onnx.cpp 44.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
44
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
68
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
69
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
70
71
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
72
73
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
74
75
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
76
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
77
78
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
79
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
80
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
81
82
83
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
84
        add_mem_op("Concat", &onnx_parser::parse_concat);
85
86
87
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
88
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
89
        add_mem_op("RNN", &onnx_parser::parse_rnn);
90
        add_mem_op("GRU", &onnx_parser::parse_gru);
Khalique's avatar
Khalique committed
91
        add_mem_op("Pad", &onnx_parser::parse_pad);
92
93
94
95
96
97
98

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
99
100
101
102
103
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
104
105
106
107
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
108
109
110
111
112
113
114
115
116
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
117
118
119
120
121
122
123
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
124
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
125
126
127
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
128

129
    template <class T>
Khalique's avatar
Khalique committed
130
    void add_binary_op(std::string name, T x)
131
    {
Paul's avatar
Paul committed
132
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
133
            if(args.size() != 2)
Paul's avatar
Paul committed
134
                MIGRAPHX_THROW("binary operators should have 2 operands");
135
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
136
137
138
139
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
140
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
141
142
143
144
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
145
                return prog.add_instruction(x, args);
146
            }
Paul's avatar
Paul committed
147
            else
148
            {
Khalique's avatar
Khalique committed
149
                return add_broadcastable_binary_op(args[0], args[1], x);
150
151
152
153
            }
        });
    }

Khalique's avatar
Khalique committed
154
155
156
157
158
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
159
160
161
162
163
164
165
166
167
168
169
170
171
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
172
173
174
175
176
177
178
179
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
180
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
181
182
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
183
184
185
186
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
187
188
189
190
191
192
193
194
195

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
196
197
    }

Paul's avatar
Paul committed
198
    template <class T>
Paul's avatar
Paul committed
199
200
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
201
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
202
203
204
205
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
206
    template <class T>
Khalique's avatar
Khalique committed
207
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
208
    {
Paul's avatar
Paul committed
209
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
210
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
211
212
213
214
215
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
216
        });
Khalique's avatar
Khalique committed
217
218
    }

Paul's avatar
Paul committed
219
    instruction_ref
Paul's avatar
Paul committed
220
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
221
222
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
223
224
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
225
226
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
227
228
    }

Paul's avatar
Paul committed
229
    instruction_ref
Paul's avatar
Paul committed
230
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
231
    {
232
        op::convolution op;
233
        auto l0 = args[0];
Paul's avatar
Paul committed
234
235
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
236
            if(contains(attributes, "auto_pad"))
237
            {
Paul's avatar
Paul committed
238
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
239
            }
240
241
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
242
            if(padding.size() != 4)
243
            {
Paul's avatar
Paul committed
244
                MIGRAPHX_THROW("padding should have 4 values");
245
            }
Scott Thornton's avatar
Scott Thornton committed
246
            if(padding[0] != padding[2] || padding[1] != padding[3])
247
            {
248
249
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
250
                l0      = prog.add_instruction(op::pad{padding}, l0);
251
            }
252
253
254
255
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
256
            }
Paul's avatar
Paul committed
257
        }
Paul's avatar
Paul committed
258
259
260
261
262
263
264
265
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
266
        if(contains(attributes, "auto_pad"))
267
268
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
269
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
270
            {
Paul's avatar
Paul committed
271
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
272
273
            }

wsttiger's avatar
fixes  
wsttiger committed
274
            if(s.find("SAME") != std::string::npos)
275
            {
276
                op.padding_mode = op::padding_mode_t::same;
277
278
            }
        }
Khalique's avatar
Khalique committed
279
280
281
282
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
283
284
285
286
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
287
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
288
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
289
        }
290
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
291
    }
Paul's avatar
Paul committed
292

