onnx.cpp 108 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
14
#include <migraphx/make_op.hpp>
Paul's avatar
Paul committed
15
16
17
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
Paul's avatar
Paul committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gru.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/lstm.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn_last_cell_output.hpp>
#include <migraphx/op/rnn_last_hs_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/undefined.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/op/unsqueeze.hpp>

Paul's avatar
Paul committed
48
namespace migraphx {
Paul's avatar
Paul committed
49
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
50

51
52
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
53
54
55
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
56
57
58
59
60
61
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
62
    using op_func =
63
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
64
65
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
66
67
68
69
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
70
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
71
72

    std::unordered_map<std::string, op_func> ops;
73
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
74
75
76

    onnx_parser()
    {
77
        // sort onnx operator alphabetically through name
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        add_generic_op("Abs", "abs");
        add_generic_op("Acos", "acos");
        add_generic_op("Acosh", "acosh");
        add_generic_op("Asin", "asin");
        add_generic_op("Asinh", "asinh");
        add_generic_op("Atan", "atan");
        add_generic_op("Atanh", "atanh");
        add_generic_op("Ceil", "ceil");
        add_generic_op("Concat", "concat");
        add_generic_op("Cos", "cos");
        add_generic_op("Cosh", "cosh");
        add_generic_op("Erf", "erf");
        add_generic_op("Exp", "exp");
        add_generic_op("Flatten", "flatten");
        add_generic_op("Floor", "floor");
        add_generic_op("Gather", "gather", true);
        add_generic_op("Identity", "identity");
        add_generic_op("Log", "log");
        add_generic_op("LogSoftmax", "logsoftmax");
        add_generic_op("Neg", "neg");
        add_generic_op("Reciprocal", "recip");
        add_generic_op("Relu", "relu");
        add_generic_op("Round", "round");
        add_generic_op("Sigmoid", "sigmoid");
        add_generic_op("Sign", "sign");
        add_generic_op("Sin", "sin");
        add_generic_op("Sinh", "sinh");
        add_generic_op("Softmax", "softmax");
        add_generic_op("Sqrt", "sqrt");
        add_generic_op("Squeeze", "squeeze", true);
        add_generic_op("Tan", "tan");
        add_generic_op("Tanh", "tanh");
        add_generic_op("Unsqueeze", "unsqueeze", true);

        add_binary_op("Add", "add");
        add_binary_op("Div", "div");
        add_binary_op("Mul", "mul");
        add_binary_op("Pow", "pow");
        add_binary_op("PRelu", "prelu");
        add_binary_op("Sub", "sub");

        add_variadic_op("Sum", "add");
        add_variadic_op("Max", "max");
        add_variadic_op("Min", "min");
Paul's avatar
Paul committed
122

123
        add_mem_op("ATen", &onnx_parser::parse_aten);
124
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
125
126
        add_mem_op("ArgMax", "argmax", &onnx_parser::parse_arg_op);
        add_mem_op("ArgMin", "argmin", &onnx_parser::parse_arg_op);
127
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
128
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
129
        add_mem_op("Clip", &onnx_parser::parse_clip);
Paul's avatar
Paul committed
130
        add_mem_op("Constant", &onnx_parser::parse_constant);
131
132
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
133
134
        add_mem_op("Conv", "convolution", &onnx_parser::parse_conv);
        add_mem_op("ConvInteger", "quant_convolution", &onnx_parser::parse_conv);
kahmed10's avatar
kahmed10 committed
135
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
136
        add_mem_op("Dropout", &onnx_parser::parse_dropout);
137
        add_mem_op("Elu", &onnx_parser::parse_elu);
138
        add_mem_op("Equal", &onnx_parser::parse_equal);
139
        add_mem_op("Expand", &onnx_parser::parse_expand);
Shucai Xiao's avatar
Shucai Xiao committed
140
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
141
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
142
143
144
145
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
146
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
147
148
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
        add_mem_op("LRN", &onnx_parser::parse_lrn);
149
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
150
151
        add_mem_op("MatMul", "dot", &onnx_parser::parse_matmul);
        add_mem_op("MatMulInteger", "quant_dot", &onnx_parser::parse_matmul);
152
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
153
        add_mem_op("NonZero", &onnx_parser::parse_nonzero);
kahmed10's avatar
kahmed10 committed
154
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
155
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
156
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
161
162
163
164
165
        add_mem_op("ReduceMax", "reduce_max", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMean", "reduce_mean", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMin", "reduce_min", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceProd", "reduce_prod", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceSum", "reduce_sum", &onnx_parser::parse_reduce_oper);
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
167
168
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
Shucai Xiao's avatar
Shucai Xiao committed
169
        add_mem_op("Selu", &onnx_parser::parse_selu);
170
171
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
172
        add_mem_op("Split", &onnx_parser::parse_split);
kahmed10's avatar
kahmed10 committed
173
        add_mem_op("Tile", &onnx_parser::parse_tile);
174
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
175
        add_mem_op("Upsample", &onnx_parser::parse_upsample);
Shucai Xiao's avatar
Shucai Xiao committed
176
        add_mem_op("Where", &onnx_parser::parse_where);
177
178
179
180
181
182
183

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
184
        // Support name format of all lower case or the first letter capital
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        map_actv_funcs.insert(std::make_pair("tanh", make_op("tanh")));
        map_actv_funcs.insert(std::make_pair("relu", make_op("relu")));
        map_actv_funcs.insert(std::make_pair("sigmoid", make_op("sigmoid")));
        map_actv_funcs.insert(std::make_pair("leakyrelu", make_op("leaky_relu")));
        map_actv_funcs.insert(std::make_pair("elu", make_op("elu")));
    }

    static operation load(const std::string& name, const node_info& info)
    {
        auto op = make_op(name);
        auto v  = op.to_value();
        for(auto&& x : v)
        {
            if(info.attributes.count(x.get_key()) == 0)
                continue;
            literal s = parse_value(info.attributes.at(x.get_key()));
            if(x.is_array())
            {
                std::vector<value> values;
                s.visit([&](auto y) {
                    std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                        return value(z);
                    });
                });
                x = values;
            }
            else
            {
                s.visit([&](auto y) { x = y.front(); });
            }
        }
        op.from_value(v);
        return op;
Paul's avatar
Paul committed
218
219
220
221
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
222
223
224
225
226
227
228
229
230
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
231
232
233
234
235
    {
        ops.emplace(name, f);
    }

    template <class F>
236
    void add_mem_op(const std::string& name, F f)
Paul's avatar
Paul committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
239
240
241
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
242

