onnx.cpp 121 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
14
#include <migraphx/make_op.hpp>
Paul's avatar
Paul committed
15
16
17
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
22
23
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
Paul's avatar
Paul committed
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gru.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/lstm.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn_last_cell_output.hpp>
#include <migraphx/op/rnn_last_hs_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/undefined.hpp>
#include <migraphx/op/unknown.hpp>
48
49
50
51
#include <migraphx/make_op.hpp>

#include <migraphx/serialize.hpp>

52
53
#include <migraphx/op/unsqueeze.hpp>

Paul's avatar
Paul committed
54
namespace migraphx {
Paul's avatar
Paul committed
55
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
56

57
58
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
59
60
struct onnx_parser
{
61
62
    std::string filename;
    std::string path    = ".";
Paul's avatar
Paul committed
63
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
64
65
66
67
68
69
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
70
    using op_func =
71
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
72
73
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
74
    program prog                  = program();
75
    module* mm                    = prog.get_main_module();
76
77
78
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
79
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
80
81

    std::unordered_map<std::string, op_func> ops;
82
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
83
84
85

    onnx_parser()
    {
86
        // sort onnx operator alphabetically through name
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        add_generic_op("Abs", "abs");
        add_generic_op("Acos", "acos");
        add_generic_op("Acosh", "acosh");
        add_generic_op("Asin", "asin");
        add_generic_op("Asinh", "asinh");
        add_generic_op("Atan", "atan");
        add_generic_op("Atanh", "atanh");
        add_generic_op("Ceil", "ceil");
        add_generic_op("Concat", "concat");
        add_generic_op("Cos", "cos");
        add_generic_op("Cosh", "cosh");
        add_generic_op("Erf", "erf");
        add_generic_op("Exp", "exp");
        add_generic_op("Flatten", "flatten");
        add_generic_op("Floor", "floor");
        add_generic_op("Gather", "gather", true);
        add_generic_op("Identity", "identity");
        add_generic_op("Log", "log");
        add_generic_op("LogSoftmax", "logsoftmax");
        add_generic_op("Neg", "neg");
        add_generic_op("Reciprocal", "recip");
        add_generic_op("Relu", "relu");
        add_generic_op("Round", "round");
        add_generic_op("Sigmoid", "sigmoid");
        add_generic_op("Sign", "sign");
        add_generic_op("Sin", "sin");
        add_generic_op("Sinh", "sinh");
        add_generic_op("Softmax", "softmax");
        add_generic_op("Sqrt", "sqrt");
        add_generic_op("Squeeze", "squeeze", true);
        add_generic_op("Tan", "tan");
        add_generic_op("Tanh", "tanh");
        add_generic_op("Unsqueeze", "unsqueeze", true);

        add_binary_op("Add", "add");
        add_binary_op("Div", "div");
        add_binary_op("Mul", "mul");
        add_binary_op("Pow", "pow");
        add_binary_op("PRelu", "prelu");
        add_binary_op("Sub", "sub");

        add_variadic_op("Sum", "add");
        add_variadic_op("Max", "max");
        add_variadic_op("Min", "min");
Paul's avatar
Paul committed
131

132
        add_mem_op("ATen", &onnx_parser::parse_aten);
133
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
134
135
        add_mem_op("ArgMax", "argmax", &onnx_parser::parse_arg_op);
        add_mem_op("ArgMin", "argmin", &onnx_parser::parse_arg_op);
136
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
137
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
138
        add_mem_op("Clip", &onnx_parser::parse_clip);
Paul's avatar
Paul committed
139
        add_mem_op("Constant", &onnx_parser::parse_constant);
140
141
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
142
143
        add_mem_op("Conv", "convolution", &onnx_parser::parse_conv);
        add_mem_op("ConvInteger", "quant_convolution", &onnx_parser::parse_conv);
kahmed10's avatar
kahmed10 committed
144
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
145
        add_mem_op("Dropout", &onnx_parser::parse_dropout);
146
        add_mem_op("Elu", &onnx_parser::parse_elu);
147
        add_mem_op("Equal", "equal", &onnx_parser::parse_compare_op);
148
        add_mem_op("Expand", &onnx_parser::parse_expand);
Shucai Xiao's avatar
Shucai Xiao committed
149
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
150
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
151
152
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
153
        add_mem_op("Greater", "greater", &onnx_parser::parse_compare_op);
154
155
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
156
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
157
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
158
        add_mem_op("Less", "less", &onnx_parser::parse_compare_op);
159
        add_mem_op("LRN", &onnx_parser::parse_lrn);
160
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
161
162
        add_mem_op("MatMul", "dot", &onnx_parser::parse_matmul);
        add_mem_op("MatMulInteger", "quant_dot", &onnx_parser::parse_matmul);
163
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
164
        add_mem_op("NonZero", &onnx_parser::parse_nonzero);
kahmed10's avatar
kahmed10 committed
165
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
166
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
167
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
168
169
170
171
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
172
173
174
175
176
        add_mem_op("ReduceMax", "reduce_max", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMean", "reduce_mean", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMin", "reduce_min", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceProd", "reduce_prod", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceSum", "reduce_sum", &onnx_parser::parse_reduce_oper);
Shucai Xiao's avatar
Shucai Xiao committed
177
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
178
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Shucai Xiao's avatar
Shucai Xiao committed
179
        add_mem_op("Resize", &onnx_parser::parse_resize);
180
        add_mem_op("RNN", &onnx_parser::parse_rnn);
Shucai Xiao's avatar
Shucai Xiao committed
181
        add_mem_op("Selu", &onnx_parser::parse_selu);
182
183
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
184
        add_mem_op("Split", &onnx_parser::parse_split);
kahmed10's avatar
kahmed10 committed
185
        add_mem_op("Tile", &onnx_parser::parse_tile);
186
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
187
        add_mem_op("Upsample", &onnx_parser::parse_upsample);
Shucai Xiao's avatar
Shucai Xiao committed
188
        add_mem_op("Where", &onnx_parser::parse_where);
189
190
191
192
193
194
195

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
196
        // Support name format of all lower case or the first letter capital
197
198
199
200
201
202
203
        map_actv_funcs.insert(std::make_pair("tanh", make_op("tanh")));
        map_actv_funcs.insert(std::make_pair("relu", make_op("relu")));
        map_actv_funcs.insert(std::make_pair("sigmoid", make_op("sigmoid")));
        map_actv_funcs.insert(std::make_pair("leakyrelu", make_op("leaky_relu")));
        map_actv_funcs.insert(std::make_pair("elu", make_op("elu")));
    }

204
    operation load(const std::string& name, const node_info& info) const
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    {
        auto op = make_op(name);
        auto v  = op.to_value();
        for(auto&& x : v)
        {
            if(info.attributes.count(x.get_key()) == 0)
                continue;
            literal s = parse_value(info.attributes.at(x.get_key()));
            if(x.is_array())
            {
                std::vector<value> values;
                s.visit([&](auto y) {
                    std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                        return value(z);
                    });
                });
                x = values;
            }
            else
            {
                s.visit([&](auto y) { x = y.front(); });
            }
        }
        op.from_value(v);
        return op;
Paul's avatar
Paul committed
230
231
232
233
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
234
235
236
237
238
239
240
241
242
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
243
244
245
246
247
    {
        ops.emplace(name, f);
    }

    template <class F>
248
    void add_mem_op(const std::string& name, F f)
Paul's avatar
Paul committed
249
    {
Paul's avatar
Paul committed
250
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
251
252
253
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
254

255
256
257
258
259
260
261
262
263
    template <class F>
    void add_mem_op(const std::string& onnx_name, const std::string& op_name, F f)
    {
        add_op(onnx_name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, onnx_name, op_name, std::forward<decltype(xs)>(xs)...);
        });
    }

    void add_binary_op(const std::string& onnx_name, const std::string& op_name)
264
    {
265
        add_op(onnx_name, [this, op_name](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
266
            if(args.size() != 2)
Paul's avatar
Paul committed
267
                MIGRAPHX_THROW("binary operators should have 2 operands");
268
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
269
            {
270
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
271
272
                if(broadcasted != 0)
                {
273
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
274
275
276
277
                    auto l        = mm->add_instruction(
                        make_op("broadcast",
                                {{"axis", axis}, {"dims", args[0]->get_shape().lens()}}),
                        args[1]);
278
                    return mm->add_instruction(make_op(op_name), args[0], l);
279
                }
280
                return mm->add_instruction(make_op(op_name), args);
281
            }
Paul's avatar
Paul committed
282
            else
283
            {
284
                return add_broadcastable_binary_op(args[0], args[1], op_name);
285
286
287
288
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
289
290
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
291
292
293
294
295
296
297
298
299
300
301
302
303
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
304
        if(s0.size() > s1.size())
305
306
307
308
309
310
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
311
312
313
314
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
315
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
316
                           if(a != b and a != 1 and b != 1)
317
                           {
Shucai Xiao's avatar
Shucai Xiao committed
318
319
320
321
322
323
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
324
325
326
327

        return out_lens;
    }

328
    instruction_ref make_contiguous(instruction_ref ins) const
Shucai Xiao's avatar
Shucai Xiao committed
329
    {
Shucai Xiao's avatar
Shucai Xiao committed
330
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
331
332
333
334
        {
            return ins;
        }

335
        return mm->add_instruction(make_op("contiguous"), ins);
Shucai Xiao's avatar
Shucai Xiao committed
336
337
    }

338
339
    instruction_ref
    add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, const std::string& name)
Khalique's avatar
Khalique committed
340
    {
Khalique's avatar
Khalique committed
341
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
342
343
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
344
345
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
346
            auto out_lens = compute_broadcasted_lens(s0, s1);
347
348
349

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
350
351
                l0 = mm->add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}),
                                         arg0);
352
353
354

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
355
356
                l1 = mm->add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}),
                                         arg1);
357

