onnx.cpp 101 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
Paul's avatar
Paul committed
22
23

namespace migraphx {
Paul's avatar
Paul committed
24
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
25

26
27
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
28
29
30
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
31
32
33
34
35
36
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
37
    using op_func =
38
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
39
40
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
41
42
43
44
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
45
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
46
47

    std::unordered_map<std::string, op_func> ops;
48
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
49
50
51

    onnx_parser()
    {
52
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
53
        add_generic_op("Abs", op::abs{});
54
55
56
57
58
59
60
61
62
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_generic_op("Erf", op::erf{});
64
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
65
        add_generic_op("Dropout", op::identity{});
66
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
67
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
68
69
        add_generic_op("Log", op::log{});
        add_generic_op("Neg", op::neg{});
kahmed10's avatar
kahmed10 committed
70
        add_generic_op("Reciprocal", op::recip{});
71
72
73
74
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
75
        add_generic_op("Sin", op::sin{});
76
        add_generic_op("Sinh", op::sinh{});
77
        add_generic_op("Sqrt", op::sqrt{});
78
79
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
80

Khalique's avatar
Khalique committed
81
82
83
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
84
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
85
        add_binary_op("PRelu", op::prelu{});
86
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
87

Khalique's avatar
Khalique committed
88
89
90
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
91

92
        add_mem_op("ATen", &onnx_parser::parse_aten);
93
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
94
95
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
96
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
97
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
98
        add_mem_op("Clip", &onnx_parser::parse_clip);
99
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
100
        add_mem_op("Constant", &onnx_parser::parse_constant);
101
102
103
104
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
105
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
106
107
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
108
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
109
        add_mem_op("Gather", &onnx_parser::parse_gather);
Shucai Xiao's avatar
Shucai Xiao committed
110
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
111
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
112
113
114
115
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
116
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
117
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
118
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
119
        add_mem_op("LRN", &onnx_parser::parse_lrn);
120
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
121
122
123
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
124
        add_mem_op("NonZero", &onnx_parser::parse_nonzero);
kahmed10's avatar
kahmed10 committed
125
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
126
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
127
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
128
129
130
131
132
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
133
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
134
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
135
136
137
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
138
139
140
141
142
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
143
        add_mem_op("Split", &onnx_parser::parse_split);
144
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
kahmed10's avatar
kahmed10 committed
145
        add_mem_op("Tile", &onnx_parser::parse_tile);
146
147
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
148
149
150
151
152
153
154

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
155
156
157
158
159
160
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
161
162
163
164
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
165
166
167
168
169
170
171
172
173
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
174
175
176
177
178
179
180
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
181
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
182
183
184
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
185

186
    template <class T>
Khalique's avatar
Khalique committed
187
    void add_binary_op(std::string name, T x)
188
    {
189
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
190
            if(args.size() != 2)
Paul's avatar
Paul committed
191
                MIGRAPHX_THROW("binary operators should have 2 operands");
192
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
193
            {
194
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
195
196
                if(broadcasted != 0)
                {
197
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
198
199
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
200
201
                    return prog.add_instruction(x, args[0], l);
                }
202
                return prog.add_instruction(x, args);
203
            }
Paul's avatar
Paul committed
204
            else
205
            {
Khalique's avatar
Khalique committed
206
                return add_broadcastable_binary_op(args[0], args[1], x);
207
208
209
210
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
211
212
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
213
214
215
216
217
218
219
220
221
222
223
224
225
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
226
        if(s0.size() > s1.size())
227
228
229
230
231
232
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
233
234
235
236
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
237
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
238
                           if(a != b and a != 1 and b != 1)
239
                           {
Shucai Xiao's avatar
Shucai Xiao committed
240
241
242
243
244
245
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
246
247
248
249

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
250
251
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
252
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
253
254
255
256
257
258
259
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
260
261
262
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
263
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
264
265
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
266
267
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
268
            auto out_lens = compute_broadcasted_lens(s0, s1);
269
270
271
272
273
274
275
276
277

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
278
279
280
281
282
283
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
284
285
    }

Paul's avatar
Paul committed
286
    template <class T>
Paul's avatar
Paul committed
287
288
    void add_generic_op(std::string name, T x)
    {
289
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
290
291
292
293
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
294
    template <class T>
Khalique's avatar
Khalique committed
295
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
296
    {
297
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
298
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
299
300
301
302
303
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
304
        });
Khalique's avatar
Khalique committed
305
306
    }

kahmed10's avatar
kahmed10 committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

326
    static bool is_asym_padding(const std::vector<int64_t>& padding)
327
    {
328
329
330
331
332
333
334
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
335
                return true;
336
337
            }
        }
kahmed10's avatar
kahmed10 committed
338
339
        return false;
    }
340

kahmed10's avatar
kahmed10 committed
341
342
343
344
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
                            Op& op,
345
346
                            int count_include_pad = 0,
                            float pad_val         = 0)
kahmed10's avatar
kahmed10 committed
347
348
349
350
351
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