243
244
245
246
247
248
249
250
251
    template <class F>
    void add_mem_op(const std::string& onnx_name, const std::string& op_name, F f)
    {
        add_op(onnx_name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, onnx_name, op_name, std::forward<decltype(xs)>(xs)...);
        });
    }

    void add_binary_op(const std::string& onnx_name, const std::string& op_name)
252
    {
253
        add_op(onnx_name, [this, op_name](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
254
            if(args.size() != 2)
Paul's avatar
Paul committed
255
                MIGRAPHX_THROW("binary operators should have 2 operands");
256
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
257
            {
258
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
259
260
                if(broadcasted != 0)
                {
261
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
262
263
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
264
                    return prog.add_instruction(make_op(op_name), args[0], l);
265
                }
266
                return prog.add_instruction(make_op(op_name), args);
267
            }
Paul's avatar
Paul committed
268
            else
269
            {
270
                return add_broadcastable_binary_op(args[0], args[1], op_name);
271
272
273
274
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
275
276
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
277
278
279
280
281
282
283
284
285
286
287
288
289
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
290
        if(s0.size() > s1.size())
291
292
293
294
295
296
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
297
298
299
300
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
301
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
302
                           if(a != b and a != 1 and b != 1)
303
                           {
Shucai Xiao's avatar
Shucai Xiao committed
304
305
306
307
308
309
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
310
311
312
313

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
314
315
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
316
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
317
318
319
320
        {
            return ins;
        }

321
        return prog.add_instruction(make_op("contiguous"), ins);
Shucai Xiao's avatar
Shucai Xiao committed
322
323
    }

324
325
    instruction_ref
    add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, const std::string& name)
Khalique's avatar
Khalique committed
326
    {
Khalique's avatar
Khalique committed
327
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
328
329
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
330
331
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
332
            auto out_lens = compute_broadcasted_lens(s0, s1);
333
334
335
336
337
338
339
340
341

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

342
            return prog.add_instruction(make_op(name), l0, l1);
Khalique's avatar
Khalique committed
343
344
345
        }
        else
        {
346
            return prog.add_instruction(make_op(name), {arg0, arg1});
Khalique's avatar
Khalique committed
347
        }
348
349
    }

350
351
352
    void add_generic_op(const std::string& onnx_name,
                        const std::string& op_name,
                        bool contiguous = false)
Paul's avatar
Paul committed
353
    {
354
355
356
357
358
359
360
361
362
363
364
365
        add_op(
            onnx_name,
            [this, op_name, contiguous](const node_info& info, std::vector<instruction_ref> args) {
                auto op = load(op_name, info);
                if(contiguous)
                {
                    std::transform(args.begin(), args.end(), args.begin(), [&](auto arg) {
                        return this->make_contiguous(arg);
                    });
                }
                return prog.add_instruction(op, args);
            });
Paul's avatar
Paul committed
366
367
    }

368
    void add_variadic_op(const std::string& onnx_name, const std::string& op_name)
Khalique's avatar
Khalique committed
369
    {
370
        add_op(onnx_name, [this, op_name](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
371
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
372
373
                                   args.end(),
                                   args.front(),
374
375
                                   [this, op_name](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, op_name);
Khalique's avatar
Khalique committed
376
                                   });
Khalique's avatar
Khalique committed
377
        });
Khalique's avatar
Khalique committed
378
379
    }

kahmed10's avatar
kahmed10 committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
394
            return prog.add_instruction(make_op("add"), curr_ins, bias_bcast);
kahmed10's avatar
kahmed10 committed
395
396
397
398
        }
        return curr_ins;
    }

399
    static bool is_asym_padding(const std::vector<int64_t>& padding)
400
    {
401
402
403
404
405
406
407
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
408
                return true;
409
410
            }
        }
kahmed10's avatar
kahmed10 committed
411
412
        return false;
    }
413

kahmed10's avatar
kahmed10 committed
414
415
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
416
                            value& v,
417
418
                            int count_include_pad = 0,
                            float pad_val         = 0)
kahmed10's avatar
kahmed10 committed
419
420
421
422
423
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

424
        if(is_asym_padding(padding) or count_include_pad == 1)
425
        {
426
427
428
429
430
431
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
432
433
434
        }
        else
        {
435
            v["padding"] = std::vector<size_t>(left_pad_it, right_pad_it);
436
437
438
        }
    }

439
440
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
441
    {
kahmed10's avatar
kahmed10 committed
442
443
444
445
446
447
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

Shucai Xiao's avatar
Shucai Xiao committed
448
        if(args.size() == 3 and args[2]->name() != "undefined")
Khalique's avatar
Khalique committed
449
        {
kahmed10's avatar
kahmed10 committed
450
451
            max_arg  = args[2];
            max_used = true;
Khalique's avatar
Khalique committed
452
        }
Shucai Xiao's avatar
Shucai Xiao committed
453
454

        if(args.size() >= 2 and args[1]->name() != "undefined")
Khalique's avatar
Khalique committed
455
        {
kahmed10's avatar
kahmed10 committed
456
457
458
459
460
461
462
463
464
465
466
467
468
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
469
        }
kahmed10's avatar
kahmed10 committed
470
471

        if(min_used)
Shucai Xiao's avatar
Shucai Xiao committed
472
        {
kahmed10's avatar
kahmed10 committed
473
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
474
        }
kahmed10's avatar
kahmed10 committed
475
476

        if(max_used)
Shucai Xiao's avatar
Shucai Xiao committed
477
        {
kahmed10's avatar
kahmed10 committed
478
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
479
        }
kahmed10's avatar
kahmed10 committed
480
481

        if(min_used and max_used)
Shucai Xiao's avatar
Shucai Xiao committed
482
        {
483
            return prog.add_instruction(make_op("clip"), args[0], min_arg, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
484
485
486
487
488
489
490
        }
        else if(max_used)
        {
            return prog.add_instruction(make_op("min"), args[0], max_arg);
        }
        else if(min_used)
        {
491
            return prog.add_instruction(make_op("max"), args[0], min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
492
493
494
495
496
        }
        else
        {
            return prog.add_instruction(make_op("identity"), args[0]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
497
498
    }

499
500
501
502
    instruction_ref parse_arg_op(const std::string&,
                                 const std::string& op_name,
                                 node_info info,
                                 std::vector<instruction_ref> args)
503
    {
504
        int64_t axis = 0;
505
        if(contains(info.attributes, "axis"))
506
        {
507
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
508
509
        }

Shucai Xiao's avatar
Shucai Xiao committed
510
        int keep_dims = 1;
511
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
512
        {
513
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
514
515
        }