358
            return mm->add_instruction(make_op(name), l0, l1);
Khalique's avatar
Khalique committed
359
360
361
        }
        else
        {
362
            return mm->add_instruction(make_op(name), {arg0, arg1});
Khalique's avatar
Khalique committed
363
        }
364
365
    }

366
367
368
    void add_generic_op(const std::string& onnx_name,
                        const std::string& op_name,
                        bool contiguous = false)
Paul's avatar
Paul committed
369
    {
370
371
372
373
374
375
376
377
378
379
        add_op(
            onnx_name,
            [this, op_name, contiguous](const node_info& info, std::vector<instruction_ref> args) {
                auto op = load(op_name, info);
                if(contiguous)
                {
                    std::transform(args.begin(), args.end(), args.begin(), [&](auto arg) {
                        return this->make_contiguous(arg);
                    });
                }
380
                return mm->add_instruction(op, args);
381
            });
Paul's avatar
Paul committed
382
383
    }

384
    void add_variadic_op(const std::string& onnx_name, const std::string& op_name)
Khalique's avatar
Khalique committed
385
    {
386
        add_op(onnx_name, [this, op_name](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
387
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
388
389
                                   args.end(),
                                   args.front(),
390
391
                                   [this, op_name](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, op_name);
Khalique's avatar
Khalique committed
392
                                   });
Khalique's avatar
Khalique committed
393
        });
Khalique's avatar
Khalique committed
394
395
    }

kahmed10's avatar
kahmed10 committed
396
397
398
399
400
401
402
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

403
404
405
    instruction_ref add_bias(const std::vector<instruction_ref>& args,
                             instruction_ref curr_ins,
                             uint64_t axis) const
kahmed10's avatar
kahmed10 committed
406
407
408
    {
        if(args.size() == 3)
        {
409
410
411
            auto bias_bcast = mm->add_instruction(
                make_op("broadcast", {{"axis", axis}, {"dims", curr_ins->get_shape().lens()}}),
                args[2]);
412
            return mm->add_instruction(make_op("add"), curr_ins, bias_bcast);
kahmed10's avatar
kahmed10 committed
413
414
415
416
        }
        return curr_ins;
    }

417
    static bool is_asym_padding(const std::vector<int64_t>& padding)
418
    {
419
420
421
422
423
424
425
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
426
                return true;
427
428
            }
        }
kahmed10's avatar
kahmed10 committed
429
430
        return false;
    }
431

kahmed10's avatar
kahmed10 committed
432
433
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
434
                            value& v,
435
                            int count_include_pad = 0,
436
                            float pad_val         = 0) const
kahmed10's avatar
kahmed10 committed
437
438
439
440
441
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

442
        if(is_asym_padding(padding) or count_include_pad == 1)
443
        {
444
445
446
447
448
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
449
450
            ins =
                mm->add_instruction(make_op("pad", {{"pads", asym_pads}, {"value", pad_val}}), ins);
451
452
453
        }
        else
        {
454
            v["padding"] = std::vector<size_t>(left_pad_it, right_pad_it);
455
456
457
        }
    }

458
    instruction_ref
459
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
460
    {
kahmed10's avatar
kahmed10 committed
461
462
463
464
465
466
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

Shucai Xiao's avatar
Shucai Xiao committed
467
        if(args.size() == 3 and args[2]->name() != "undefined")
Khalique's avatar
Khalique committed
468
        {
kahmed10's avatar
kahmed10 committed
469
470
            max_arg  = args[2];
            max_used = true;
Khalique's avatar
Khalique committed
471
        }
Shucai Xiao's avatar
Shucai Xiao committed
472
473

        if(args.size() >= 2 and args[1]->name() != "undefined")
Khalique's avatar
Khalique committed
474
        {
kahmed10's avatar
kahmed10 committed
475
476
477
478
479
480
481
482
483
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
484
485
            min_arg       = mm->add_literal(min_val);
            max_arg       = mm->add_literal(max_val);
kahmed10's avatar
kahmed10 committed
486
487
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
488
        }
kahmed10's avatar
kahmed10 committed
489
490

        if(min_used)
Shucai Xiao's avatar
Shucai Xiao committed
491
        {
492
493
            min_arg = mm->add_instruction(make_op("multibroadcast", {{"output_lens", input_lens}}),
                                          min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
494
        }
kahmed10's avatar
kahmed10 committed
495
496

        if(max_used)
Shucai Xiao's avatar
Shucai Xiao committed
497
        {
498
499
            max_arg = mm->add_instruction(make_op("multibroadcast", {{"output_lens", input_lens}}),
                                          max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
500
        }
kahmed10's avatar
kahmed10 committed
501
502

        if(min_used and max_used)
Shucai Xiao's avatar
Shucai Xiao committed
503
        {
504
            return mm->add_instruction(make_op("clip"), args[0], min_arg, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
505
506
507
        }
        else if(max_used)
        {
508
            return mm->add_instruction(make_op("min"), args[0], max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
509
510
511
        }
        else if(min_used)
        {
512
            return mm->add_instruction(make_op("max"), args[0], min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
513
514
515
        }
        else
        {
516
            return mm->add_instruction(make_op("identity"), args[0]);
Shucai Xiao's avatar
Shucai Xiao committed
517
        }
Shucai Xiao's avatar
Shucai Xiao committed
518
519
    }

520
521
522
    instruction_ref parse_arg_op(const std::string&,
                                 const std::string& op_name,
                                 node_info info,
523
                                 std::vector<instruction_ref> args) const
524
    {
525
        int64_t axis = 0;
526
        if(contains(info.attributes, "axis"))
527
        {
528
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
529
530
        }

Shucai Xiao's avatar
Shucai Xiao committed
531
        int keep_dims = 1;
532
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
533
        {
534
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
535
536
        }

Shucai Xiao's avatar
Shucai Xiao committed
537
        if(keep_dims == 0)
538
        {
539
            auto ins = mm->add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
540
            return mm->add_instruction(make_op("squeeze", {{"axes", {axis}}}), ins);
541
542
543
        }
        else
        {
544
            return mm->add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
545
        }
546
547
    }

kahmed10's avatar
kahmed10 committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
608
609
                slices.push_back(mm->add_instruction(
                    make_op("slice", {{"axes", axes}, {"starts", starts}, {"ends", ends}}), input));
kahmed10's avatar
kahmed10 committed
610
611
612
613
614
615
616
617
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
618
619
                slices.push_back(mm->add_instruction(
                    make_op("slice", {{"axes", axes}, {"starts", starts}, {"ends", ends}}), input));
kahmed10's avatar
kahmed10 committed
620
            }
621
            input = mm->add_instruction(make_op("concat", {{"axis", axis}}), slices);
kahmed10's avatar
kahmed10 committed
622
623
624
625
        }
        return input;
    }

626
627
628
629
630
631
632
633
634
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

635
    void recalc_conv_attributes(value& v, size_t kdims)
636
    {
637
        if(v["padding"].size() != kdims)
638
        {
639
640
            v["padding"].resize(kdims);
            std::fill_n(v["padding"].begin(), kdims, 0);
641
        }
642
        if(v["stride"].size() != kdims)
643
        {
644
645
            v["stride"].resize(kdims);
            std::fill_n(v["stride"].begin(), kdims, 1);
646
        }
647
        if(v["dilation"].size() != kdims)
648
        {
649
650
            v["dilation"].resize(kdims);
            std::fill_n(v["dilation"].begin(), kdims, 1);
651
652
653
        }
    }

654
    static void cal_auto_padding_size(node_info info,
655
                                      value& v,
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
                                      const std::vector<std::size_t>& k_lens,
                                      const std::vector<std::size_t>& dilation,
                                      const std::vector<std::size_t>& in_lens,
                                      std::vector<int64_t>& paddings)
    {
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

        if(!contains(info.attributes, "auto_pad"))
        {
            return;
        }

        auto auto_pad = info.attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            paddings.resize(2 * kdims);

            for(size_t i = 0; i < paddings.size() / 2; i++)
            {
                calculate_padding(i,
                                  paddings,
                                  in_lens[i + 2],
680
                                  v["stride"][i].to<int64_t>(),
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
        }
    }

    static void check_padding_mode(node_info info, const std::string& op_name)
    {
        // ensure pads availabe only when auto_pad is "NOT_SET"
        if(contains(info.attributes, "pads") and contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_" + op_name +
                               ": auto_pad and padding cannot be specified simultaneously");
            }
        }
    }

702
703
704
705
    instruction_ref parse_conv(const std::string&,
                               const std::string& op_name,
                               node_info info,
                               std::vector<instruction_ref> args)
Paul's avatar
Paul committed
706
    {
707
708
        auto op      = make_op(op_name);
        auto values  = op.to_value();
709
710
        auto l0      = args[0];
        auto weights = args[1];
711
712
713
714
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

715
716
717
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV");

718
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
719
        {
720
721
722
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
723
        }
724
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
725
        {
726
727
728
729
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
            check_attr_sizes(
                kdims, values["dilation"].size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
730
        }
731
732
733
734

        std::vector<int64_t> padding;
        if(contains(info.attributes, "pads"))
        {
735
            values["padding"].clear();
736
737
738
739
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
        }

740
        if(contains(info.attributes, "auto_pad"))
741
        {
742
743
            auto weight_lens = weights->get_shape().lens();
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
744
745
746
747
748
749
            cal_auto_padding_size(info,
                                  values,
                                  k_lens,
                                  values["dilation"].to_vector<std::size_t>(),
                                  in_lens,
                                  padding);
Shucai Xiao's avatar
Shucai Xiao committed
750
751
752
753
754
            auto auto_pad = info.attributes["auto_pad"].s();
            if(auto_pad.find("SAME") != std::string::npos)
            {
                values["padding_mode"] = to_value(op::padding_mode_t::same);
            }
755
        }
756
        check_asym_padding(l0, padding, values);
757

758
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
759
        {
760
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
761
        }
kahmed10's avatar
kahmed10 committed
762

