
545
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
546
547
    }

Paul's avatar
Paul committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
567
568
569
570
571
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
572
573
574
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
575
576
577
578
579
580
581
582
583
584
585
586
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
587
588
589
        }
        for(auto&& p : nodes)
        {
590
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
591
592
593
        }
    }

Paul's avatar
Paul committed
594
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
595
    {
Paul's avatar
Paul committed
596
        if(name.empty())
Paul's avatar
Paul committed
597
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
598
599
600
601
602
603
604
605
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
606
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
607
                    assert(name != iname);
Paul's avatar
Paul committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

637
638
639
640
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
641
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
642
643
644
645
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
646
647
648
649
        }
        return node.name();
    }

Paul's avatar
Paul committed
650
651
652
653
654
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
655
            result[get_name(node)] = node;
Paul's avatar
Paul committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
681
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
682
683
684
685
686
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
687
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
688
689
690
691
692
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
693
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
694
        if(dims.empty())
Khalique's avatar
Khalique committed
695
696
697
        {
            dims = {1};
        }
698
699
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
700
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
701
702
703
704
705
706
707
708
709
710
711
712
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
713
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
714
715
716
717
718
719
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
720
            MIGRAPHX_THROW("Invalid tensor type");
721
        }
Paul's avatar
Paul committed
722
723
724
725
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
726
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
727
728
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
729
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
730
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
731
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
732
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
733
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
734
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
735
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
736
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
737
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
738
739
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
740
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
741
742
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
743
744
745
746
747
748
749
750
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
751
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
773
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
774
775
776
777
778
779
780
781
782
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
783
        auto&& tensor_dims = t.tensor_type().shape().dim();
784
785
786
787
788
789
790
791
792
793
794
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
820
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
821
} // namespace migraphx