Shucai Xiao's avatar
Shucai Xiao committed
516
        if(keep_dims == 0)
517
        {
518
            auto ins = prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
519
            return prog.add_instruction(op::squeeze{{axis}}, ins);
520
521
522
        }
        else
        {
523
            return prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
524
        }
525
526
    }

kahmed10's avatar
kahmed10 committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

603
604
605
606
607
608
609
610
611
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

612
    void recalc_conv_attributes(value& v, size_t kdims)
613
    {
614
        if(v["padding"].size() != kdims)
615
        {
616
617
            v["padding"].resize(kdims);
            std::fill_n(v["padding"].begin(), kdims, 0);
618
        }
619
        if(v["stride"].size() != kdims)
620
        {
621
622
            v["stride"].resize(kdims);
            std::fill_n(v["stride"].begin(), kdims, 1);
623
        }
624
        if(v["dilation"].size() != kdims)
625
        {
626
627
            v["dilation"].resize(kdims);
            std::fill_n(v["dilation"].begin(), kdims, 1);
628
629
630
        }
    }

631
    static void cal_auto_padding_size(node_info info,
632
                                      value& v,
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
                                      const std::vector<std::size_t>& k_lens,
                                      const std::vector<std::size_t>& dilation,
                                      const std::vector<std::size_t>& in_lens,
                                      std::vector<int64_t>& paddings)
    {
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

        if(!contains(info.attributes, "auto_pad"))
        {
            return;
        }

        auto auto_pad = info.attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            paddings.resize(2 * kdims);

            for(size_t i = 0; i < paddings.size() / 2; i++)
            {
                calculate_padding(i,
                                  paddings,
                                  in_lens[i + 2],
657
                                  v["stride"][i].to<int64_t>(),
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
        }
    }

    static void check_padding_mode(node_info info, const std::string& op_name)
    {
        // ensure pads availabe only when auto_pad is "NOT_SET"
        if(contains(info.attributes, "pads") and contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_" + op_name +
                               ": auto_pad and padding cannot be specified simultaneously");
            }
        }
    }

679
680
681
682
    instruction_ref parse_conv(const std::string&,
                               const std::string& op_name,
                               node_info info,
                               std::vector<instruction_ref> args)
Paul's avatar
Paul committed
683
    {
684
685
        auto op      = make_op(op_name);
        auto values  = op.to_value();
686
687
        auto l0      = args[0];
        auto weights = args[1];
688
689
690
691
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

692
693
694
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV");

695
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
696
        {
697
698
699
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
700
        }
701
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
702
        {
703
704
705
706
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
            check_attr_sizes(
                kdims, values["dilation"].size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
707
        }
708
709
710
711

        std::vector<int64_t> padding;
        if(contains(info.attributes, "pads"))
        {
712
            values["padding"].clear();
713
714
715
716
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
        }

717
        if(contains(info.attributes, "auto_pad"))
718
        {
719
720
            auto weight_lens = weights->get_shape().lens();
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
721
722
723
724
725
726
            cal_auto_padding_size(info,
                                  values,
                                  k_lens,
                                  values["dilation"].to_vector<std::size_t>(),
                                  in_lens,
                                  padding);
Shucai Xiao's avatar
Shucai Xiao committed
727
728
729
730
731
            auto auto_pad = info.attributes["auto_pad"].s();
            if(auto_pad.find("SAME") != std::string::npos)
            {
                values["padding_mode"] = to_value(op::padding_mode_t::same);
            }
732
        }
733
        check_asym_padding(l0, padding, values);
734

735
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
736
        {
737
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
738
        }
kahmed10's avatar
kahmed10 committed
739

740
        recalc_conv_attributes(values, kdims);
741

742
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
743
744
745
746
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

747
748
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
749
    {
750
751
752
        operation op = make_op("deconvolution");
        value values = op.to_value();
        // op::deconvolution op;
kahmed10's avatar
kahmed10 committed
753
754
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
755
756
757
758
759
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

760
761
762
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

763
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
764
        {
765
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
766
767
768
769

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
770
            {
kahmed10's avatar
kahmed10 committed
771
772
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
773
                values["padding"].clear();
kahmed10's avatar
kahmed10 committed
774
775
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
776
                               std::back_inserter(values["padding"]),
kahmed10's avatar
kahmed10 committed
777
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
778
779
            }
        }
780
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
781
        {
782
783
784
785
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(
                kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
786
        }
787
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
788
        {
789
790
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
kahmed10's avatar
kahmed10 committed
791
            check_attr_sizes(
792
                kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
793
        }
794
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
795
        {
796
797
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
798
            {
kahmed10's avatar
kahmed10 committed
799
800
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
801
802
803
804
            }

            if(s.find("SAME") != std::string::npos)
            {
805
                values["padding_mode"] = to_value(op::padding_mode_t::same);
kahmed10's avatar
kahmed10 committed
806
807
808
            }
        }

809
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
810
        {
811
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
812
813
        }

814
        recalc_conv_attributes(values, kdims);
kahmed10's avatar
kahmed10 committed
815

816
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
817
818
        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
819
820
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
821
        {
kahmed10's avatar
kahmed10 committed
822
823
824
825
826
827
828
829
830
831
832
833
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
834

kahmed10's avatar
kahmed10 committed
835
            l1 = prog.add_instruction(op::slice{axes, starts, ends}, l1);
kahmed10's avatar
kahmed10 committed
836
837
        }

838
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
839
        {
kahmed10's avatar
kahmed10 committed
840
841
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
842
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
843
844
845
846
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = prog.add_instruction(op::pad{output_padding}, l1);
kahmed10's avatar
kahmed10 committed
847
848
        }

849
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
850
851
        {
            std::vector<int64_t> output_shape;
852
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
853
854
855
856
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
857
858
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
859
860
861
862
863
864
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
kahmed10's avatar
kahmed10 committed
865
866
867
868
869
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
870
    }
Paul's avatar
Paul committed
871

872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    static void
    tune_padding_to_symmetric(int64_t& left, int64_t& right, const int stride, int64_t& s_start)
    {
        s_start = 0;
        if(left > right)
        {
            right = left;
        }
        else if(left < right)
        {
            auto diff = right - left;
            s_start   = (diff + stride - 1) / stride;
            left      = left + s_start * stride;
            right     = left;
        }
    }

889
    static void tune_padding_size(const value& v,
890
891
892
893
894
                                  std::vector<int64_t>& padding,
                                  int count_include_pad,
                                  std::vector<int64_t>& s_start)
    {
        // maxpooling or count_include_pad is 1, no change is required.
895
        if(v.at("mode").to<std::string>() == "max" or count_include_pad == 1)
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
        {
            return;
        }