352
        if(is_asym_padding(padding) or count_include_pad == 1)
353
        {
354
355
356
357
358
359
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
360
361
362
        }
        else
        {
363
            op.padding = std::vector<size_t>(left_pad_it, right_pad_it);
364
365
366
        }
    }

367
368
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
369
    {
kahmed10's avatar
kahmed10 committed
370
371
372
373
374
375
376
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
377
        {
kahmed10's avatar
kahmed10 committed
378
379
380
381
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
382
        }
kahmed10's avatar
kahmed10 committed
383
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
384
        {
kahmed10's avatar
kahmed10 committed
385
386
387
388
389
390
391
392
393
394
395
396
397
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
398
        }
kahmed10's avatar
kahmed10 committed
399
400
401
402
403
404
405
406
407
408
409
410
411

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
            return prog.add_instruction(op::clip{}, args[0], min_arg, max_arg);
        if(min_used)
            return prog.add_instruction(op::max{}, args[0], min_arg);

        return prog.add_instruction(op::identity{}, args[0]);
Khalique's avatar
Khalique committed
412
413
    }

Shucai Xiao's avatar
Shucai Xiao committed
414
    template <class Op>
415
416
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
417
    {
418
        int64_t axis = 1;
419
        if(contains(info.attributes, "axis"))
420
        {
421
            axis = parse_value(info.attributes.at("axis")).at<int>();
422
423
        }

424
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
425
426
    }

Shucai Xiao's avatar
Shucai Xiao committed
427
    template <class Op>
428
429
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
430
    {
431
        int64_t axis = 0;
432
        if(contains(info.attributes, "axis"))
433
        {
434
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
435
436
        }

Shucai Xiao's avatar
Shucai Xiao committed
437
        int keep_dims = 1;
438
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
439
        {
440
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
441
442
        }

Shucai Xiao's avatar
Shucai Xiao committed
443
        if(keep_dims == 0)
444
        {
445
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
446
            return prog.add_instruction(op::squeeze{{axis}}, ins);
447
448
449
        }
        else
        {
450
            return prog.add_instruction(Op{axis}, std::move(args));
451
        }
452
453
    }

kahmed10's avatar
kahmed10 committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

    template <class Op>
    void recalc_conv_attributes(Op& op, size_t kdims)
    {
        if(op.padding.size() != kdims)
        {
            op.padding.resize(kdims);
            std::fill_n(op.padding.begin(), kdims, 0);
        }
        if(op.stride.size() != kdims)
        {
            op.stride.resize(kdims);
            std::fill_n(op.stride.begin(), kdims, 1);
        }
        if(op.dilation.size() != kdims)
        {
            op.dilation.resize(kdims);
            std::fill_n(op.dilation.begin(), kdims, 1);
        }
    }

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    template <class Op>
    static void cal_auto_padding_size(node_info info,
                                      Op& op,
                                      const std::vector<std::size_t>& k_lens,
                                      const std::vector<std::size_t>& dilation,
                                      const std::vector<std::size_t>& in_lens,
                                      std::vector<int64_t>& paddings)
    {
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

        if(!contains(info.attributes, "auto_pad"))
        {
            return;
        }

        auto auto_pad = info.attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            op.padding_mode    = op::padding_mode_t::same;
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            paddings.resize(2 * kdims);

            for(size_t i = 0; i < paddings.size() / 2; i++)
            {
                calculate_padding(i,
                                  paddings,
                                  in_lens[i + 2],
                                  op.stride[i],
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
        }
    }

    static void check_padding_mode(node_info info, const std::string& op_name)
    {
        // ensure pads availabe only when auto_pad is "NOT_SET"
        if(contains(info.attributes, "pads") and contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_" + op_name +
                               ": auto_pad and padding cannot be specified simultaneously");
            }
        }
    }

609
    template <class Op>
Paul's avatar
Paul committed
610
    instruction_ref
611
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
612
    {
613
        Op op;
614
615
        auto l0      = args[0];
        auto weights = args[1];
616
617
618
619
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

620
621
622
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV");

623
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
624
        {
625
626
627
            op.stride.clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(op.stride));
            check_attr_sizes(kdims, op.stride.size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
628
        }
629
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
630
        {
631
632
633
            op.dilation.clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(op.dilation));
            check_attr_sizes(kdims, op.dilation.size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
634
        }
635
636
637
638
639
640
641
642
643

        std::vector<int64_t> padding;
        if(contains(info.attributes, "pads"))
        {
            op.padding.clear();
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
        }

644
        if(contains(info.attributes, "auto_pad"))
645
        {
646
            auto weight_lens = weights->get_shape().lens();
647

648
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
649
            cal_auto_padding_size(info, op, k_lens, op.dilation, in_lens, padding);
650
        }
651
652
        check_asym_padding(l0, padding, op);

653
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
654
        {
655
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
656
        }
kahmed10's avatar
kahmed10 committed
657