Paul's avatar
Paul committed
293
294
295
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
296
    {
Khalique's avatar
Khalique committed
297
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
298
        auto l0 = args[0];
Khalique's avatar
Khalique committed
299
        if(starts_with(name, "Global"))
300
        {
Khalique's avatar
Khalique committed
301
302
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
303
        }
Paul's avatar
Paul committed
304
305
        if(contains(attributes, "pads"))
        {
306
307
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
308
            if(padding.size() != 4)
309
            {
Paul's avatar
Paul committed
310
                MIGRAPHX_THROW("padding should have 4 values");
311
            }
Scott Thornton's avatar
Scott Thornton committed
312
            if(padding[0] != padding[2] || padding[1] != padding[3])
313
            {
314
315
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
316
                l0      = prog.add_instruction(op::pad{padding}, l0);
317
318
319
320
321
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
322
            }
Paul's avatar
Paul committed
323
324
325
326
327
328
329
330
331
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
332
        if(contains(attributes, "auto_pad"))
333
334
        {
            auto s = attributes["auto_pad"].s();
335
            if(s.find("SAME_UPPER") == std::string::npos)
336
            {
337
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
338
            }
339
            op.padding_mode = op::padding_mode_t::same;
340
341
        }

342
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
343
344
    }

Paul's avatar
Paul committed
345
    instruction_ref
Paul's avatar
Paul committed
346
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
347
    {
348
        op::reshape op;
Paul's avatar
Paul committed
349
350
351
352
353
354
355
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
356
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
357
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
358
        }
Paul's avatar
Paul committed
359
360
361
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
362
    instruction_ref
Paul's avatar
Paul committed
363
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
364
    {
365
        uint64_t axis = 1;
Paul's avatar
Paul committed
366
367
368
369
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
370
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
371
372
    }

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
391
392
393
394
395
396
397
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
398

399
400
401
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
402
        int axis = 0;
403
404
405
406
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
407
        op::gather op{axis};
408
409
410
        return prog.add_instruction(op, std::move(args));
    }

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
431
432
433
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
434
435
436
437
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
438

Paul's avatar
Paul committed
439
    instruction_ref
Paul's avatar
Paul committed
440
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
441
442
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
443
        float beta  = 1.0f;
Paul's avatar
Paul committed
444
445
446
447
448
449
450
451
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
452
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
453
454
455
456
457
458
459
460
461
462
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
463
464
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
465
466
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
467
            if(beta != 0.f)
468
            {
Khalique's avatar
Khalique committed
469
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
470
                auto l4 = args[2];
Khalique's avatar
Khalique committed
471
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
472
                    return l3;
Khalique's avatar
Khalique committed
473
                if(beta != 1.f)
Khalique's avatar
Khalique committed
474
475
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
476
477
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
478
479
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
480
            }
Paul's avatar
Paul committed
481
        }
Shucai Xiao's avatar
Shucai Xiao committed
482
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
483
484
    }

485
    instruction_ref
Paul's avatar
Paul committed
486
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
487
    {
Scott Thornton's avatar
Scott Thornton committed
488
489
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
490
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
491
        bool is_test                                      = false;
492
493
494
495
496
497
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
498
            momentum = parse_value(attributes.at("momentum")).at<float>();
499
500
501
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
502
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
503
504
505
        }
        if(contains(attributes, "spatial"))
        {
506
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
507
508
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
509
        }
Paul's avatar
Paul committed
510
        (void)is_test;
Paul's avatar
Paul committed
511
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
512
        return prog.add_instruction(op, std::move(args));
513
514
    }

515
516
517
518
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
519
        float alpha = 0.01; // default alpha val for leaky relu
520
521
522
523
524
525
526
527
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
528
529
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
530
531
532
533
534
535
536
537
538
539
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
557

Khalique's avatar
Khalique committed
558
559
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
560
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
561

Paul's avatar
Paul committed
562
563
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
564
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
565
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
566
    }
Khalique's avatar
Khalique committed
567

Khalique's avatar
Khalique committed
568
569
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
570
571
572
573
574
575
576
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
577
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
578
579
    }

Khalique's avatar
Khalique committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
602
603
604
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
605
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
606
607
    {
        if(args.size() != 1)
608
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
645
646
        if(contains(attributes, "extra_shape"))
        {
647
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
648
649
        }