        // if padding is symmetric, return directly
        if(!is_asym_padding(padding))
        {
            return;
        }

        // asymmetric padding, make it symmetric
        std::size_t n_dims = padding.size() / 2;
        s_start.resize(n_dims);
        for(std::size_t i = 0; i < n_dims; ++i)
        {
911
912
            tune_padding_to_symmetric(
                padding[i], padding[i + n_dims], v.at("stride")[i].to<int64_t>(), s_start[i]);
913
914
915
        }
    }

916
917
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
918
    {
919
920
921
922
923
        std::string mode = ends_with(name, "MaxPool") ? "max" : "average";
        operation op     = make_op("pooling", {{"mode", mode}});
        value values     = op.to_value();
        auto l0          = args[0];
        auto in_lens     = l0->get_shape().lens();
924
925
926
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
927
        if(starts_with(name, "Global"))
928
        {
929
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
930
        }
931

932
933
        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
Paul's avatar
Paul committed
934
        {
Shucai Xiao's avatar
Shucai Xiao committed
935
            values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
936
        }
937

938
939
940
941
942
943
        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
Paul's avatar
Paul committed
944
        }
945

946
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
947
        {
948
949
950
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
951
        }
952
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
953
        {
954
955
956
957
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
958
        }
959

960
961
962
963
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
964
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
965
966
        if(contains(info.attributes, "pads"))
        {
967
            values["padding"].clear();
968
969
970
971
972
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

973
        if(contains(info.attributes, "auto_pad"))
974
        {
975
            values["padding"].clear();
976
            // return paddings could be empty, then setting to 0 for no padding
977
978
979
980
981
982
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
983
        }
984

985
986
987
988
        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
989
990
        }

991
        if(values["padding"].size() != kdims)
992
        {
993
994
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
995
        }
996

997
        if(values["stride"].size() != kdims)
998
        {
999
1000
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
1001
        }
1002
1003
1004
1005
1006
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
1007
        tune_padding_size(values, paddings, count_include_pad, slice_start);
1008
1009
1010
1011
1012
1013
1014
1015

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
1016
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();
1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }

1027
        check_asym_padding(l0, paddings, values, count_include_pad, pad_val);
1028
        in_lens = l0->get_shape().lens();
1029
1030
        for(size_t i = 0; i < kdims; i++)
        {
1031
1032
            if(values["lengths"][i].to<int64_t>() >
               in_lens[i + 2] + 2 * values["padding"][i].to<int64_t>())
1033
            {
1034
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
1035
1036
            }
        }
1037
        op.from_value(values);
1038
1039
1040
1041
1042
1043
        auto l1 = prog.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = prog.add_instruction(op::slice{axes, slice_start, slice_end}, l1);
1044
1045
        }

1046
        return l1;
Paul's avatar
Paul committed
1047
1048
    }

Paul's avatar
Paul committed
1049
    instruction_ref
1050
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1051
    {
1052
        op::reshape op;
Paul's avatar
Paul committed
1053
1054
        if(args.size() == 1)
        {
1055
            literal s = parse_value(info.attributes.at("shape"));
1056
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1057
1058
1059
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
1060
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1061
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
1062
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1063
        }
1064

Shucai Xiao's avatar
Shucai Xiao committed
1065
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
1066
1067
    }

Shucai Xiao's avatar
Shucai Xiao committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
1118
1119
1120
        auto dim_diff  = prog.add_instruction(make_op("sub"), arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(make_op("mul"), dim_diff, l_stride);
        auto ind       = prog.add_instruction(make_op("add"), l_shape_idx, delta);
Shucai Xiao's avatar
Shucai Xiao committed
1121
1122
1123
1124
1125

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

1126
    instruction_ref
1127
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1128
1129
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1152
        {
1153
            literal s = parse_value(info.attributes.at("axes"));
1154
1155
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1156
1157

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1158
        {
Shucai Xiao's avatar
Shucai Xiao committed
1159
1160
1161
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1162
        }
Shucai Xiao's avatar
Shucai Xiao committed
1163
        else if(contains(info.attributes, "ends"))
1164
        {
1165
1166
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1167
        }
Shucai Xiao's avatar
Shucai Xiao committed
1168
1169
1170
1171
1172
1173
1174
1175

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1176
        {
1177
            literal s = parse_value(info.attributes.at("starts"));
1178
1179
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1180

kahmed10's avatar
kahmed10 committed
1181
1182
1183
1184
1185
1186
1187
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1188
1189
1190
        return prog.add_instruction(op, args[0]);
    }

1191
1192
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1193
    {
1194
        literal v = parse_value(info.attributes.at("value"));
1195
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1196
        if(v.get_shape().elements() == 0)
1197
1198
1199
1200
        {
            return prog.add_literal(literal{});
        }

1201
        auto dim_size = info.attributes.at("value").t().dims_size();
1202
1203
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1204
        {
1205
            migraphx::shape scalar_shape{v.get_shape().type()};
1206
1207
1208
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1209
1210
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1211

Paul's avatar
Paul committed
1212
    instruction_ref
1213
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1214
1215
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1216
        float beta  = 1.0f;
Paul's avatar
Paul committed
1217
1218
        bool transa = false;
        bool transb = false;
1219
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1220
        {
1221
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1222
        }
1223
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1224
        {
1225
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1226
        }
1227
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1228
        {
1229
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1230
        }
1231
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1232
        {
1233
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1234
        }
1235
1236
1237
1238
1239
1240

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1241
1242
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1243
1244
        if(args.size() == 3)
        {
1245
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1246
            {
Shucai Xiao's avatar
Shucai Xiao committed
1247
                auto out_lens   = l1->get_shape().lens();
1248
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1249
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1250
1251
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1252
                {
1253
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1254
                }
1255
1256
                return prog.add_instruction(
                    make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2, l3);
1257
            }
Paul's avatar
Paul committed
1258
        }
1259

1260
        return prog.add_instruction(make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2);
Paul's avatar
Paul committed
1261
1262
    }