658
659
        recalc_conv_attributes(op, kdims);

kahmed10's avatar
kahmed10 committed
660
661
662
663
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

664
665
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
666
667
668
669
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
670
671
672
673
674
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

675
676
677
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

678
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
679
        {
680
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
681
682
683
684

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
685
            {
kahmed10's avatar
kahmed10 committed
686
687
688
689
690
691
692
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
                op.padding.clear();
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
                               std::back_inserter(op.padding),
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
693
694
            }
        }
695
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
696
        {
kahmed10's avatar
kahmed10 committed
697
698
699
            op.stride.clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(op.stride));
            check_attr_sizes(kdims, op.stride.size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
700
        }
701
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
702
        {
kahmed10's avatar
kahmed10 committed
703
704
705
706
            op.dilation.clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(op.dilation));
            check_attr_sizes(
                kdims, op.dilation.size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
707
        }
708
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
709
        {
710
711
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
712
            {
kahmed10's avatar
kahmed10 committed
713
714
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
715
716
717
718
719
720
721
722
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

723
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
724
        {
725
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
726
727
        }

kahmed10's avatar
kahmed10 committed
728
729
        recalc_conv_attributes(op, kdims);

kahmed10's avatar
kahmed10 committed
730
731
        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
732
733
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
734
        {
kahmed10's avatar
kahmed10 committed
735
736
737
738
739
740
741
742
743
744
745
746
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
747

kahmed10's avatar
kahmed10 committed
748
            l1 = prog.add_instruction(op::slice{axes, starts, ends}, l1);
kahmed10's avatar
kahmed10 committed
749
750
        }

751
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
752
        {
kahmed10's avatar
kahmed10 committed
753
754
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
755
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
756
757
758
759
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = prog.add_instruction(op::pad{output_padding}, l1);
kahmed10's avatar
kahmed10 committed
760
761
        }

762
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
763
764
        {
            std::vector<int64_t> output_shape;
765
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
766
767
768
769
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
770
771
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
772
773
774
775
776
777
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
kahmed10's avatar
kahmed10 committed
778
779
780
781
782
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
783
    }
Paul's avatar
Paul committed
784

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
    static void
    tune_padding_to_symmetric(int64_t& left, int64_t& right, const int stride, int64_t& s_start)
    {
        s_start = 0;
        if(left > right)
        {
            right = left;
        }
        else if(left < right)
        {
            auto diff = right - left;
            s_start   = (diff + stride - 1) / stride;
            left      = left + s_start * stride;
            right     = left;
        }
    }

    static void tune_padding_size(const op::pooling& op,
                                  std::vector<int64_t>& padding,
                                  int count_include_pad,
                                  std::vector<int64_t>& s_start)
    {
        // maxpooling or count_include_pad is 1, no change is required.
        if(op.mode == "max" or count_include_pad == 1)
        {
            return;
        }

        // if padding is symmetric, return directly
        if(!is_asym_padding(padding))
        {
            return;
        }

        // asymmetric padding, make it symmetric
        std::size_t n_dims = padding.size() / 2;
        s_start.resize(n_dims);
        for(std::size_t i = 0; i < n_dims; ++i)
        {
            tune_padding_to_symmetric(padding[i], padding[i + n_dims], op.stride[i], s_start[i]);
        }
    }

828
829
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
830
    {
Khalique's avatar
Khalique committed
831
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
832
833
834
835
836
        auto l0      = args[0];
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
837
        if(starts_with(name, "Global"))
838
        {
839
            op.lengths = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
840
        }
841

842
843
        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
Paul's avatar
Paul committed
844
        {
845
            if(info.attributes.at("ceil_mode").i() == 1)
846
            {
847
                MIGRAPHX_THROW("PARSE_POOLING: pool does not support ceil_mode");
848
            }
849
        }
850

851
852
853
854
855
856
        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
Paul's avatar
Paul committed
857
        }
858

859
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
860
        {
861
862
863
            op.stride.clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(op.stride));
            check_attr_sizes(kdims, op.stride.size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
864
        }
865
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
866
        {
867
868
869
            op.lengths.clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(op.lengths));
            check_attr_sizes(kdims, op.lengths.size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
870
        }
871

872
873
874
875
876
877
878
879
880
881
882
883
884
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
        float pad_val = ((op.mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
        if(contains(info.attributes, "pads"))
        {
            op.padding.clear();
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

885
        if(contains(info.attributes, "auto_pad"))
886
        {
887
            op.padding.clear();
888
889
890
            // return paddings could be empty, then setting to 0 for no padding
            cal_auto_padding_size(info, op, op.lengths, {1, 1}, in_lens, paddings);
        }
891

892
893
894
895
        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
896
897
898
899
900
901
902
        }

        if(op.padding.size() != kdims)
        {
            op.padding.resize(kdims);
            std::fill_n(op.padding.begin(), kdims, 0);
        }
903