650
651
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
652
            if(args.size() != 1)
653
            {
654
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
655
656
            }

Shucai Xiao's avatar
Shucai Xiao committed
657
658
            if(contains(attributes, "shape"))
            {
659
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
660
                               "at the same time");
661
662
            }

663
664
665
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
666
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
667
            }
668

669
670
671
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
672
673
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
674
675
676
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
677
678
            if(!contains(attributes, "shape"))
            {
679
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
680
681
682
            }

            literal ls = parse_value(attributes.at("shape"));
683
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
684
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
685
            migraphx::shape s{type, dims};
686
687
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
688
689
690
        }
        else
        {
691
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
692
693
694
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
695
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
696
697
698
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
699
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
700
701
702

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
703
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
704
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
705
706
707
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

        op::rnn::rnn_direction_t dirct = op::rnn::forward;
        if(direction == "bidirectional")
        {
            dirct = op::rnn::bidirectional;
        }
        else if(direction == "reverse")
        {
            dirct = op::rnn::reverse;
        }

727
728
729
730
731
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
732
            for_each(names.begin(), names.end(), [&](auto& fn) { vec_names.push_back(fn); });
733
734
        }

Shucai Xiao's avatar
Shucai Xiao committed
735
        for_each(vec_names.begin(), vec_names.end(), [&](auto& fn) {
736
737
            if(map_actv_funcs.count(fn) == 0)
            {
Shucai Xiao's avatar
Shucai Xiao committed
738
                MIGRAPHX_THROW("RNN: activation function " + std::string(fn) + " not supported");
739
740
741
            }
        });

Shucai Xiao's avatar
Shucai Xiao committed
742
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
743
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
744
        // if only one actv function is provided, we use it in both
745
        // forward and reverse direction
Shucai Xiao's avatar
Shucai Xiao committed
746
        if(dirct == op::rnn::bidirectional)
747
        {
Shucai Xiao's avatar
Shucai Xiao committed
748
            if(vec_names.size() == 1)
749
750
751
752
753
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
754
755
756
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
757
        });
Shucai Xiao's avatar
Shucai Xiao committed
758

Shucai Xiao's avatar
Shucai Xiao committed
759
760
761
762
763
764
765
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

766
767
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
768
        if(args.size() < 6)
769
770
771
772
773
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
774
775
776
        std::vector<instruction_ref> result;
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
777
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
778
779
        result.push_back(hidden_states);

780
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
781
782
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
        result.push_back(last_output);
Shucai Xiao's avatar
Shucai Xiao committed
783
784

        return result;
Shucai Xiao's avatar
Shucai Xiao committed
785
786
    }

787
    std::vector<instruction_ref>
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            hidden_size = parse_value(attributes.at("hidden_size")).at<int>();
        }
        else
        {
            MIGRAPHX_THROW("GRU: hidden size attribute missing");
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

        op::gru::gru_direction_t dirct = op::gru::forward;
        if(direction == "bidirectional")
        {
            dirct = op::gru::bidirectional;
        }
        else if(direction == "reverse")
        {
            dirct = op::gru::reverse;
        }

819
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
820
821
        if(contains(attributes, "activations"))
        {
822
            auto names = attributes.at("activations").strings();
823
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
824
            for(auto& fn : names)
825
            {
826
                vec_names.push_back(fn);
827
            }
828
829
        }

830
        // need 4 activation functions
Shucai Xiao's avatar
Shucai Xiao committed
831
        if(dirct == op::gru::bidirectional)
832
        {
Shucai Xiao's avatar
Shucai Xiao committed
833
            // 4 activation functions are used in the bidirectional
834
835
836
837
838
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provides,
            // repeat 1 four times. If 2 actv functins are provides,
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
839
840
841
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
842
            if(vec_names.size() == 1)
843
            {
844
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
845
            }
846
            else if(vec_names.size() == 2)
847
            {
848
849
850
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
851
            }
852
            else if(vec_names.size() == 3)
853
            {
854
                vec_names.push_back(vec_names.at(2));
855
856
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
857
        else
858
        {
859
            if(vec_names.size() == 1)
860
            {
861
                vec_names.push_back(vec_names.at(0));
862
863
864
            }
        }