1263
1264
1265
1266
    instruction_ref parse_matmul(const std::string&,
                                 const std::string& op_name,
                                 const node_info&,
                                 std::vector<instruction_ref> args)
1267
    {
Shucai Xiao's avatar
Shucai Xiao committed
1268
1269
        auto l0      = args[0];
        auto l1      = args[1];
1270
1271
1272
1273
1274
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1275
        if(l0_lens.size() == 1)
1276
1277
1278
1279
1280
1281
1282
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1283
        if(l1_lens.size() == 1)
1284
1285
1286
1287
1288
1289
1290
1291
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1292
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1293
1294
1295
1296
1297
1298
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1299
            l0_broadcasted_lens = output_lens;
1300
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1301
            l1_broadcasted_lens = output_lens;
1302
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1303
            if(l0_lens != l0_broadcasted_lens)
1304
1305
1306
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1307
            if(l1_lens != l1_broadcasted_lens)
1308
1309
1310
1311
1312
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1313
1314
        auto dot_res =
            prog.add_instruction(make_op(op_name, {{"alpha", 1}, {"beta", 0}}), bl0, bl1);
1315
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1316
        if(is_a_prepended)
1317
1318
1319
1320
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1321
        if(is_b_appended)
1322
1323
1324
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1325

1326
1327
1328
        return dot_res;
    }

1329
    instruction_ref
1330
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1331
    {
Scott Thornton's avatar
Scott Thornton committed
1332
1333
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1334
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1335
        if(contains(info.attributes, "epsilon"))
1336
        {
1337
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1338
        }
1339
        if(contains(info.attributes, "momentum"))
1340
        {
1341
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1342
        }
1343
        if(contains(info.attributes, "spatial"))
1344
        {
1345
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1346
1347
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1348
        }
Paul's avatar
Paul committed
1349
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1350
        return prog.add_instruction(op, std::move(args));
1351
1352
    }

1353
1354
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1355
1356
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
kahmed10's avatar
kahmed10 committed
1357
1358
        // mean = reduce_mean({D1, D2, ... Dk}, x)
        // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2)
kahmed10's avatar
kahmed10 committed
1359
1360

        float epsilon = 1e-5f;
1361
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1362
        {
1363
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1364
1365
1366
1367
1368
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();
kahmed10's avatar
kahmed10 committed
1369
1370
1371
        auto ndims = dims.size();
        assert(ndims >= 2);
        auto kdims = ndims - 2;
kahmed10's avatar
kahmed10 committed
1372

kahmed10's avatar
kahmed10 committed
1373
1374
1375
1376
        std::vector<int64_t> axes(kdims);
        std::iota(axes.begin(), axes.end(), 2);

        auto mean            = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x);
kahmed10's avatar
kahmed10 committed
1377
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
1378
        auto l0              = prog.add_instruction(make_op("sqdiff"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1379
        auto variance        = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), l0);
1380
        auto l1              = prog.add_instruction(make_op("sub"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1381
1382
1383
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
1384
1385
1386
        auto l2              = prog.add_instruction(make_op("add"), variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(make_op("rsqrt"), l2);
        auto l4              = prog.add_instruction(make_op("mul"), l1, l3);
kahmed10's avatar
kahmed10 committed
1387
1388
1389
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
1390
1391
        auto l5         = prog.add_instruction(make_op("mul"), l4, scale_bcast);
        return prog.add_instruction(make_op("add"), l5, bias_bcast);
kahmed10's avatar
kahmed10 committed
1392
1393
    }

1394
1395
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1396
    {
Khalique's avatar
Khalique committed
1397
        float alpha = 0.01; // default alpha val for leaky relu
1398
        if(contains(info.attributes, "alpha"))
1399
        {
1400
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1401
        }
1402
        auto op = make_op("leaky_relu", {{"alpha", alpha}});
1403
1404
1405
        return prog.add_instruction(op, args.front());
    }

1406
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1407
1408
    {
        float alpha = 1.0; // default alpha val for elu
1409
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1410
        {
1411
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1412
        }
1413
        auto op = make_op("elu", {{"alpha", alpha}});
Khalique's avatar
Khalique committed
1414
1415
1416
        return prog.add_instruction(op, args.front());
    }

1417
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1418
1419
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1420
1421
1422
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1423
1424
1425
1426
1427
1428
1429
1430
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1431
1432
1433
1434
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1435
1436
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1437
1438
1439
    {
        float scale = 1.0;
        std::vector<float> bias{};
1440
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1441
        {
1442
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1443
1444
        }

1445
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1446
        {
1447
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1448
1449
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1450
1451
1452
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1453

Shucai Xiao's avatar
Shucai Xiao committed
1454
1455
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1456

1457
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
1458
1459
1460
1461
        auto img_scaled =
            prog.add_instruction(migraphx::make_op("mul"), args.front(), scale_tensor);
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
        return prog.add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1462
    }
Khalique's avatar
Khalique committed
1463

Khalique's avatar
Khalique committed
1464
    instruction_ref
1465
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1466
1467
    {
        std::vector<int64_t> perm{};
1468
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1469
        {
1470
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1471
1472
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1473
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1474
1475
    }

1476
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1477
1478
    {
        std::vector<int64_t> pads{};
1479
1480
1481
1482
1483
1484
1485
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1486
        {
1487
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1488
1489
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1490
1491
1492
1493
1494
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1495
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1496
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1497
        {
1498
            return prog.add_instruction(make_op("identity"), args.front());
1499
        }
1500

kahmed10's avatar
kahmed10 committed
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1530
        {
1531
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1532
        }
1533

Khalique's avatar
Khalique committed
1534
1535
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
Shucai Xiao's avatar
Shucai Xiao committed
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

    instruction_ref
    parse_selu(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        auto type   = args[0]->get_shape().type();
        auto lens   = args[0]->get_shape().lens();
        float alpha = 1.67326f;
        if(contains(info.attributes, "alpha"))
        {
            alpha = info.attributes.at("alpha").f();
        }

        float gamma = 1.0507f;
        if(contains(info.attributes, "gamma"))
        {
            gamma = info.attributes.at("gamma").f();
        }

        auto l_alpha = prog.add_literal({{type, {1}}, {alpha}});
        auto l_gamma = prog.add_literal({{type, {1}}, {gamma / 2.0f}});
        if(lens != std::vector<std::size_t>{1})
        {
            l_alpha =
                prog.add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), l_alpha);
            l_gamma =
                prog.add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), l_gamma);
        }

        auto sign_x = prog.add_instruction(make_op("sign"), args[0]);
        auto exp_x  = prog.add_instruction(make_op("exp"), args[0]);

        auto alpha_ex  = prog.add_instruction(make_op("mul"), l_alpha, exp_x);
        auto aex_alpha = prog.add_instruction(make_op("sub"), alpha_ex, l_alpha);

        auto ins1 = prog.add_instruction(make_op("add"), aex_alpha, args[0]);
        auto ins2 = prog.add_instruction(make_op("sub"), aex_alpha, args[0]);

        auto sign2   = prog.add_instruction(make_op("mul"), sign_x, ins2);
        auto ins_sub = prog.add_instruction(make_op("sub"), ins1, sign2);

        return prog.add_instruction(make_op("mul"), ins_sub, l_gamma);
    }

1579
1580
1581
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1582
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1583
1584
    {
        if(args.size() != 1)
1585
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1598
1599
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1600
1601
1602
1603
1604
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1605
        if(contains(info.attributes, "dtype"))
1606
        {
1607
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1608
        }
Shucai Xiao's avatar
Shucai Xiao committed
1609
        shape::type_t type = get_type(dtype);
1610