904
905
906
907
908
        if(op.stride.size() != kdims)
        {
            op.stride.resize(kdims);
            std::fill_n(op.stride.begin(), kdims, 1);
        }
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
        tune_padding_size(op, paddings, count_include_pad, slice_start);

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
            auto out_lens      = op.compute_shape({padded_shape}).lens();
924

925
926
927
928
929
930
931
932
933
934
935
            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }

        check_asym_padding(l0, paddings, op, count_include_pad, pad_val);
        in_lens = l0->get_shape().lens();
936
937
938
        for(size_t i = 0; i < kdims; i++)
        {
            if(op.lengths[i] > in_lens[i + 2] + 2 * op.padding[i])
939
            {
940
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
941
942
943
944
945
946
947
948
949
            }
        }

        auto l1 = prog.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = prog.add_instruction(op::slice{axes, slice_start, slice_end}, l1);
950
951
        }

952
        return l1;
Paul's avatar
Paul committed
953
954
    }

Paul's avatar
Paul committed
955
    instruction_ref
956
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
957
    {
958
        op::reshape op;
Paul's avatar
Paul committed
959
960
        if(args.size() == 1)
        {
961
            literal s = parse_value(info.attributes.at("shape"));
962
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
963
964
965
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
966
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
967
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
968
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
969
        }
970

Shucai Xiao's avatar
Shucai Xiao committed
971
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
972
973
    }

Paul's avatar
Paul committed
974
    instruction_ref
975
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
976
    {
977
        int64_t axis = 1;
978
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
979
        {
980
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
981
        }
982
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
983
984
    }

985
    instruction_ref
986
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
987
988
    {
        op::squeeze op;
989
        literal s = parse_value(info.attributes.at("axes"));
990
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
991
        return prog.add_instruction(op, make_contiguous(args[0]));
992
993
994
    }

    instruction_ref
995
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
996
997
    {
        op::unsqueeze op;
998
        literal s = parse_value(info.attributes.at("axes"));
999
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
1000
        return prog.add_instruction(op, make_contiguous(args[0]));
1001
1002
    }

Scott Thornton's avatar
Scott Thornton committed
1003
    instruction_ref
1004
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
1005
    {
Shucai Xiao's avatar
Shucai Xiao committed
1006
        // change to hande axis to be negative values
1007
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
1008
1009
1010
1011
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

1012
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
1013
1014
1015
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
1016

1017
    instruction_ref
1018
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
1019
    {
1020
        int axis = 0;
1021
        if(contains(info.attributes, "axis"))
1022
        {
1023
            axis = parse_value(info.attributes.at("axis")).at<int>();
1024
        }
1025

1026
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
1027
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
1028
1029
    }

Shucai Xiao's avatar
Shucai Xiao committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
        auto dim_diff  = prog.add_instruction(op::sub{}, arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(op::mul{}, dim_diff, l_stride);
        auto ind       = prog.add_instruction(op::add{}, l_shape_idx, delta);

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

1088
    instruction_ref
1089
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1090
1091
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1114
        {
1115
            literal s = parse_value(info.attributes.at("axes"));
1116
1117
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1118
1119

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1120
        {
Shucai Xiao's avatar
Shucai Xiao committed
1121
1122
1123
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1124
        }
Shucai Xiao's avatar
Shucai Xiao committed
1125
        else if(contains(info.attributes, "ends"))
1126
        {
1127
1128
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1129
        }
Shucai Xiao's avatar
Shucai Xiao committed
1130
1131
1132
1133
1134
1135
1136
1137

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1138
        {
1139
            literal s = parse_value(info.attributes.at("starts"));
1140
1141
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1142

kahmed10's avatar
kahmed10 committed
1143
1144
1145
1146
1147
1148
1149
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1150
1151
1152
        return prog.add_instruction(op, args[0]);
    }

1153
1154
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1155
    {
1156
        literal v = parse_value(info.attributes.at("value"));
1157
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1158
        if(v.get_shape().elements() == 0)
1159
1160
1161
1162
        {
            return prog.add_literal(literal{});
        }

1163
        auto dim_size = info.attributes.at("value").t().dims_size();
1164
1165
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1166
        {
1167
            migraphx::shape scalar_shape{v.get_shape().type()};
1168
1169
1170
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1171
1172
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1173

Paul's avatar
Paul committed
1174
    instruction_ref
1175
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1176
1177
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1178
        float beta  = 1.0f;
Paul's avatar
Paul committed
1179
1180
        bool transa = false;
        bool transb = false;
1181
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1182
        {
1183
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1184
        }
1185
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1186
        {
1187
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1188
        }
1189
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1190
        {
1191
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1192
        }
1193
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1194
        {
1195
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1196
        }
1197
1198
1199
1200
1201
1202

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1203
1204
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1205
1206
        if(args.size() == 3)
        {
1207
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1208
            {
Shucai Xiao's avatar
Shucai Xiao committed
1209
                auto out_lens   = l1->get_shape().lens();
1210
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1211
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1212
1213
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1214
                {
1215
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1216
                }
1217
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
1218
            }
Paul's avatar
Paul committed
1219
        }
1220
1221