763
        recalc_conv_attributes(values, kdims);
764

765
        op.from_value(values);
766
        auto l1 = mm->add_instruction(op, l0, args[1]);
kahmed10's avatar
kahmed10 committed
767
768
769
        return add_bias(args, l1, 1);
    }

770
771
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
772
    {
773
774
775
        operation op = make_op("deconvolution");
        value values = op.to_value();
        // op::deconvolution op;
kahmed10's avatar
kahmed10 committed
776
777
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
778
779
780
781
782
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

783
784
785
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

786
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
787
        {
788
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
789
790
791
792

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
793
            {
kahmed10's avatar
kahmed10 committed
794
795
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
796
                values["padding"].clear();
kahmed10's avatar
kahmed10 committed
797
798
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
799
                               std::back_inserter(values["padding"]),
kahmed10's avatar
kahmed10 committed
800
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
801
802
            }
        }
803
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
804
        {
805
806
807
808
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(
                kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
809
        }
810
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
811
        {
812
813
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
kahmed10's avatar
kahmed10 committed
814
            check_attr_sizes(
815
                kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
816
        }
817
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
818
        {
819
820
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
821
            {
kahmed10's avatar
kahmed10 committed
822
823
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
824
825
826
827
            }

            if(s.find("SAME") != std::string::npos)
            {
828
                values["padding_mode"] = to_value(op::padding_mode_t::same);
kahmed10's avatar
kahmed10 committed
829
830
831
            }
        }

832
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
833
        {
834
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
835
836
        }

837
        recalc_conv_attributes(values, kdims);
kahmed10's avatar
kahmed10 committed
838

839
        op.from_value(values);
840
        auto l1                   = mm->add_instruction(op, l0, args[1]);
kahmed10's avatar
kahmed10 committed
841
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
842
843
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
844
        {
kahmed10's avatar
kahmed10 committed
845
846
847
848
849
850
851
852
853
854
855
856
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
857

858
859
            l1 = mm->add_instruction(
                make_op("slice", {{"axes", axes}, {"starts", starts}, {"ends", ends}}), l1);
kahmed10's avatar
kahmed10 committed
860
861
        }

862
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
863
        {
kahmed10's avatar
kahmed10 committed
864
865
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
866
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
867
868
869
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
870
            l1 = mm->add_instruction(make_op("pad", {{"pads", output_padding}}), l1);
kahmed10's avatar
kahmed10 committed
871
872
        }

873
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
874
875
        {
            std::vector<int64_t> output_shape;
876
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
877
878
879
880
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
881
882
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
883
884
885
886
887
888
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
889
                l1 = mm->add_instruction(make_op("pad", {{"pads", target_padding}}), l1);
kahmed10's avatar
kahmed10 committed
890
891
892
893
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
894
    }
Paul's avatar
Paul committed
895

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    static void
    tune_padding_to_symmetric(int64_t& left, int64_t& right, const int stride, int64_t& s_start)
    {
        s_start = 0;
        if(left > right)
        {
            right = left;
        }
        else if(left < right)
        {
            auto diff = right - left;
            s_start   = (diff + stride - 1) / stride;
            left      = left + s_start * stride;
            right     = left;
        }
    }

913
    static void tune_padding_size(const value& v,
914
915
916
917
918
                                  std::vector<int64_t>& padding,
                                  int count_include_pad,
                                  std::vector<int64_t>& s_start)
    {
        // maxpooling or count_include_pad is 1, no change is required.
919
        if(v.at("mode").to<std::string>() == "max" or count_include_pad == 1)
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
        {
            return;
        }

        // if padding is symmetric, return directly
        if(!is_asym_padding(padding))
        {
            return;
        }

        // asymmetric padding, make it symmetric
        std::size_t n_dims = padding.size() / 2;
        s_start.resize(n_dims);
        for(std::size_t i = 0; i < n_dims; ++i)
        {
935
936
            tune_padding_to_symmetric(
                padding[i], padding[i + n_dims], v.at("stride")[i].to<int64_t>(), s_start[i]);
937
938
939
        }
    }

940
941
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
942
    {
943
944
945
946
947
        std::string mode = ends_with(name, "MaxPool") ? "max" : "average";
        operation op     = make_op("pooling", {{"mode", mode}});
        value values     = op.to_value();
        auto l0          = args[0];
        auto in_lens     = l0->get_shape().lens();
948
949
950
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
951
        if(starts_with(name, "Global"))
952
        {
953
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
954
        }
955

956
957
        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
Paul's avatar
Paul committed
958
        {
Shucai Xiao's avatar
Shucai Xiao committed
959
            values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
960
        }
961

962
963
964
965
966
967
        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
Paul's avatar
Paul committed
968
        }
969

970
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
971
        {
972
973
974
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
975
        }
976
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
977
        {
978
979
980
981
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
982
        }
983

984
985
986
987
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
988
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
989
990
        if(contains(info.attributes, "pads"))
        {
991
            values["padding"].clear();
992
993
994
995
996
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

997
        if(contains(info.attributes, "auto_pad"))
998
        {
999
            values["padding"].clear();
1000
            // return paddings could be empty, then setting to 0 for no padding
1001
1002
1003
1004
1005
1006
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
1007
        }
1008

1009
1010
1011
1012
        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
1013
1014
        }

1015
        if(values["padding"].size() != kdims)
1016
        {
1017
1018
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
1019
        }
1020

1021
        if(values["stride"].size() != kdims)
1022
        {
1023
1024
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
1025
        }
1026
1027
1028
1029
1030
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
1031
        tune_padding_size(values, paddings, count_include_pad, slice_start);
1032
1033
1034
1035
1036
1037
1038
1039

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
1040
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();
1041

1042
1043
1044
1045
1046
1047
1048
1049
1050
            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }

1051
        check_asym_padding(l0, paddings, values, count_include_pad, pad_val);
1052
        in_lens = l0->get_shape().lens();
1053
1054
        for(size_t i = 0; i < kdims; i++)
        {
1055
1056
            if(values["lengths"][i].to<int64_t>() >
               in_lens[i + 2] + 2 * values["padding"][i].to<int64_t>())
1057
            {
1058
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
1059
1060
            }
        }
1061
        op.from_value(values);
1062
        auto l1 = mm->add_instruction(op, l0);
1063
1064
1065
1066
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
1067
1068
1069
            l1 = mm->add_instruction(
                make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}),
                l1);
1070
1071
        }

1072
        return l1;
Paul's avatar
Paul committed
1073
1074
    }

Paul's avatar
Paul committed
1075
    instruction_ref
1076
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1077
    {
1078
        op::reshape op;
Paul's avatar
Paul committed
1079
1080
        if(args.size() == 1)
        {
1081
            literal s = parse_value(info.attributes.at("shape"));
1082
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1083
1084
1085
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
1086
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1087
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
1088
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1089
        }
1090

1091
        return mm->add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
1092
1093
    }

Shucai Xiao's avatar
Shucai Xiao committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
    static const auto& get_nearest_op(const std::string& mode)
    {
        using nearest_op = std::function<std::size_t(std::size_t, double)>;
        static std::unordered_map<std::string, nearest_op> const nearest_ops = {
            {"round_prefer_floor",
             [=](std::size_t d_in, double val) {
                 val = std::max(0.0, std::min(d_in - 1.0, val));
                 return static_cast<std::size_t>(std::ceil((val - 0.5)));
             }},
            {"round_prefer_ceil",
             [=](std::size_t d_in, double val) {
                 val = std::max(0.0, std::min(d_in - 1.0, val));
                 return static_cast<std::size_t>(std::round((val)));
             }},
            {"floor",
             [=](std::size_t d_in, double val) {
                 val = std::max(0.0, std::min(d_in - 1.0, val));
                 return static_cast<std::size_t>(std::floor((val)));
             }},
            {"ceil", [=](std::size_t d_in, double val) {
                 val = std::max(0.0, std::min(d_in - 1.0, val));
                 return static_cast<std::size_t>(std::ceil((val)));
             }}};

        if(!contains(nearest_ops, mode))
        {
            MIGRAPHX_THROW("PARSE_RESIZE: nearest_mode " + mode + " not supported!");
        }

        return nearest_ops.at(mode);
    }

    static const auto& get_original_idx_op(const std::string& mode)
    {
        using original_idx_op =
            std::function<double(std::size_t, std::size_t, std::size_t, double)>;
        static std::unordered_map<std::string, original_idx_op> const idx_ops = {
            {"half_pixel",
             [=](std::size_t, std::size_t, std::size_t idx, double scale) {
                 return (idx + 0.5) / scale - 0.5;
             }},
            {"pytorch_half_pixel",
             [=](std::size_t, std::size_t l_out, std::size_t idx, double scale) {
                 return l_out > 1 ? (idx + 0.5) / scale - 0.5 : 0.0;
             }},
            {"align_corners",
             [=](std::size_t l_in, std::size_t l_out, std::size_t idx, double) {
                 return 1.0 * idx * (l_in - 1.0) / (l_out - 1.0);
             }},
            {"asymmetric",
             [=](std::size_t, std::size_t, std::size_t idx, double scale) { return idx / scale; }},
            {"tf_half_pixel_for_nn", [=](std::size_t, std::size_t, std::size_t idx, double scale) {
                 return (idx + 0.5) / scale;
             }}};

        if(!contains(idx_ops, mode))
        {
            MIGRAPHX_THROW("PARSE_RESIZE: coordinate_transformation_mode " + mode +
                           " not supported!");
        }

        return idx_ops.at(mode);
    }

    instruction_ref
    parse_resize(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        std::string coord_trans_mode = "half_pixel";
        if(contains(info.attributes, "coordinate_transformation_mode"))
        {
            coord_trans_mode = info.attributes.at("coordinate_transformation_mode").s();
            // does not support transformation mode "tf_crop_and_resize"
            if(coord_trans_mode == "tf_crop_and_resize")
            {
                MIGRAPHX_THROW("PARSE_RESIZE: \"tf_crop_and_resize\" mode is not supported!");
            }
        }