1611
        if(contains(info.attributes, "input_as_shape"))
1612
        {
1613
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1614
1615
        }

1616
        if(contains(info.attributes, "value"))
1617
        {
1618
            value = parse_value(info.attributes.at("value")).at<float>();
1619
1620
        }

1621
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1622
        {
1623
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1624
1625
        }

1626
1627
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1628
            if(args.size() != 1)
1629
            {
1630
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1631
1632
            }

1633
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1634
            {
1635
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1636
                               "at the same time");
1637
1638
            }

1639
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1640
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1641

1642
1643
1644
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1645
1646
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1647
1648
1649
        }
        else if(input_as_shape == 0)
        {
1650
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1651
            {
1652
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1653
1654
            }

1655
            literal ls = parse_value(info.attributes.at("shape"));
1656
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1657
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1658
            migraphx::shape s{type, dims};
1659
1660
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1661
1662
1663
        }
        else
        {
1664
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1665
1666
1667
        }
    }

1668
1669
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1670
1671
    {
        literal l_val{};
1672
        if(contains(info.attributes, "value"))
1673
        {
1674
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1675
            if(l_val.get_shape().elements() != 1)
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1687

Shucai Xiao's avatar
Shucai Xiao committed
1688
        if(args.empty())
1689
        {
Shucai Xiao's avatar
Shucai Xiao committed
1690
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1691
1692
1693
        }
        else
        {
1694
1695
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1696
            if(args[0]->get_shape().elements() == 0)
1697
            {
1698
                s = migraphx::shape{type, {1}, {0}};
1699
            }
1700
1701
1702
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1703
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1704

1705
1706
1707
1708
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1709

Shucai Xiao's avatar
Shucai Xiao committed
1710
            literal l_out{};
1711
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1712
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1713
                // l_val contains only one element
1714
                std::vector<val_type> out_vec(s.elements(), val.front());
1715
1716
1717
1718
1719
1720
1721
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1722
    instruction_ref
1723
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1724
    {
Shucai Xiao's avatar
Shucai Xiao committed
1725
        auto in_lens             = args[0]->get_shape().lens();
1726
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1727
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1728
1729
1730
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1731
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1732
1733
    }

Shucai Xiao's avatar
Shucai Xiao committed
1734
    std::vector<instruction_ref>
1735
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1736
1737
    {
        migraphx::shape input_shape = args[0]->get_shape();
1738
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1739

1740
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1741
        {
1742
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1743
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1744
1745
1746
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1747
1748
1749
1750
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1751
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1752
        {
1753
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1754
1755
        }

1756
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1757
1758
        if(direction == "bidirectional")
        {
1759
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1760
1761
1762
        }
        else if(direction == "reverse")
        {
1763
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1764
1765
        }

1766
        std::vector<std::string> vec_names{"tanh"};
1767
        if(contains(info.attributes, "activations"))
1768
        {
1769
            auto names = info.attributes.at("activations").strings();
1770
            vec_names.clear();
1771
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1772
1773
1774
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1775
1776
        }

1777
1778
1779
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1780
        if(name_it != vec_names.end())
1781
1782
1783
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1784

Shucai Xiao's avatar
Shucai Xiao committed
1785
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1786
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1787
        // if only one actv function is provided, we use it in both
1788
        // forward and reverse direction
1789
        if(dirct == op::rnn_direction::bidirectional)
1790
        {
Shucai Xiao's avatar
Shucai Xiao committed
1791
            if(vec_names.size() == 1)
1792
1793
1794
1795
1796
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1797
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1798
1799
1800
1801
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1802

Shucai Xiao's avatar
Shucai Xiao committed
1803
1804
        // To be added later
        float clip = 0.0;
1805
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1806
        {
1807
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1808
1809
        }

1810
1811
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1812
        if(args.size() < 6)
1813
1814
1815
1816
1817
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1818
1819
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1820
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1821

1822
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1823
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1824

Shucai Xiao's avatar
Shucai Xiao committed
1825
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1826
1827
    }

1828
    std::vector<instruction_ref>
1829
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1830
1831
1832
1833
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1834
        if(contains(info.attributes, "hidden_size"))
1835
        {
1836
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1837
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1838
1839
1840
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1841
1842
1843
1844
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1845
        if(contains(info.attributes, "direction"))
1846
        {
1847
            direction = info.attributes.at("direction").s();
1848
1849
        }

1850
        op::rnn_direction dirct = op::rnn_direction::forward;
1851
1852
        if(direction == "bidirectional")
        {
1853
            dirct = op::rnn_direction::bidirectional;
1854
1855
1856
        }
        else if(direction == "reverse")
        {
1857
            dirct = op::rnn_direction::reverse;
1858
1859
        }

1860
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1861
        if(contains(info.attributes, "activations"))
1862
        {
1863
            auto names = info.attributes.at("activations").strings();
1864
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1865
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1866
1867
1868
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1869
1870
        }

1871
        // need 4 activation functions
1872
        if(dirct == op::rnn_direction::bidirectional)
1873
        {
Shucai Xiao's avatar
Shucai Xiao committed
1874
            // 4 activation functions are used in the bidirectional
1875
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1876
1877
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1878
1879
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1880
1881
1882
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1883
            if(vec_names.size() == 1)
1884
            {
1885
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1886
            }
1887
            else if(vec_names.size() == 2)
1888
            {
1889
1890
1891
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1892
            }
1893
            else if(vec_names.size() == 3)
1894
            {
1895
                vec_names.push_back(vec_names.at(2));
1896
1897
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1898
        else
1899
        {
1900
            if(vec_names.size() == 1)
1901
            {
1902
                vec_names.push_back(vec_names.at(0));
1903
1904
1905
            }
        }

1906
1907
1908
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1909
        if(name_it != vec_names.end())
1910
1911
1912
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1913