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
1222
1223
    }

1224
    template <class Op>
1225
    instruction_ref
1226
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
1227
    {
Shucai Xiao's avatar
Shucai Xiao committed
1228
1229
        auto l0      = args[0];
        auto l1      = args[1];
1230
1231
1232
1233
1234
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1235
        if(l0_lens.size() == 1)
1236
1237
1238
1239
1240
1241
1242
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1243
        if(l1_lens.size() == 1)
1244
1245
1246
1247
1248
1249
1250
1251
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1252
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1253
1254
1255
1256
1257
1258
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1259
            l0_broadcasted_lens = output_lens;
1260
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1261
            l1_broadcasted_lens = output_lens;
1262
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1263
            if(l0_lens != l0_broadcasted_lens)
1264
1265
1266
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1267
            if(l1_lens != l1_broadcasted_lens)
1268
1269
1270
1271
1272
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1273
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
1274
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1275
        if(is_a_prepended)
1276
1277
1278
1279
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1280
        if(is_b_appended)
1281
1282
1283
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1284

1285
1286
1287
        return dot_res;
    }

1288
    instruction_ref
1289
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1290
    {
Scott Thornton's avatar
Scott Thornton committed
1291
1292
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1293
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1294
        if(contains(info.attributes, "epsilon"))
1295
        {
1296
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1297
        }
1298
        if(contains(info.attributes, "momentum"))
1299
        {
1300
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1301
        }
1302
        if(contains(info.attributes, "spatial"))
1303
        {
1304
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1305
1306
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1307
        }
Paul's avatar
Paul committed
1308
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1309
        return prog.add_instruction(op, std::move(args));
1310
1311
    }

1312
1313
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1314
1315
1316
1317
1318
1319
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
1320
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1321
        {
1322
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

1347
1348
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1349
    {
Khalique's avatar
Khalique committed
1350
        float alpha = 0.01; // default alpha val for leaky relu
1351
        if(contains(info.attributes, "alpha"))
1352
        {
1353
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1354
1355
1356
1357
1358
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1359
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1360
1361
    {
        float alpha = 1.0; // default alpha val for elu
1362
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1363
        {
1364
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1365
1366
1367
1368
1369
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1370
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1371
1372
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1373
1374
1375
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1376
1377
1378
1379
1380
1381
1382
1383
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1384
1385
1386
1387
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1388
1389
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1390
1391
1392
    {
        float scale = 1.0;
        std::vector<float> bias{};
1393
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1394
        {
1395
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1396
1397
        }

1398
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1399
        {
1400
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1401
1402
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1403
1404
1405
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1406

Shucai Xiao's avatar
Shucai Xiao committed
1407
1408
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1409

1410
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1411
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1412
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1413
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1414
    }
Khalique's avatar
Khalique committed
1415

Khalique's avatar
Khalique committed
1416
    instruction_ref
1417
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1418
1419
    {
        std::vector<int64_t> perm{};
1420
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1421
        {
1422
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1423
1424
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1425
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1426
1427
    }

1428
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1429
1430
    {
        std::vector<int64_t> pads{};
1431
1432
1433
1434
1435
1436
1437
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1438
        {
1439
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1440
1441
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1442
1443
1444
1445
1446
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1447
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1448
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1449
1450
1451
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1452

kahmed10's avatar
kahmed10 committed
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1482
        {
1483
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1484
        }
1485

Khalique's avatar
Khalique committed
1486
1487
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1488
1489
1490
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1491
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1492
1493
    {
        if(args.size() != 1)
1494
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1507
1508
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1509
1510
1511
1512
1513
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1514
        if(contains(info.attributes, "dtype"))
1515
        {
1516
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1517
        }
Shucai Xiao's avatar
Shucai Xiao committed
1518
        shape::type_t type = get_type(dtype);
1519

1520
        if(contains(info.attributes, "input_as_shape"))
1521
        {
1522
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1523
1524
        }

1525
        if(contains(info.attributes, "value"))
1526
        {
1527
            value = parse_value(info.attributes.at("value")).at<float>();
1528
1529
        }

1530
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1531
        {
1532
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1533
1534
        }

1535
1536
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1537
            if(args.size() != 1)
1538
            {
1539
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1540
1541
            }

1542
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1543
            {
1544
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1545
                               "at the same time");
1546
1547
            }

1548
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1549
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1550

1551
1552
1553
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1554
1555
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1556
1557
1558
        }
        else if(input_as_shape == 0)
        {
1559
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1560
            {
1561
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1562
1563
            }

1564
            literal ls = parse_value(info.attributes.at("shape"));
1565
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1566
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1567
            migraphx::shape s{type, dims};
1568
1569
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1570
1571
1572
        }
        else
        {
1573
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1574
1575
1576
        }
    }

1577
1578
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1579
1580
    {
        literal l_val{};
1581
        if(contains(info.attributes, "value"))
1582
        {
1583
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1584
            if(l_val.get_shape().elements() != 1)
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1596