        // mode: only nearest mode is supported for now
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode != "nearest")
            {
                MIGRAPHX_THROW("PARSE_RESIZE: only nearest mode is supported!");
            }
        }

        // nearest mode
        std::string nearest_mode = "round_prefer_floor";
        if(contains(info.attributes, "nearest_mode"))
        {
            nearest_mode = info.attributes.at("nearest_mode").s();
        }

        // check exclude_outside, only support 0
        if(contains(info.attributes, "exclude_outside"))
        {
            int exclude_outside = info.attributes.at("exclude_outside").i();
            if(exclude_outside == 1)
            {
                MIGRAPHX_THROW("PARSE_RESIZE: exclude_outside 1 is not supported!");
            }
        }

        // input data shape info
        auto in_s    = args[0]->get_shape();
        auto in_lens = in_s.lens();

        // output shape is explicitly specified
        std::vector<std::size_t> out_lens(in_lens.size());

        // scale
        std::vector<double> vec_scale;

        // output size is specified in input, so use it as output size
        if(args.size() == 4 and args.back()->name() != "undefined")
        {
            auto arg_out_s = args[3]->eval();
            check_arg_empty(arg_out_s, "PARSE_RESIZE: dynamic output size is not supported!");
            arg_out_s.visit([&](auto ol) { out_lens.assign(ol.begin(), ol.end()); });

            if(out_lens.size() != in_lens.size())
            {
                MIGRAPHX_THROW("PARSE_RESIZE: specified output size does not match input size");
            }

            // compute the scale
            vec_scale.resize(in_lens.size());
            std::transform(in_lens.begin(),
                           in_lens.end(),
                           out_lens.begin(),
                           vec_scale.begin(),
                           [](auto iss, auto oss) { return 1.0 * oss / iss; });
        }
        // need to compute the output lens from input
        else
        {
            auto arg_scale = args[2]->eval();
            check_arg_empty(arg_scale, "PARSE_RESIZE: dynamic input scale is not supported!");

            arg_scale.visit([&](auto v) { vec_scale.assign(v.begin(), v.end()); });
            if(in_lens.size() != vec_scale.size())
            {
                MIGRAPHX_THROW("PARSE_RESIZE: ranks of input and scale are different!");
            }

            std::transform(
                in_lens.begin(),
                in_lens.end(),
                vec_scale.begin(),
                out_lens.begin(),
                [&](auto idx, auto scale) { return static_cast<std::size_t>(idx * scale); });
        }

        shape out_s{in_s.type(), out_lens};
        std::vector<int> ind(out_s.elements());

        // map out_idx to in_idx
        auto nearest_op = get_nearest_op(nearest_mode);
        auto idx_op     = get_original_idx_op(coord_trans_mode);

        shape_for_each(out_s, [&](auto idx) {
            auto in_idx = idx;
            for(auto ii = 0; ii < in_lens.size(); ++ii)
            {
                auto idx_val = idx_op(in_lens[ii], out_lens[ii], in_idx[ii], vec_scale[ii]);
                in_idx[ii]   = nearest_op(in_lens[ii], idx_val);
            }

            ind[out_s.index(idx)] = static_cast<int64_t>(in_s.index(in_idx));
        });

        // reshape input to one-dimension
        std::vector<int64_t> rsp_lens = {static_cast<int64_t>(in_s.elements())};
        shape ind_s{shape::int32_type, out_lens};
1270
1271
1272
        auto rsp     = mm->add_instruction(make_op("reshape", {{"dims", rsp_lens}}), args[0]);
        auto ins_ind = mm->add_literal(literal(ind_s, ind));
        return mm->add_instruction(make_op("gather", {{"axis", 0}}), rsp, ins_ind);
Shucai Xiao's avatar
Shucai Xiao committed
1273
1274
    }

Shucai Xiao's avatar
Shucai Xiao committed
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
1303
        arg_data = mm->add_instruction(make_op("reshape", {{"dims", {data_elem_num}}}), arg_data);
Shucai Xiao's avatar
Shucai Xiao committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
1321
1322
1323
            mm->add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = mm->add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = mm->add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
1324
1325
1326
1327
1328
        l_stride = mm->add_instruction(make_op("multibroadcast", {{"output_lens", ind_s.lens()}}),
                                       l_stride);
        auto dim_diff = mm->add_instruction(make_op("sub"), arg_ind, l_dim_idx);
        auto delta    = mm->add_instruction(make_op("mul"), dim_diff, l_stride);
        auto ind      = mm->add_instruction(make_op("add"), l_shape_idx, delta);
Shucai Xiao's avatar
Shucai Xiao committed
1329
1330

        op::gather op{0};
1331
        return mm->add_instruction(op, arg_data, ind);
Shucai Xiao's avatar
Shucai Xiao committed
1332
1333
    }

1334
    instruction_ref
1335
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1336
1337
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1360
        {
1361
            literal s = parse_value(info.attributes.at("axes"));
1362
1363
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1364
1365

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1366
        {
Shucai Xiao's avatar
Shucai Xiao committed
1367
1368
1369
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1370
        }
Shucai Xiao's avatar
Shucai Xiao committed
1371
        else if(contains(info.attributes, "ends"))
1372
        {
1373
1374
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1375
        }
Shucai Xiao's avatar
Shucai Xiao committed
1376
1377
1378
1379
1380
1381
1382
1383

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1384
        {
1385
            literal s = parse_value(info.attributes.at("starts"));
1386
1387
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1388

kahmed10's avatar
kahmed10 committed
1389
1390
1391
1392
1393
1394
1395
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1396
        return mm->add_instruction(op, args[0]);
1397
1398
    }

1399
    instruction_ref
1400
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&) const
Paul's avatar
Paul committed
1401
    {
1402
        literal v = parse_value(info.attributes.at("value"));
1403
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1404
        if(v.get_shape().elements() == 0)
1405
        {
1406
            return mm->add_literal(literal{});
1407
1408
        }

1409
        auto dim_size = info.attributes.at("value").t().dims_size();
1410
1411
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1412
        {
1413
            migraphx::shape scalar_shape{v.get_shape().type()};
1414
            return mm->add_literal(migraphx::literal{scalar_shape, v.data()});
1415
1416
        }

1417
        return mm->add_literal(v);
Paul's avatar
Paul committed
1418
    }
Paul's avatar
Paul committed
1419

Paul's avatar
Paul committed
1420
    instruction_ref
1421
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args) const
Paul's avatar
Paul committed
1422
1423
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1424
        float beta  = 1.0f;
Paul's avatar
Paul committed
1425
1426
        bool transa = false;
        bool transb = false;
1427
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1428
        {
1429
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1430
        }
1431
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1432
        {
1433
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1434
        }
1435
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1436
        {
1437
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1438
        }
1439
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1440
        {
1441
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1442
        }
1443
1444
1445
1446
1447
1448

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1449
1450
1451
1452
        auto l1 = (transa) ? mm->add_instruction(make_op("transpose", {{"dims", perm}}), args[0])
                           : args[0];
        auto l2 = (transb) ? mm->add_instruction(make_op("transpose", {{"dims", perm}}), args[1])
                           : args[1];
Paul's avatar
Paul committed
1453
1454
        if(args.size() == 3)
        {
1455
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1456
            {
Shucai Xiao's avatar
Shucai Xiao committed
1457
                auto out_lens   = l1->get_shape().lens();
1458
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1459
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1460
1461
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1462
                {
1463
1464
                    l3 = mm->add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}),
                                             args[2]);
Khalique's avatar
Khalique committed
1465
                }
1466
                return mm->add_instruction(
1467
                    make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2, l3);
1468
            }
Paul's avatar
Paul committed
1469
        }
1470

1471
        return mm->add_instruction(make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2);
Paul's avatar
Paul committed
1472
1473
    }

1474
1475
1476
1477
    instruction_ref parse_matmul(const std::string&,
                                 const std::string& op_name,
                                 const node_info&,
                                 std::vector<instruction_ref> args)
1478
    {
Shucai Xiao's avatar
Shucai Xiao committed
1479
1480
        auto l0      = args[0];
        auto l1      = args[1];
1481
1482
1483
1484
1485
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1486
        if(l0_lens.size() == 1)
1487
1488
1489
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
1490
            l0 = mm->add_instruction(make_op("unsqueeze", {{"axes", {0}}}), args[0]);
1491
1492
1493
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1494
        if(l1_lens.size() == 1)
1495
1496
1497
        {
            is_b_appended = true;
            l1_lens.push_back(1);
1498
            l1 = mm->add_instruction(make_op("unsqueeze", {{"axes", {1}}}), args[1]);
1499
1500
1501
1502
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1503
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1504
1505
1506
1507
1508
1509
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1510
            l0_broadcasted_lens = output_lens;
1511
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1512
            l1_broadcasted_lens = output_lens;
1513
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1514
            if(l0_lens != l0_broadcasted_lens)
1515
            {
1516
1517
                bl0 = mm->add_instruction(
                    make_op("multibroadcast", {{"output_lens", l0_broadcasted_lens}}), l0);
1518
            }
Shucai Xiao's avatar
Shucai Xiao committed
1519
            if(l1_lens != l1_broadcasted_lens)
1520
            {
1521
1522
                bl1 = mm->add_instruction(
                    make_op("multibroadcast", {{"output_lens", l1_broadcasted_lens}}), l1);
1523
1524
1525
            }
        }

1526
        auto dot_res = mm->add_instruction(make_op(op_name, {{"alpha", 1}, {"beta", 0}}), bl0, bl1);
1527
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1528
        if(is_a_prepended)
1529
        {
1530
            dot_res = mm->add_instruction(make_op("squeeze", {{"axes", {num_axis - 2}}}), dot_res);
1531
1532
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1533
        if(is_b_appended)
1534
        {
1535
            dot_res = mm->add_instruction(make_op("squeeze", {{"axes", {num_axis - 1}}}), dot_res);
1536
        }
Shucai Xiao's avatar
Shucai Xiao committed
1537