Shucai Xiao's avatar
Shucai Xiao committed
1914
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1915
1916
1917
1918
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1919
1920

        float clip = 0.0;
1921
        if(contains(info.attributes, "clip"))
1922
        {
1923
            clip = parse_value(info.attributes.at("clip")).at<float>();
1924
1925
1926
        }

        int linear_before_reset = 0;
1927
        if(contains(info.attributes, "linear_before_reset"))
1928
        {
1929
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1930
1931
        }

Shucai Xiao's avatar
Shucai Xiao committed
1932
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1933
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1934
1935
1936
1937
1938
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1939
1940
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1941
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1942
            std::move(args));
1943
1944

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1945
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1946

Shucai Xiao's avatar
Shucai Xiao committed
1947
        return {hidden_states, last_output};
1948
1949
    }

Shucai Xiao's avatar
Shucai Xiao committed
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
2035
    std::vector<instruction_ref>
2036
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2037
2038
2039
2040
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

2041
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
2042
        {
2043
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2044
2045
2046
2047
2048
2049
2050
2051
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
2052
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
2053
        {
2054
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
2055
2056
        }

Shucai Xiao's avatar
Shucai Xiao committed
2057
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2058
2059
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2060
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
2061
2062
2063
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2064
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
2065
        }
Shucai Xiao's avatar
Shucai Xiao committed
2066
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
2067
        {
Shucai Xiao's avatar
Shucai Xiao committed
2068
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2069
2070
2071
2072
2073
2074
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

2075
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
2076
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
2077
        {
2078
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
2079
2080
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
2081
2082
2083
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
2084
2085
        }

Shucai Xiao's avatar
Shucai Xiao committed
2086
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
2087

2088
2089
2090
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2091
        if(name_it != vec_names.end())
2092
2093
2094
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2095
2096

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2097
2098
2099
2100
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
2101
2102

        float clip = 0.0;
2103
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2104
        {
2105
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2106
2107
2108
        }

        int input_forget = 0;
2109
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
2110
        {
2111
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2112
2113
2114
2115
2116
2117
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
2118
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
2119
2120
2121
2122
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
2123
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2124

Shucai Xiao's avatar
Shucai Xiao committed
2125
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2126
2127

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
2128
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2129
2130
2131

        return {hidden_states, last_output, last_cell_output};
    }
2132

2133
2134
2135
2136
    instruction_ref parse_reduce_oper(const std::string&,
                                      const std::string& op_name,
                                      node_info info,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2137
2138
2139
2140
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
2141
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
2142
        std::iota(axes.begin(), axes.end(), 0);
2143
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
2144
2145
        {
            axes.clear();
2146
            auto&& attr_axes = info.attributes["axes"].ints();
2147
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
2148
2149
2150
        }

        int keep_dims = 1;
2151
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
2152
        {
2153
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2154
2155
2156
2157
        }

        if(keep_dims == 1)
        {
2158
            return prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2159
2160
2161
        }
        else
        {
2162
            auto ins = prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
2163
            return prog.add_instruction(op::squeeze{axes}, ins);
2164
2165
        }
    }
2166

Shucai Xiao's avatar
Shucai Xiao committed
2167
    instruction_ref
2168
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2169
    {
2170
2171
        auto abs_ins = prog.add_instruction(make_op("abs"), args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2172
2173
2174
    }

    instruction_ref
2175
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2176
    {
2177
2178
2179
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        auto sum_ins    = parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
        return prog.add_instruction(make_op("sqrt"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2180
2181
    }

2182
2183
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2184
    {
2185
2186
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), std::move(args));
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2187
2188
    }

2189
2190
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2191
    {
2192
2193
2194
        auto exp_ins = prog.add_instruction(make_op("exp"), args[0]);
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), {exp_ins});
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2195
2196
    }

2197
2198
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2199
    {
2200
2201
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2202
2203
    }

Shucai Xiao's avatar
Shucai Xiao committed
2204
    instruction_ref
2205
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
2206
    {
2207
        if(!contains(info.attributes, "to"))
2208
2209
2210
2211
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2212
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2213
        shape::type_t type = get_type(to_type);
Shucai Xiao's avatar
Shucai Xiao committed
2214
        return prog.add_instruction(make_op("convert", {{"target_type", type}}), std::move(args));
2215
    }
Shucai Xiao's avatar
Shucai Xiao committed
2216

2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2270
2271
2272
2273
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2274
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2275
2276
2277
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2278
2279
2280
2281
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2282

Shucai Xiao's avatar
Shucai Xiao committed
2283
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2284
2285
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2286
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2287
2288
        }

Shucai Xiao's avatar
Shucai Xiao committed
2289
2290
2291
2292
2293
2294
2295
2296
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2297
        {
Shucai Xiao's avatar
Shucai Xiao committed
2298
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2299
        }
Shucai Xiao's avatar
Shucai Xiao committed
2300
2301
2302
2303
2304
2305
2306
2307
2308
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
2309
        auto diff          = prog.add_instruction(make_op("sub"), on_val, off_val);
Shucai Xiao's avatar
Shucai Xiao committed
2310
2311
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
2312
2313
        auto l_mul         = prog.add_instruction(make_op("mul"), tr_out, unsq_diff_val);
        return prog.add_instruction(make_op("add"), l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2314
2315
    }

kahmed10's avatar
kahmed10 committed
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
2397
2398
2399
2400
2401
2402
2403
2404
2405
        case reduce_mode_t::sum:
            l0 = prog.add_instruction(make_op("reduce_sum", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::mean:
            l0 = prog.add_instruction(make_op("reduce_mean", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::max:
            l0 = prog.add_instruction(make_op("reduce_max", {{"axes", {0}}}), l0);
            break;
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
    std::vector<instruction_ref>
    parse_dropout(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto out = prog.add_instruction(make_op("identity"), args[0]);
        auto s   = args[0]->get_shape();
        std::vector<int8_t> vec(s.elements(), 1);
        shape mask_s{shape::bool_type, s.lens()};
        auto mask = prog.add_literal(literal(mask_s, vec));

        return {out, mask};
    }

Shucai Xiao's avatar
Shucai Xiao committed
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
    template <class T>
    std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
    {
        std::vector<std::size_t> indices;
        for(std::size_t i = 0; i < data.size(); ++i)
        {
            if(!float_equal(data[i], 0))
                indices.push_back(i);
        }

        return indices;
    }

    instruction_ref
    parse_nonzero(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument data_arg = args.back()->eval();
        check_arg_empty(data_arg, "PARSE_NONZERO: cannot support non-constant input!");

        std::vector<std::size_t> indices;
        data_arg.visit([&](auto val) {
            using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
            std::vector<val_type> vec_data;
            vec_data.assign(val.begin(), val.end());
            indices = this->nonzero_indices(vec_data);
        });