Shucai Xiao's avatar
Shucai Xiao committed
1597
        if(args.empty())
1598
        {
Shucai Xiao's avatar
Shucai Xiao committed
1599
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1600
1601
1602
        }
        else
        {
1603
1604
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1605
            if(args[0]->get_shape().elements() == 0)
1606
            {
1607
                s = migraphx::shape{type, {1}, {0}};
1608
            }
1609
1610
1611
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1612
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1613

1614
1615
1616
1617
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1618

Shucai Xiao's avatar
Shucai Xiao committed
1619
            literal l_out{};
1620
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1621
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1622
                // l_val contains only one element
1623
                std::vector<val_type> out_vec(s.elements(), val.front());
1624
1625
1626
1627
1628
1629
1630
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1631
    instruction_ref
1632
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1633
    {
Shucai Xiao's avatar
Shucai Xiao committed
1634
        auto in_lens             = args[0]->get_shape().lens();
1635
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1636
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1637
1638
1639
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1640
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1641
1642
    }

Shucai Xiao's avatar
Shucai Xiao committed
1643
    std::vector<instruction_ref>
1644
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1645
1646
    {
        migraphx::shape input_shape = args[0]->get_shape();
1647
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1648

1649
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1650
        {
1651
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1652
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1653
1654
1655
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1656
1657
1658
1659
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1660
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1661
        {
1662
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1663
1664
        }

1665
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1666
1667
        if(direction == "bidirectional")
        {
1668
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1669
1670
1671
        }
        else if(direction == "reverse")
        {
1672
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1673
1674
        }

1675
        std::vector<std::string> vec_names{"tanh"};
1676
        if(contains(info.attributes, "activations"))
1677
        {
1678
            auto names = info.attributes.at("activations").strings();
1679
            vec_names.clear();
1680
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1681
1682
1683
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1684
1685
        }

1686
1687
1688
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1689
        if(name_it != vec_names.end())
1690
1691
1692
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1693

Shucai Xiao's avatar
Shucai Xiao committed
1694
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1695
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1696
        // if only one actv function is provided, we use it in both
1697
        // forward and reverse direction
1698
        if(dirct == op::rnn_direction::bidirectional)
1699
        {
Shucai Xiao's avatar
Shucai Xiao committed
1700
            if(vec_names.size() == 1)
1701
1702
1703
1704
1705
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1706
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1707
1708
1709
1710
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1711

Shucai Xiao's avatar
Shucai Xiao committed
1712
1713
        // To be added later
        float clip = 0.0;
1714
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1715
        {
1716
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1717
1718
        }

1719
1720
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1721
        if(args.size() < 6)
1722
1723
1724
1725
1726
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1727
1728
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1729
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1730

1731
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1732
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1733

Shucai Xiao's avatar
Shucai Xiao committed
1734
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1735
1736
    }

1737
    std::vector<instruction_ref>
1738
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1739
1740
1741
1742
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1743
        if(contains(info.attributes, "hidden_size"))
1744
        {
1745
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1746
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1747
1748
1749
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1750
1751
1752
1753
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1754
        if(contains(info.attributes, "direction"))
1755
        {
1756
            direction = info.attributes.at("direction").s();
1757
1758
        }

1759
        op::rnn_direction dirct = op::rnn_direction::forward;
1760
1761
        if(direction == "bidirectional")
        {
1762
            dirct = op::rnn_direction::bidirectional;
1763
1764
1765
        }
        else if(direction == "reverse")
        {
1766
            dirct = op::rnn_direction::reverse;
1767
1768
        }

1769
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1770
        if(contains(info.attributes, "activations"))
1771
        {
1772
            auto names = info.attributes.at("activations").strings();
1773
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1774
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1775
1776
1777
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1778
1779
        }

1780
        // need 4 activation functions
1781
        if(dirct == op::rnn_direction::bidirectional)
1782
        {
Shucai Xiao's avatar
Shucai Xiao committed
1783
            // 4 activation functions are used in the bidirectional
1784
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1785
1786
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1787
1788
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1789
1790
1791
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1792
            if(vec_names.size() == 1)
1793
            {
1794
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1795
            }
1796
            else if(vec_names.size() == 2)
1797
            {
1798
1799
1800
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1801
            }
1802
            else if(vec_names.size() == 3)
1803
            {
1804
                vec_names.push_back(vec_names.at(2));
1805
1806
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1807
        else
1808
        {
1809
            if(vec_names.size() == 1)
1810
            {
1811
                vec_names.push_back(vec_names.at(0));
1812
1813
1814
            }
        }

1815
1816
1817
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1818
        if(name_it != vec_names.end())
1819
1820
1821
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1822

Shucai Xiao's avatar
Shucai Xiao committed
1823
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1824
1825
1826
1827
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1828
1829

        float clip = 0.0;
1830
        if(contains(info.attributes, "clip"))
1831
        {
1832
            clip = parse_value(info.attributes.at("clip")).at<float>();
1833
1834
1835
        }

        int linear_before_reset = 0;
1836
        if(contains(info.attributes, "linear_before_reset"))
1837
        {
1838
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1839
1840
        }