1538
1539
1540
        return dot_res;
    }

1541
    instruction_ref
1542
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args) const
1543
    {
Scott Thornton's avatar
Scott Thornton committed
1544
1545
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1546
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1547
        if(contains(info.attributes, "epsilon"))
1548
        {
1549
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1550
        }
1551
        if(contains(info.attributes, "momentum"))
1552
        {
1553
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1554
        }
1555
        if(contains(info.attributes, "spatial"))
1556
        {
1557
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1558
1559
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1560
        }
Paul's avatar
Paul committed
1561
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
1562
        return mm->add_instruction(op, std::move(args));
1563
1564
    }

1565
    instruction_ref
1566
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args) const
kahmed10's avatar
kahmed10 committed
1567
1568
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
kahmed10's avatar
kahmed10 committed
1569
1570
        // mean = reduce_mean({D1, D2, ... Dk}, x)
        // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2)
kahmed10's avatar
kahmed10 committed
1571
1572

        float epsilon = 1e-5f;
1573
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1574
        {
1575
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1576
1577
1578
1579
1580
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();
kahmed10's avatar
kahmed10 committed
1581
1582
1583
        auto ndims = dims.size();
        assert(ndims >= 2);
        auto kdims = ndims - 2;
kahmed10's avatar
kahmed10 committed
1584

kahmed10's avatar
kahmed10 committed
1585
1586
1587
        std::vector<int64_t> axes(kdims);
        std::iota(axes.begin(), axes.end(), 2);

1588
1589
1590
        auto mean = mm->add_instruction(make_op("reduce_mean", {{"axes", axes}}), x);
        auto mean_bcast =
            mm->add_instruction(make_op("multibroadcast", {{"output_lens", dims}}), mean);
1591
1592
1593
1594
        auto l0              = mm->add_instruction(make_op("sqdiff"), x, mean_bcast);
        auto variance        = mm->add_instruction(make_op("reduce_mean", {{"axes", axes}}), l0);
        auto l1              = mm->add_instruction(make_op("sub"), x, mean_bcast);
        auto epsilon_literal = mm->add_literal(epsilon);
1595
1596
1597
1598
1599
1600
1601
1602
1603
        auto epsilon_bcast = mm->add_instruction(make_op("multibroadcast", {{"output_lens", dims}}),
                                                 epsilon_literal);
        auto variance_bcast =
            mm->add_instruction(make_op("multibroadcast", {{"output_lens", dims}}), variance);
        auto l2 = mm->add_instruction(make_op("add"), variance_bcast, epsilon_bcast);
        auto l3 = mm->add_instruction(make_op("rsqrt"), l2);
        auto l4 = mm->add_instruction(make_op("mul"), l1, l3);
        auto scale_bcast =
            mm->add_instruction(make_op("broadcast", {{"axis", 1}, {"dims", dims}}), scale);
kahmed10's avatar
kahmed10 committed
1604
        ;
1605
1606
1607
        auto bias_bcast =
            mm->add_instruction(make_op("broadcast", {{"axis", 1}, {"dims", dims}}), bias);
        auto l5 = mm->add_instruction(make_op("mul"), l4, scale_bcast);
1608
        return mm->add_instruction(make_op("add"), l5, bias_bcast);
kahmed10's avatar
kahmed10 committed
1609
1610
    }

1611
    instruction_ref
1612
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args) const
1613
    {
Khalique's avatar
Khalique committed
1614
        float alpha = 0.01; // default alpha val for leaky relu
1615
        if(contains(info.attributes, "alpha"))
1616
        {
1617
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1618
        }
1619
        auto op = make_op("leaky_relu", {{"alpha", alpha}});
1620
        return mm->add_instruction(op, args.front());
1621
1622
    }

1623
1624
    instruction_ref
    parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
1625
1626
    {
        float alpha = 1.0; // default alpha val for elu
1627
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1628
        {
1629
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1630
        }
1631
        auto op = make_op("elu", {{"alpha", alpha}});
1632
        return mm->add_instruction(op, args.front());
Khalique's avatar
Khalique committed
1633
1634
    }

1635
1636
    instruction_ref
    parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
1637
1638
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1639
1640
1641
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1642
1643
1644
1645
1646
1647
1648
1649
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1650
        op::lrn op{alpha, beta, bias, size};
1651
        return mm->add_instruction(op, args.front());
Khalique's avatar
Khalique committed
1652
1653
    }

1654
    instruction_ref
1655
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
1656
1657
1658
    {
        float scale = 1.0;
        std::vector<float> bias{};
1659
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1660
        {
1661
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1662
1663
        }

1664
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1665
        {
1666
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1667
1668
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1669
1670
1671
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1672

1673
1674
        auto scale_val = mm->add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = mm->add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1675

1676
1677
        auto scale_tensor = mm->add_instruction(
            migraphx::make_op("scalar", {{"scalar_bcst_dims", input_lens}}), scale_val);
1678
        auto img_scaled = mm->add_instruction(migraphx::make_op("mul"), args.front(), scale_tensor);
1679
1680
        auto bias_bcast = mm->add_instruction(
            migraphx::make_op("broadcast", {{"axis", 1}, {"dims", input_lens}}), bias_vals);
1681
        return mm->add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1682
    }
Khalique's avatar
Khalique committed
1683

Khalique's avatar
Khalique committed
1684
    instruction_ref
1685
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args) const
Khalique's avatar
Khalique committed
1686
1687
    {
        std::vector<int64_t> perm{};
1688
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1689
        {
1690
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1691
1692
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
1693
        return mm->add_instruction(migraphx::make_op("transpose", {{"dims", perm}}), args.front());
Khalique's avatar
Khalique committed
1694
1695
    }

1696
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1697
1698
    {
        std::vector<int64_t> pads{};
1699
1700
1701
1702
1703
1704
1705
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1706
        {
1707
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1708
1709
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1710
1711
1712
1713
1714
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1715
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1716
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1717
        {
1718
            return mm->add_instruction(make_op("identity"), args.front());
1719
        }
1720

kahmed10's avatar
kahmed10 committed
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1750
        {
1751
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1752
        }
1753

1754
1755
        return mm->add_instruction(migraphx::make_op("pad", {{"pads", pads}, {"value", value}}),
                                   args.front());
Khalique's avatar
Khalique committed
1756
    }
Shucai Xiao's avatar
Shucai Xiao committed
1757
1758

    instruction_ref
1759
    parse_selu(const std::string&, const node_info& info, std::vector<instruction_ref> args) const
Shucai Xiao's avatar
Shucai Xiao committed
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
    {
        auto type   = args[0]->get_shape().type();
        auto lens   = args[0]->get_shape().lens();
        float alpha = 1.67326f;
        if(contains(info.attributes, "alpha"))
        {
            alpha = info.attributes.at("alpha").f();
        }

        float gamma = 1.0507f;
        if(contains(info.attributes, "gamma"))
        {
            gamma = info.attributes.at("gamma").f();
        }

1775
1776
        auto l_alpha = mm->add_literal({{type, {1}}, {alpha}});
        auto l_gamma = mm->add_literal({{type, {1}}, {gamma / 2.0f}});
Shucai Xiao's avatar
Shucai Xiao committed
1777
1778
1779
        if(lens != std::vector<std::size_t>{1})
        {
            l_alpha =
1780
                mm->add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), l_alpha);
Shucai Xiao's avatar
Shucai Xiao committed
1781
            l_gamma =
1782
                mm->add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), l_gamma);
Shucai Xiao's avatar
Shucai Xiao committed
1783
1784
        }

1785
1786
        auto sign_x = mm->add_instruction(make_op("sign"), args[0]);
        auto exp_x  = mm->add_instruction(make_op("exp"), args[0]);
Shucai Xiao's avatar
Shucai Xiao committed
1787

1788
1789
        auto alpha_ex  = mm->add_instruction(make_op("mul"), l_alpha, exp_x);
        auto aex_alpha = mm->add_instruction(make_op("sub"), alpha_ex, l_alpha);
Shucai Xiao's avatar
Shucai Xiao committed
1790

1791
1792
        auto ins1 = mm->add_instruction(make_op("add"), aex_alpha, args[0]);
        auto ins2 = mm->add_instruction(make_op("sub"), aex_alpha, args[0]);
Shucai Xiao's avatar
Shucai Xiao committed
1793

1794
1795
        auto sign2   = mm->add_instruction(make_op("mul"), sign_x, ins2);
        auto ins_sub = mm->add_instruction(make_op("sub"), ins1, sign2);
Shucai Xiao's avatar
Shucai Xiao committed
1796

1797
        return mm->add_instruction(make_op("mul"), ins_sub, l_gamma);
Shucai Xiao's avatar
Shucai Xiao committed
1798
1799
    }

1800
1801
1802
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1803
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args) const
1804
1805
    {
        if(args.size() != 1)
1806
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1807
1808
1809
1810
1811
1812
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
1813
        return mm->add_literal(migraphx::literal{s, vec_shape});
1814
1815
1816
1817
1818
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1819
1820
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1821
1822
1823
1824
1825
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1826
        if(contains(info.attributes, "dtype"))
1827
        {
1828
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1829
        }
Shucai Xiao's avatar
Shucai Xiao committed
1830
        shape::type_t type = get_type(dtype);
1831

1832
        if(contains(info.attributes, "input_as_shape"))
1833
        {
1834
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1835
1836
        }

1837
        if(contains(info.attributes, "value"))
1838
        {
1839
            value = parse_value(info.attributes.at("value")).at<float>();
1840
1841
        }

1842
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1843
        {
1844
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1845
1846
        }

1847
1848
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1849
            if(args.size() != 1)
1850
            {
1851
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1852
1853
            }

1854
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1855
            {
1856
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1857
                               "at the same time");
1858
1859
            }

1860
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1861
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1862