865
        for_each(vec_names.begin(), vec_names.end(), [&](auto& name) {
Shucai Xiao's avatar
Shucai Xiao committed
866
867
868
869
870
            if(map_actv_funcs.count(name) == 0)
            {
                MIGRAPHX_THROW("GRU: activation function " + name + " not supported");
            }
        });
871
872

        std::vector<operation> vec_actv_funcs;
873
        for_each(vec_names.begin(), vec_names.end(), [&](auto& name) {
Shucai Xiao's avatar
Shucai Xiao committed
874
875
            vec_actv_funcs.push_back(map_actv_funcs[name]);
        });
876
877
878
879
880
881
882
883
884

        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
885
        if(contains(attributes, "linear_before_reset"))
886
887
888
889
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

890
891
892
        std::vector<instruction_ref> result;
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
893
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
894
            std::move(args));
895
896
897
898
899
900
901
        result.push_back(hidden_states);

        // second output for last gru output
        auto last_output = prog.add_instruction(op::gru_last_output{}, hidden_states);
        result.push_back(last_output);

        return result;
902
903
    }

Paul's avatar
Paul committed
904
905
906
907
908
909
910
911
912
913
914
915
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
916
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
917
918
919
920
921
922
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
923
924
925
926
927
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
928
929
930
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
931
932
933
934
935
936
937
938
939
940
941
942
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
943
944
945
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
946
            this->parse_node(p.first);
Paul's avatar
Paul committed
947
948
949
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
950
    void parse_undefined(const std::string& name)
951
    {
Shucai Xiao's avatar
Shucai Xiao committed
952
        auto ins           = prog.add_instruction(op::undefined{});
953
954
955
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
956
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
957
    {
Paul's avatar
Paul committed
958
        if(name.empty())
Paul's avatar
Paul committed
959
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
960
961
962
963
964
965
966
967
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
968
969
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
970
                }
Shucai Xiao's avatar
Shucai Xiao committed
971
                else if(input.empty())
Paul's avatar
Paul committed
972
                {
973
                    this->parse_undefined(input);
Paul's avatar
Paul committed
974
                }
975
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
976
            }
Paul's avatar
Paul committed
977
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
978
979
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
980
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
981
982
983
            }
            else
            {
Paul's avatar
Paul committed
984
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
985
            }
Paul's avatar
Paul committed
986
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
987
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
988
989
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
990
991
992
            }
            else
            {
Paul's avatar
Paul committed
993
994
995
996
997
998
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1016
        std::size_t n = 0;
Paul's avatar
Paul committed
1017
1018
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1019
            if(node.output().empty())
Paul's avatar
Paul committed
1020
            {
Paul's avatar
Paul committed
1021
                if(node.name().empty())
Paul's avatar
Paul committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1056
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1057
1058
1059
1060
1061
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1062
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1063
1064
1065
1066
1067
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
1068
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1069
        if(dims.empty())
Khalique's avatar
Khalique committed
1070
1071
1072
        {
            dims = {1};
        }
1073
1074
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1075
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
1088
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
1089
1090
1091
1092
1093
1094
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1095
            MIGRAPHX_THROW("Invalid tensor type");
1096
        }
Paul's avatar
Paul committed
1097
1098
1099
1100
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
1101
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1102
1103
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
1104
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1105
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
1106
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1107
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
1108
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1109
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1110
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1111
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
1112
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
1113
1114
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
1115
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
1116
1117
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
1118
1119
1120
1121
1122
1123
1124
1125
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1126
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1148
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1158
        auto&& tensor_dims = t.tensor_type().shape().dim();
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1170
1171
        return {shape_type, dims};
    }
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1217
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1218
} // namespace migraphx