Shucai Xiao's avatar
Shucai Xiao committed
1841
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1842
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1843
1844
1845
1846
1847
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1848
1849
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1850
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1851
            std::move(args));
1852
1853

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1854
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1855

Shucai Xiao's avatar
Shucai Xiao committed
1856
        return {hidden_states, last_output};
1857
1858
    }

Shucai Xiao's avatar
Shucai Xiao committed
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1944
    std::vector<instruction_ref>
1945
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1946
1947
1948
1949
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1950
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1951
        {
1952
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1953
1954
1955
1956
1957
1958
1959
1960
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1961
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1962
        {
1963
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1964
1965
        }

Shucai Xiao's avatar
Shucai Xiao committed
1966
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1967
1968
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1969
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1970
1971
1972
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1973
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1974
        }
Shucai Xiao's avatar
Shucai Xiao committed
1975
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1976
        {
Shucai Xiao's avatar
Shucai Xiao committed
1977
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1978
1979
1980
1981
1982
1983
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1984
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1985
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1986
        {
1987
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1988
1989
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1990
1991
1992
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1993
1994
        }

Shucai Xiao's avatar
Shucai Xiao committed
1995
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
1996

1997
1998
1999
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2000
        if(name_it != vec_names.end())
2001
2002
2003
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2004
2005

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2006
2007
2008
2009
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
2010
2011

        float clip = 0.0;
2012
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2013
        {
2014
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2015
2016
2017
        }

        int input_forget = 0;
2018
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
2019
        {
2020
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2021
2022
2023
2024
2025
2026
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
2027
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
2028
2029
2030
2031
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
2032
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2033

Shucai Xiao's avatar
Shucai Xiao committed
2034
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2035
2036

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
2037
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2038
2039
2040

        return {hidden_states, last_output, last_cell_output};
    }
2041

Shucai Xiao's avatar
Shucai Xiao committed
2042
    template <class T>
2043
2044
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2045
2046
2047
2048
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
2049
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
2050
        std::iota(axes.begin(), axes.end(), 0);
2051
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
2052
2053
        {
            axes.clear();
2054
            auto&& attr_axes = info.attributes["axes"].ints();
2055
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
2056
2057
2058
        }

        int keep_dims = 1;
2059
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
2060
        {
2061
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2062
2063
2064
2065
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2066
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2067
2068
2069
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
2070
            auto ins = prog.add_instruction(T{axes}, std::move(args));
2071
            return prog.add_instruction(op::squeeze{axes}, ins);
2072
2073
        }
    }
2074

Shucai Xiao's avatar
Shucai Xiao committed
2075
    instruction_ref
2076
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2077
2078
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
2079
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2080
2081
2082
    }

    instruction_ref
2083
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2084
2085
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
2086
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2087
2088
2089
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

2090
2091
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2092
    {
2093
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2094
2095
2096
        return prog.add_instruction(op::log{}, sum_ins);
    }

2097
2098
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2099
2100
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
2101
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2102
2103
2104
        return prog.add_instruction(op::log{}, sum_ins);
    }

2105
2106
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2107
2108
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
2109
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2110
2111
    }

Shucai Xiao's avatar
Shucai Xiao committed
2112
    instruction_ref
2113
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
2114
    {
2115
        if(!contains(info.attributes, "to"))
2116
2117
2118
2119
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2120
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2121
2122
2123
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
2124

2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2178
2179
2180
2181
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2182
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2183
2184
2185
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2186
2187
2188
2189
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2190

Shucai Xiao's avatar
Shucai Xiao committed
2191
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2192
2193
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2194
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2195
2196
        }

Shucai Xiao's avatar
Shucai Xiao committed
2197
2198
2199
2200
2201
2202
2203
2204
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2205
        {
Shucai Xiao's avatar
Shucai Xiao committed
2206
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2207
        }
Shucai Xiao's avatar
Shucai Xiao committed
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
        auto diff          = prog.add_instruction(op::sub{}, on_val, off_val);
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
        auto l_mul         = prog.add_instruction(op::mul{}, tr_out, unsq_diff_val);
        return prog.add_instruction(op::add{}, l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2222
2223
    }

kahmed10's avatar
kahmed10 committed
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
        case reduce_mode_t::sum: l0 = prog.add_instruction(op::reduce_sum{{0}}, l0); break;
        case reduce_mode_t::mean: l0 = prog.add_instruction(op::reduce_mean{{0}}, l0); break;
        case reduce_mode_t::max: l0 = prog.add_instruction(op::reduce_max{{0}}, l0); break;
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