1863
1864
1865
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1866
            std::vector<float> values(s.elements(), value);
1867
            return mm->add_literal(migraphx::literal(s, values));
1868
1869
1870
        }
        else if(input_as_shape == 0)
        {
1871
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1872
            {
1873
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1874
1875
            }

1876
            literal ls = parse_value(info.attributes.at("shape"));
1877
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1878
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1879
            migraphx::shape s{type, dims};
1880
            std::vector<float> values(s.elements(), value);
1881
            return mm->add_literal(migraphx::literal(s, values));
1882
1883
1884
        }
        else
        {
1885
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1886
1887
1888
        }
    }

1889
1890
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1891
1892
    {
        literal l_val{};
1893
        if(contains(info.attributes, "value"))
1894
        {
1895
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1896
            if(l_val.get_shape().elements() != 1)
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1908

Shucai Xiao's avatar
Shucai Xiao committed
1909
        if(args.empty())
1910
        {
Shucai Xiao's avatar
Shucai Xiao committed
1911
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1912
1913
1914
        }
        else
        {
1915
1916
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1917
            if(args[0]->get_shape().elements() == 0)
1918
            {
1919
                s = migraphx::shape{type, {1}, {0}};
1920
            }
1921
1922
1923
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1924
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1925

1926
1927
1928
1929
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1930

Shucai Xiao's avatar
Shucai Xiao committed
1931
            literal l_out{};
1932
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1933
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1934
                // l_val contains only one element
1935
                std::vector<val_type> out_vec(s.elements(), val.front());
1936
1937
1938
                l_out = literal(s, out_vec);
            });

1939
            return mm->add_literal(l_out);
1940
1941
1942
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1943
    instruction_ref
1944
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1945
    {
Shucai Xiao's avatar
Shucai Xiao committed
1946
        auto in_lens             = args[0]->get_shape().lens();
1947
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1948
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1949
1950
1951
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
1952
        return mm->add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}), args[0]);
1953
1954
    }

Shucai Xiao's avatar
Shucai Xiao committed
1955
    std::vector<instruction_ref>
1956
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1957
1958
    {
        migraphx::shape input_shape = args[0]->get_shape();
1959
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1960

1961
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1962
        {
1963
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1964
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1965
1966
1967
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1968
1969
1970
1971
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1972
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1973
        {
1974
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1975
1976
        }

1977
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1978
1979
        if(direction == "bidirectional")
        {
1980
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1981
1982
1983
        }
        else if(direction == "reverse")
        {
1984
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1985
1986
        }

1987
        std::vector<std::string> vec_names{"tanh"};
1988
        if(contains(info.attributes, "activations"))
1989
        {
1990
            auto names = info.attributes.at("activations").strings();
1991
            vec_names.clear();
1992
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1993
1994
1995
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1996
1997
        }

1998
1999
2000
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2001
        if(name_it != vec_names.end())
2002
2003
2004
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
2005

Shucai Xiao's avatar
Shucai Xiao committed
2006
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
2007
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
2008
        // if only one actv function is provided, we use it in both
2009
        // forward and reverse direction
2010
        if(dirct == op::rnn_direction::bidirectional)
2011
        {
Shucai Xiao's avatar
Shucai Xiao committed
2012
            if(vec_names.size() == 1)
2013
2014
2015
2016
2017
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
2018
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2019
2020
2021
2022
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
2023

Shucai Xiao's avatar
Shucai Xiao committed
2024
2025
        // To be added later
        float clip = 0.0;
2026
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2027
        {
2028
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2029
2030
        }

2031
2032
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
2033
        if(args.size() < 6)
2034
        {
2035
            auto ins = mm->add_instruction(make_op("undefined"));
2036
2037
2038
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
2039
        // first output for the concatenation of hidden states
2040
2041
2042
2043
2044
2045
        auto hidden_states = mm->add_instruction(make_op("rnn",
                                                         {{"hidden_size", hidden_size},
                                                          {"actv_func", to_value(vec_actv_funcs)},
                                                          {"direction", dirct},
                                                          {"clip", clip}}),
                                                 std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2046

2047
        // second output for the last hidden state
2048
        auto last_output = mm->add_instruction(make_op("rnn_last_hs_output"), hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2049

Shucai Xiao's avatar
Shucai Xiao committed
2050
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
2051
2052
    }

2053
    std::vector<instruction_ref>
2054
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
2055
2056
2057
2058
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

2059
        if(contains(info.attributes, "hidden_size"))
2060
        {
2061
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2062
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
2063
2064
2065
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
2066
2067
2068
2069
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
2070
        if(contains(info.attributes, "direction"))
2071
        {
2072
            direction = info.attributes.at("direction").s();
2073
2074
        }

2075
        op::rnn_direction dirct = op::rnn_direction::forward;
2076
2077
        if(direction == "bidirectional")
        {
2078
            dirct = op::rnn_direction::bidirectional;
2079
2080
2081
        }
        else if(direction == "reverse")
        {
2082
            dirct = op::rnn_direction::reverse;
2083
2084
        }

2085
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
2086
        if(contains(info.attributes, "activations"))
2087
        {
2088
            auto names = info.attributes.at("activations").strings();
2089
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
2090
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
2091
2092
2093
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
2094
2095
        }

2096
        // need 4 activation functions
2097
        if(dirct == op::rnn_direction::bidirectional)
2098
        {
Shucai Xiao's avatar
Shucai Xiao committed
2099
            // 4 activation functions are used in the bidirectional
2100
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
2101
2102
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
2103
2104
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
2105
2106
2107
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
2108
            if(vec_names.size() == 1)
2109
            {
2110
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
2111
            }
2112
            else if(vec_names.size() == 2)
2113
            {
2114
2115
2116
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
2117
            }
2118
            else if(vec_names.size() == 3)
2119
            {
2120
                vec_names.push_back(vec_names.at(2));
2121
2122
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
2123
        else
2124
        {
2125
            if(vec_names.size() == 1)
2126
            {
2127
                vec_names.push_back(vec_names.at(0));
2128
2129
2130
            }
        }

2131
2132
2133
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2134
        if(name_it != vec_names.end())
2135
2136
2137
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
2138

Shucai Xiao's avatar
Shucai Xiao committed
2139
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2140
2141
2142
2143
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
2144
2145

        float clip = 0.0;
2146
        if(contains(info.attributes, "clip"))
2147
        {
2148
            clip = parse_value(info.attributes.at("clip")).at<float>();
2149
2150
2151
        }

        int linear_before_reset = 0;
2152
        if(contains(info.attributes, "linear_before_reset"))
2153
        {
2154
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
2155
2156
        }

Shucai Xiao's avatar
Shucai Xiao committed
2157
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
2158
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
2159
        {
2160
            auto ins = mm->add_instruction(make_op("undefined"));
Shucai Xiao's avatar
Shucai Xiao committed
2161
2162
2163
            args.insert(args.end(), 6 - args.size(), ins);
        }

2164
        // first output for concatenation of hidden states
2165
2166
2167
2168
2169
2170
2171
2172
        auto hidden_states =
            mm->add_instruction(make_op("gru",
                                        {{"hidden_size", hidden_size},
                                         {"actv_func", to_value(vec_actv_funcs)},
                                         {"direction", dirct},
                                         {"clip", clip},
                                         {"linear_before_reset", linear_before_reset}}),
                                std::move(args));
2173
2174

        // second output for last gru output
2175
        auto last_output = mm->add_instruction(make_op("rnn_last_hs_output"), hidden_states);
2176

Shucai Xiao's avatar
Shucai Xiao committed
2177
        return {hidden_states, last_output};
2178
2179
    }

Shucai Xiao's avatar
Shucai Xiao committed
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
2265
    std::vector<instruction_ref>
2266
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2267
2268
2269
2270
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

2271
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
2272
        {
2273
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2274
2275
2276
2277
2278
2279
2280
2281
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
2282
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
2283
        {
2284
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
2285
2286
        }

Shucai Xiao's avatar
Shucai Xiao committed
2287
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2288
2289
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2290
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
2291
2292
2293
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2294
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
2295
        }
Shucai Xiao's avatar
Shucai Xiao committed
2296
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
2297
        {
Shucai Xiao's avatar
Shucai Xiao committed
2298
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2299
2300
2301
2302
2303
2304
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

2305
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
2306
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
2307
        {
2308
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
2309
2310
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
2311
2312
2313
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
2314
2315
        }

Shucai Xiao's avatar
Shucai Xiao committed
2316
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
2317

2318
2319
2320
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2321
        if(name_it != vec_names.end())
2322
2323
2324
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2325
2326

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2327
2328
2329
2330
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
2331
2332

        float clip = 0.0;
2333
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2334
        {
2335
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2336
2337
2338
        }

        int input_forget = 0;
2339
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
2340
        {
2341
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2342
2343
2344
2345
2346
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
2347
            auto ins = mm->add_instruction(make_op("undefined"));
Shucai Xiao's avatar
Shucai Xiao committed
2348
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
2349
2350
2351
        }

        // first output for concatenation of hidden states
2352
2353
2354
2355
2356
2357
2358
        auto hidden_states = mm->add_instruction(make_op("lstm",
                                                         {{"hidden_size", hidden_size},
                                                          {"actv_func", to_value(vec_actv_funcs)},
                                                          {"direction", dirct},
                                                          {"clip", clip},
                                                          {"input_forget", input_forget}}),
                                                 std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2359

2360
        auto last_output = mm->add_instruction(make_op("rnn_last_hs_output"), hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2361
2362

        // third output for last cell output
2363
        auto last_cell_output = mm->add_instruction(make_op("rnn_last_cell_output"), hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2364
2365
2366

        return {hidden_states, last_output, last_cell_output};
    }
2367

2368
2369
2370
    instruction_ref parse_reduce_oper(const std::string&,
                                      const std::string& op_name,
                                      node_info info,
2371
                                      std::vector<instruction_ref> args) const
Shucai Xiao's avatar
Shucai Xiao committed
2372
2373
2374
2375
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
2376
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
2377
        std::iota(axes.begin(), axes.end(), 0);
2378
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
2379
2380
        {
            axes.clear();
2381
            auto&& attr_axes = info.attributes["axes"].ints();
2382
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
2383
2384
2385
        }

        int keep_dims = 1;
2386
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
2387
        {
2388
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2389
2390
2391
2392
        }

        if(keep_dims == 1)
        {
2393
            return mm->add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2394
2395
2396
        }
        else
        {
2397
            auto ins = mm->add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
2398
            return mm->add_instruction(make_op("squeeze", {{"axes", axes}}), ins);
2399
2400
        }
    }
2401

Shucai Xiao's avatar
Shucai Xiao committed
2402
    instruction_ref
2403
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args) const
Shucai Xiao's avatar
Shucai Xiao committed
2404
    {
2405
        auto abs_ins = mm->add_instruction(make_op("abs"), args[0]);
2406
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2407
2408
2409
    }

    instruction_ref
2410
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args) const
Shucai Xiao's avatar
Shucai Xiao committed
2411
    {
2412
        auto square_ins = mm->add_instruction(make_op("mul"), args[0], args[0]);
2413
        auto sum_ins    = parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
2414
        return mm->add_instruction(make_op("sqrt"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2415
2416
    }

2417
2418
2419
    instruction_ref parse_reduce_log_sum(const std::string&,
                                         node_info info,
                                         std::vector<instruction_ref> args) const
Shucai Xiao's avatar
Shucai Xiao committed
2420
    {
2421
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), std::move(args));
2422
        return mm->add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2423
2424
    }

2425
2426
2427
    instruction_ref parse_reduce_log_sum_exp(const std::string&,
                                             node_info info,
                                             std::vector<instruction_ref> args) const
Shucai Xiao's avatar
Shucai Xiao committed
2428
    {
2429
        auto exp_ins = mm->add_instruction(make_op("exp"), args[0]);
2430
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), {exp_ins});
2431
        return mm->add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2432
2433
    }

2434
2435
2436
    instruction_ref parse_reduce_sum_square(const std::string&,
                                            node_info info,
                                            std::vector<instruction_ref> args) const
Shucai Xiao's avatar
Shucai Xiao committed
2437
    {
2438
        auto square_ins = mm->add_instruction(make_op("mul"), args[0], args[0]);
2439
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2440
2441
    }

Shucai Xiao's avatar
Shucai Xiao committed
2442
    instruction_ref
2443
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args) const
2444
    {
2445
        if(!contains(info.attributes, "to"))
2446
2447
2448
2449
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2450
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2451
        shape::type_t type = get_type(to_type);
2452
        return mm->add_instruction(make_op("convert", {{"target_type", type}}), std::move(args));
2453
    }
Shucai Xiao's avatar
Shucai Xiao committed
2454

2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
2500
2501
2502
            ret_ins.push_back(mm->add_instruction(
                make_op("slice", {{"axes", {axis}}, {"starts", {start}}, {"ends", {start + sl}}}),
                args[0]));
2503
2504
2505
2506
2507
2508
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2509
2510
2511
2512
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2513
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2514
2515
2516
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2517
2518
2519
2520
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2521

Shucai Xiao's avatar
Shucai Xiao committed
2522
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2523
2524
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2525
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2526
2527
        }

Shucai Xiao's avatar
Shucai Xiao committed
2528
2529
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
2530
        auto l_val      = mm->add_literal({s, depth_input});
2531
        auto gather_out = mm->add_instruction(make_op("gather", {{"axis", 0}}), {l_val, args[0]});
Shucai Xiao's avatar
Shucai Xiao committed
2532
2533
2534
2535

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2536
        {
Shucai Xiao's avatar
Shucai Xiao committed
2537
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2538
        }
Shucai Xiao's avatar
Shucai Xiao committed
2539
2540
2541
2542
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
2543
        auto tr_out = mm->add_instruction(make_op("transpose", {{"dims", perm}}), gather_out);
Shucai Xiao's avatar
Shucai Xiao committed
2544
2545
        auto lens   = tr_out->get_shape().lens();

2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
        auto off_val = mm->add_instruction(
            make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[2]);
        auto on_val = mm->add_instruction(
            make_op("slice", {{"axes", {0}}, {"starts", {1}}, {"ends", {2}}}), args[2]);
        auto diff = mm->add_instruction(make_op("sub"), on_val, off_val);
        auto unsq_off_val =
            mm->add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), off_val);
        auto unsq_diff_val =
            mm->add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), diff);
        auto l_mul = mm->add_instruction(make_op("mul"), tr_out, unsq_diff_val);
2556
        return mm->add_instruction(make_op("add"), l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2557
2558
    }

kahmed10's avatar
kahmed10 committed
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
2573
                l0 = mm->add_instruction(make_op("concat", {{"axis", i}}), l0, l1);
kahmed10's avatar
kahmed10 committed
2574
2575
2576
2577
2578
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

2615
            l0 = mm->add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
kahmed10's avatar
kahmed10 committed
2616
2617
2618
2619
        });
        return l0;
    }

2620
2621
2622
2623
2624
2625
2626
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

2627
2628
    instruction_ref parse_embedding_bag(const node_info& info,
                                        std::vector<instruction_ref> args) const
2629
2630
2631
2632
2633
2634
2635
2636
2637
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

2638
        auto l0 = mm->add_instruction(make_op("gather"), args[0], args[1]);
2639
2640
        switch(reduce_mode)
        {
2641
        case reduce_mode_t::sum:
2642
            l0 = mm->add_instruction(make_op("reduce_sum", {{"axes", {0}}}), l0);
2643
2644
            break;
        case reduce_mode_t::mean:
2645
            l0 = mm->add_instruction(make_op("reduce_mean", {{"axes", {0}}}), l0);
2646
2647
            break;
        case reduce_mode_t::max:
2648
            l0 = mm->add_instruction(make_op("reduce_max", {{"axes", {0}}}), l0);
2649
            break;
2650
2651
2652
2653
2654
        }
        return l0;
    }

    instruction_ref
2655
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args) const
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

2668
    std::vector<instruction_ref>
2669
    parse_dropout(const std::string&, const node_info&, std::vector<instruction_ref> args) const
2670
    {
2671
        auto out = mm->add_instruction(make_op("identity"), args[0]);
2672
2673
2674
        auto s   = args[0]->get_shape();
        std::vector<int8_t> vec(s.elements(), 1);
        shape mask_s{shape::bool_type, s.lens()};
2675
        auto mask = mm->add_literal(literal(mask_s, vec));
2676
2677
2678
2679

        return {out, mask};
    }

Shucai Xiao's avatar
Shucai Xiao committed
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
    template <class T>
    std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
    {
        std::vector<std::size_t> indices;
        for(std::size_t i = 0; i < data.size(); ++i)
        {
            if(!float_equal(data[i], 0))
                indices.push_back(i);
        }

        return indices;
    }

    instruction_ref
    parse_nonzero(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument data_arg = args.back()->eval();
        check_arg_empty(data_arg, "PARSE_NONZERO: cannot support non-constant input!");

        std::vector<std::size_t> indices;
        data_arg.visit([&](auto val) {
            using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
            std::vector<val_type> vec_data;
            vec_data.assign(val.begin(), val.end());
            indices = this->nonzero_indices(vec_data);
        });

        shape in_s = args[0]->get_shape();
        shape out_s{shape::int64_type, {in_s.lens().size(), indices.size()}};

        std::vector<int64_t> out_data(out_s.elements());
        for(std::size_t i = 0; i < indices.size(); ++i)
        {
            auto idx = in_s.multi(indices[i]);
            for(std::size_t j = 0; j < in_s.lens().size(); ++j)
            {
                out_data[out_s.index({j, i})] = idx[j];
            }
        }

2720
        return mm->add_literal(literal(out_s, out_data));
Shucai Xiao's avatar
Shucai Xiao committed
2721
2722
    }

2723
2724
2725
2726
    instruction_ref parse_compare_op(const std::string&,
                                     const std::string& op_name,
                                     const node_info&,
                                     std::vector<instruction_ref> args)
2727
    {
2728
        auto l = add_broadcastable_binary_op(args[0], args[1], op_name);
2729
2730
        if(l->get_shape().type() != shape::bool_type)
        {
2731
            l = mm->add_instruction(make_op("convert", {{"target_type", shape::bool_type}}), l);
2732
2733
2734
2735
        }
        return l;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
    instruction_ref
    parse_upsample(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode != "nearest")
            {
                MIGRAPHX_THROW("PARSE_UPSAMPLE: only nearest mode is supported!");
            }
        }

        auto arg_scale = args[1]->eval();
        check_arg_empty(arg_scale, "PARSE_UPSAMPLE: only constant scale is supported!");
        std::vector<float> vec_scale;
        arg_scale.visit([&](auto v) { vec_scale.assign(v.begin(), v.end()); });

        auto in_s    = args[0]->get_shape();
        auto in_lens = in_s.lens();
        if(in_lens.size() != vec_scale.size())
        {
            MIGRAPHX_THROW("PARSE_UPSAMPLE: ranks of input and scale are different!");
        }

        std::vector<std::size_t> out_lens(in_lens.size());
        std::transform(in_lens.begin(),
                       in_lens.end(),
                       vec_scale.begin(),
                       out_lens.begin(),
                       [&](auto idx, auto scale) { return static_cast<std::size_t>(idx * scale); });

        std::vector<float> idx_scale(in_lens.size());
        std::transform(
            out_lens.begin(),
            out_lens.end(),
            in_lens.begin(),
            idx_scale.begin(),
            [](auto od, auto id) { return (od == id) ? 1.0f : (id - 1.0f) / (od - 1.0f); });

        shape out_s{in_s.type(), out_lens};
        std::vector<int> ind(out_s.elements());