Shucai Xiao's avatar
Shucai Xiao committed
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
    template <class T>
    std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
    {
        std::vector<std::size_t> indices;
        for(std::size_t i = 0; i < data.size(); ++i)
        {
            if(!float_equal(data[i], 0))
                indices.push_back(i);
        }

        return indices;
    }

    instruction_ref
    parse_nonzero(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument data_arg = args.back()->eval();
        check_arg_empty(data_arg, "PARSE_NONZERO: cannot support non-constant input!");

        std::vector<std::size_t> indices;
        data_arg.visit([&](auto val) {
            using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
            std::vector<val_type> vec_data;
            vec_data.assign(val.begin(), val.end());
            indices = this->nonzero_indices(vec_data);
        });

        shape in_s = args[0]->get_shape();
        shape out_s{shape::int64_type, {in_s.lens().size(), indices.size()}};

        std::vector<int64_t> out_data(out_s.elements());
        for(std::size_t i = 0; i < indices.size(); ++i)
        {
            auto idx = in_s.multi(indices[i]);
            for(std::size_t j = 0; j < in_s.lens().size(); ++j)
            {
                out_data[out_s.index({j, i})] = idx[j];
            }
        }

        return prog.add_literal(literal(out_s, out_data));
    }

Paul's avatar
Paul committed
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2381
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2382
2383
2384
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2401
2402
    void parse_graph(const onnx::GraphProto& graph)
    {
2403
        for(auto&& f : graph.initializer())
2404
2405
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2406
2407
2408
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2409
2410
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2411
            {
2412
2413
2414
2415
2416
2417
2418
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2419
2420
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2421
        }
2422
2423

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2424
        {
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2444
2445
2446
2447
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2460
        }
Shucai Xiao's avatar
Shucai Xiao committed
2461

2462
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2463
        auto prog_output = graph.output();
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2484
2485
    }

Shucai Xiao's avatar
Shucai Xiao committed
2486
    void parse_undefined(const std::string& name)
2487
    {
Shucai Xiao's avatar
Shucai Xiao committed
2488
        auto ins           = prog.add_instruction(op::undefined{});
2489
2490
2491
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2516
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2517
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2518
2519
2520
2521
2522
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2523
2524
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2525
2526
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
2527
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
2528
2529
2530
2531
2532
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2533
2534
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2535
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2536
2537
            switch(t.data_type())
            {
2538
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2539
2540
2541
2542
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2543
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2544
2545
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
Shucai Xiao's avatar
Shucai Xiao committed
2546
            case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, s.data());
Paul's avatar
Paul committed
2547
            case onnx::TensorProto::INT32:
2548
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2549
2550
2551
2552
2553
2554
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2555
2556
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2557
            MIGRAPHX_THROW("Invalid tensor type");
2558
        }
Paul's avatar
Paul committed
2559
2560
2561
2562
2563
2564
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2565
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2566
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2567
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2568
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2569
2570
2571
2572
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2573
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2574
        {
Khalique's avatar
Khalique committed
2575
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2576
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2577
2578
2579
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2580
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2581
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2582
        }
Paul's avatar
Paul committed
2583
2584
2585
2586
2587
2588
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2589
2590
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2591
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2592
2593
    }

Khalique's avatar
Khalique committed
2594
    static literal
2595
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2596
    {
Khalique's avatar
Khalique committed
2597
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2598
        if(dims.empty())
2599
            return literal{{shape_type}, data};
2600
2601
2602
        return literal{{shape_type, dims}, data};
    }

2603
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2604
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2605
2606
    {
        if(dims.empty())
2607
            return literal{{shape_type}, data.begin(), data.end()};
2608
        return literal{{shape_type, dims}, data.begin(), data.end()};
2609
2610
    }

2611
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2622
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2623
2624
2625
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
2626
        case onnx::TensorProto::UINT8: shape_type = shape::uint8_type; break;
Paul's avatar
Paul committed
2627
2628
2629
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2630
2631
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2632
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2633
        }
2634
2635
2636
2637
2638
2639

        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2640
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2641
        auto&& tensor_dims = t.tensor_type().shape().dim();
2642
2643
2644
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2645
2646
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2647
                           {
2648
                               if(static_cast<int>(d.dim_value()) <= 0)
2649
2650
2651
                               {
                                   return default_dim_value;
                               }
2652
                               return d.dim_value();
2653
                           }
2654
2655
2656
2657
                           else
                           {
                               return default_dim_value;
                           }
2658
                       });
2659

2660
2661
2662
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2663
2664
        return {shape_type, dims};
    }
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2687
2688
2689

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2690
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2691
2692
2693
2694
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2695
2696
};

Paul Fultz II's avatar
Paul Fultz II committed
2697
template <class... Ts>
2698
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2699
2700
{
    onnx_parser parser;
2701
2702
2703
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2704

2705
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2706
    {
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2717
    }
2718
    else
Paul's avatar
Paul committed
2719
    {
2720
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2721
2722
2723
2724
    }
    return std::move(parser.prog);
}

2725
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2726
2727
2728
2729
2730
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2731
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2732
2733
2734
2735
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2736
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2737
2738
2739
2740
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2741
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2742
} // namespace migraphx