        // map out_idx to in_idx
        shape_for_each(out_s, [&](auto idx) {
            auto in_idx = idx;
            std::transform(idx.begin(),
                           idx.end(),
                           idx_scale.begin(),
                           in_idx.begin(),
                           // nearest mode
                           [](auto index, auto scale) {
                               return static_cast<std::size_t>(std::round(index * scale));
                           });

            ind[out_s.index(idx)] = static_cast<int64_t>(in_s.index(in_idx));
        });

        // reshape input to one-dimension
        std::vector<int64_t> rsp_lens = {static_cast<int64_t>(in_s.elements())};
        shape ind_s{shape::int32_type, out_lens};
2796
2797
2798
        auto rsp     = mm->add_instruction(make_op("reshape", {{"dims", rsp_lens}}), args[0]);
        auto ins_ind = mm->add_literal(literal(ind_s, ind));
        return mm->add_instruction(make_op("gather", {{"axis", 0}}), rsp, ins_ind);
Shucai Xiao's avatar
Shucai Xiao committed
2799
2800
    }

Shucai Xiao's avatar
Shucai Xiao committed
2801
2802
2803
    instruction_ref
    parse_where(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
        auto cond =
            mm->add_instruction(make_op("convert", {{"target_type", shape::int32_type}}), args[0]);
        auto lens = compute_broadcasted_lens(cond->get_shape().lens(), args[1]->get_shape().lens());
        lens      = compute_broadcasted_lens(lens, args[2]->get_shape().lens());
        if(cond->get_shape().lens() != lens)
        {
            cond = mm->add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), cond);
        }

        if(args[1]->get_shape().lens() != lens)
        {
            args[1] =
                mm->add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), args[1]);
        }

        if(args[2]->get_shape().lens() != lens)
        {
            args[2] =
                mm->add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), args[2]);
        }

        // compute index
        auto elem_num = args[1]->get_shape().elements();

        // concatenation of input data
        auto concat_data = mm->add_instruction(make_op("concat", {{"axis", 0}}), args[2], args[1]);
        std::vector<int64_t> dims = {static_cast<int64_t>(2 * elem_num)};
        auto rsp_data = mm->add_instruction(make_op("reshape", {{"dims", dims}}), concat_data);

        std::vector<int> ind(elem_num);
        std::iota(ind.begin(), ind.end(), 0);
        shape ind_s{shape::int32_type, lens};
        auto l_ind = mm->add_literal(literal(ind_s, ind));
        std::vector<int> offset(elem_num, elem_num);
        auto l_offset   = mm->add_literal(literal({shape::int32_type, lens}, offset));
        auto ins_offset = mm->add_instruction(make_op("mul"), l_offset, cond);
        auto ins_ind    = mm->add_instruction(make_op("add"), ins_offset, l_ind);

        return mm->add_instruction(make_op("gather", {{"axis", 0}}), rsp_data, ins_ind);
Shucai Xiao's avatar
Shucai Xiao committed
2843
2844
    }

2845
    void parse_from(std::istream& is, std::string name = "")
Paul's avatar
Paul committed
2846
    {
2847
2848
2849
2850
2851
        this->filename   = std::move(name);
        auto parent_path = fs::path(this->filename).parent_path();
        if(not parent_path.empty())
            this->path = parent_path;

Paul's avatar
Paul committed
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2862
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2863
2864
2865
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2882
2883
    void parse_graph(const onnx::GraphProto& graph)
    {
2884
        for(auto&& f : graph.initializer())
2885
        {
2886
            instructions[f.name()] = mm->add_literal(parse_tensor(f));
2887
        }
2888

Paul's avatar
Paul committed
2889
2890
2891
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2892
2893
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2894
            {
2895
2896
2897
2898
2899
2900
2901
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2902
                instructions[name] = mm->add_parameter(name, s);
2903
            }
Paul's avatar
Paul committed
2904
        }
2905
2906

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2907
        {
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2927
                if(skip_unknown_operators)
2928
                    result.push_back(mm->add_instruction(op::unknown{node.op_type()}, args));
2929
2930
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2943
        }
Shucai Xiao's avatar
Shucai Xiao committed
2944

2945
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2946
        auto prog_output = graph.output();
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
2966
        mm->add_return(output_ins);
Paul's avatar
Paul committed
2967
2968
    }

Shucai Xiao's avatar
Shucai Xiao committed
2969
    void parse_undefined(const std::string& name)
2970
    {
Shucai Xiao's avatar
Shucai Xiao committed
2971
2972
        if(!contains(instructions, name))
        {
2973
            auto ins           = mm->add_instruction(make_op("undefined"));
Shucai Xiao's avatar
Shucai Xiao committed
2974
2975
            instructions[name] = ins;
        }
2976
2977
    }

Paul's avatar
Paul committed
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
    static shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 9: return shape::bool_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }

Paul's avatar
Paul committed
3011
3012
3013
3014
3015
3016
3017
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

3018
    literal parse_value(const onnx::AttributeProto& attr) const
Paul's avatar
Paul committed
3019
3020
3021
3022
3023
3024
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
3025
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
3026
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
3027
3028
3029
3030
3031
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
3032
3033
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
3034
3035
        case onnx::AttributeProto::GRAPHS: return {};
        }
Shucai Xiao's avatar
Shucai Xiao committed
3036
        MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
Paul's avatar
Paul committed
3037
3038
    }

3039
    literal parse_tensor(const onnx::TensorProto& t) const
Paul's avatar
Paul committed
3040
3041
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
3042
3043
3044
3045
3046
3047
3048
3049
        if(not t.external_data().empty())
        {
            const std::string& data_file = t.external_data().at(0).value();
            auto raw_buffer              = read_buffer(path + "/" + data_file);
            std::string s(raw_buffer.begin(), raw_buffer.end());
            auto type = get_type(t.data_type());
            return create_literal(type, dims, s.data());
        }
3050
3051
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
3052
            const std::string& s = t.raw_data();
Shucai Xiao's avatar
Shucai Xiao committed
3053
3054
            auto type            = get_type(t.data_type());
            return create_literal(type, dims, s.data());
3055
        }
Shucai Xiao's avatar
Shucai Xiao committed
3056

Paul's avatar
Paul committed
3057
3058
        switch(t.data_type())
        {
Shucai Xiao's avatar
Shucai Xiao committed
3059
3060
3061
3062
        case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
        case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
        case onnx::TensorProto::UINT8:
            return create_literal(shape::uint8_type, dims, t.int32_data());
Paul's avatar
Paul committed
3063
        case onnx::TensorProto::INT16:
Shucai Xiao's avatar
Shucai Xiao committed
3064
3065
3066
            return create_literal(shape::int16_type, dims, t.int32_data());
        case onnx::TensorProto::UINT16:
            return create_literal(shape::uint16_type, dims, t.int32_data());
Paul's avatar
Paul committed
3067
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
3068
            return create_literal(shape::int32_type, dims, t.int32_data());
Shucai Xiao's avatar
Shucai Xiao committed
3069
3070
        case onnx::TensorProto::UINT32:
            return create_literal(shape::uint32_type, dims, t.uint64_data());
Paul's avatar
Paul committed
3071
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
3072
            return create_literal(shape::int64_type, dims, t.int64_data());
Shucai Xiao's avatar
Shucai Xiao committed
3073
3074
        case onnx::TensorProto::UINT64:
            return create_literal(shape::uint64_type, dims, t.uint64_data());
Paul's avatar
Paul committed
3075
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
3076
        {
Khalique's avatar
Khalique committed
3077
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
3078
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
3079
3080
3081
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
3082
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
3083
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
3084
        }
Shucai Xiao's avatar
Shucai Xiao committed
3085
3086
3087
3088
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
3089
3090
3091
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
3092
3093
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Shucai Xiao's avatar
Shucai Xiao committed
3094
        MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
Paul's avatar
Paul committed
3095
3096
    }

Khalique's avatar
Khalique committed
3097
    static literal
3098
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
3099
    {
Khalique's avatar
Khalique committed
3100
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
3101
        if(dims.empty())
3102
            return literal{{shape_type}, data};
3103
3104
3105
        return literal{{shape_type, dims}, data};
    }

3106
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
3107
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
3108
3109
    {
        if(dims.empty())
3110
            return literal{{shape_type}, data.begin(), data.end()};
3111
        return literal{{shape_type, dims}, data.begin(), data.end()};
3112
3113
    }

3114
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims) const
Paul's avatar
Paul committed
3115
    {
Shucai Xiao's avatar
Shucai Xiao committed
3116
        shape::type_t shape_type = get_type(t.tensor_type().elem_type());
3117
3118
3119
3120
3121
        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
3122
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
3123
        auto&& tensor_dims = t.tensor_type().shape().dim();
3124
3125
3126
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
3127
3128
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
3129
                           {
3130
                               if(static_cast<int>(d.dim_value()) <= 0)
3131
3132
3133
                               {
                                   return default_dim_value;
                               }
3134
                               return d.dim_value();
3135
                           }
3136
3137
3138
3139
                           else
                           {
                               return default_dim_value;
                           }
3140
                       });
3141

3142
3143
3144
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
3145
3146
        return {shape_type, dims};
    }
3147

Shucai Xiao's avatar
Shucai Xiao committed
3148
3149
    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
3150
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
3151
3152
3153
3154
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
3155
3156
};

Paul Fultz II's avatar
Paul Fultz II committed
3157
template <class... Ts>
3158
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
3159
3160
{
    onnx_parser parser;
3161
3162
3163
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
3164

3165
    if(options.print_program_on_error)
Paul's avatar
Paul committed
3166
    {
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
3177
    }
3178
    else
Paul's avatar
Paul committed
3179
    {
3180
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
3181
3182
3183
3184
    }
    return std::move(parser.prog);
}

3185
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
3186
3187
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
3188
    return parse_onnx_from(options, input, name);
Paul Fultz II's avatar
Paul Fultz II committed
3189
3190
}

3191
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
3192
3193
3194
3195
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

3196
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
3197
3198
3199
3200
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
3201
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
3202
} // namespace migraphx