        shape in_s = args[0]->get_shape();
        shape out_s{shape::int64_type, {in_s.lens().size(), indices.size()}};

        std::vector<int64_t> out_data(out_s.elements());
        for(std::size_t i = 0; i < indices.size(); ++i)
        {
            auto idx = in_s.multi(indices[i]);
            for(std::size_t j = 0; j < in_s.lens().size(); ++j)
            {
                out_data[out_s.index({j, i})] = idx[j];
            }
        }

        return prog.add_literal(literal(out_s, out_data));
    }

2479
2480
2481
2482
2483
2484
    instruction_ref
    parse_equal(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto l = add_broadcastable_binary_op(args[0], args[1], "equal");
        if(l->get_shape().type() != shape::bool_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2485
            l = prog.add_instruction(make_op("convert", {{"target_type", shape::bool_type}}), l);
2486
2487
2488
2489
        }
        return l;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
    instruction_ref
    parse_upsample(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode != "nearest")
            {
                MIGRAPHX_THROW("PARSE_UPSAMPLE: only nearest mode is supported!");
            }
        }

        auto arg_scale = args[1]->eval();
        check_arg_empty(arg_scale, "PARSE_UPSAMPLE: only constant scale is supported!");
        std::vector<float> vec_scale;
        arg_scale.visit([&](auto v) { vec_scale.assign(v.begin(), v.end()); });

        auto in_s    = args[0]->get_shape();
        auto in_lens = in_s.lens();
        if(in_lens.size() != vec_scale.size())
        {
            MIGRAPHX_THROW("PARSE_UPSAMPLE: ranks of input and scale are different!");
        }

        std::vector<std::size_t> out_lens(in_lens.size());
        std::transform(in_lens.begin(),
                       in_lens.end(),
                       vec_scale.begin(),
                       out_lens.begin(),
                       [&](auto idx, auto scale) { return static_cast<std::size_t>(idx * scale); });

        std::vector<float> idx_scale(in_lens.size());
        std::transform(
            out_lens.begin(),
            out_lens.end(),
            in_lens.begin(),
            idx_scale.begin(),
            [](auto od, auto id) { return (od == id) ? 1.0f : (id - 1.0f) / (od - 1.0f); });

        shape out_s{in_s.type(), out_lens};
        std::vector<int> ind(out_s.elements());

        // map out_idx to in_idx
        shape_for_each(out_s, [&](auto idx) {
            auto in_idx = idx;
            std::transform(idx.begin(),
                           idx.end(),
                           idx_scale.begin(),
                           in_idx.begin(),
                           // nearest mode
                           [](auto index, auto scale) {
                               return static_cast<std::size_t>(std::round(index * scale));
                           });

            ind[out_s.index(idx)] = static_cast<int64_t>(in_s.index(in_idx));
        });

        // reshape input to one-dimension
        std::vector<int64_t> rsp_lens = {static_cast<int64_t>(in_s.elements())};
        shape ind_s{shape::int32_type, out_lens};
        auto rsp     = prog.add_instruction(make_op("reshape", {{"dims", rsp_lens}}), args[0]);
        auto ins_ind = prog.add_literal(literal(ind_s, ind));
        return prog.add_instruction(make_op("gather", {{"axis", 0}}), rsp, ins_ind);
    }

Shucai Xiao's avatar
Shucai Xiao committed
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
    instruction_ref
    parse_where(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto type = args[1]->get_shape().type();
        // the operation of if cond == 1 select x; else select y,
        // is equivalent to cond * (x - y) + y
        auto cond = prog.add_instruction(make_op("convert", {{"target_type", type}}), args[0]);
        auto diff = add_broadcastable_binary_op(args[1], args[2], "sub");
        auto cd   = add_broadcastable_binary_op(diff, cond, "mul");
        return add_broadcastable_binary_op(cd, args[2], "add");
    }

Paul's avatar
Paul committed
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2579
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2580
2581
2582
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2599
2600
    void parse_graph(const onnx::GraphProto& graph)
    {
2601
        for(auto&& f : graph.initializer())
2602
2603
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2604
2605
2606
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2607
2608
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2609
            {
2610
2611
2612
2613
2614
2615
2616
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2617
2618
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2619
        }
2620
2621

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2622
        {
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2642
2643
2644
2645
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2658
        }
Shucai Xiao's avatar
Shucai Xiao committed
2659

2660
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2661
        auto prog_output = graph.output();
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2682
2683
    }

Shucai Xiao's avatar
Shucai Xiao committed
2684
    void parse_undefined(const std::string& name)
2685
    {
Shucai Xiao's avatar
Shucai Xiao committed
2686
2687
2688
2689
2690
        if(!contains(instructions, name))
        {
            auto ins           = prog.add_instruction(op::undefined{});
            instructions[name] = ins;
        }
2691
2692
    }

Paul's avatar
Paul committed
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
    static shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 9: return shape::bool_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }

Paul's avatar
Paul committed
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2740
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2741
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2742
2743
2744
2745
2746
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2747
2748
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2749
2750
        case onnx::AttributeProto::GRAPHS: return {};
        }
Shucai Xiao's avatar
Shucai Xiao committed
2751
        MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
Paul's avatar
Paul committed
2752
2753
2754
2755
2756
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2757
2758
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2759
            const std::string& s = t.raw_data();
Shucai Xiao's avatar
Shucai Xiao committed
2760
2761
            auto type            = get_type(t.data_type());
            return create_literal(type, dims, s.data());
2762
        }
Shucai Xiao's avatar
Shucai Xiao committed
2763

Paul's avatar
Paul committed
2764
2765
        switch(t.data_type())
        {
Shucai Xiao's avatar
Shucai Xiao committed
2766
2767
2768
2769
        case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
        case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
        case onnx::TensorProto::UINT8:
            return create_literal(shape::uint8_type, dims, t.int32_data());
Paul's avatar
Paul committed
2770
        case onnx::TensorProto::INT16:
Shucai Xiao's avatar
Shucai Xiao committed
2771
2772
2773
            return create_literal(shape::int16_type, dims, t.int32_data());
        case onnx::TensorProto::UINT16:
            return create_literal(shape::uint16_type, dims, t.int32_data());
Paul's avatar
Paul committed
2774
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
2775
            return create_literal(shape::int32_type, dims, t.int32_data());
Shucai Xiao's avatar
Shucai Xiao committed
2776
2777
        case onnx::TensorProto::UINT32:
            return create_literal(shape::uint32_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2778
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2779
            return create_literal(shape::int64_type, dims, t.int64_data());
Shucai Xiao's avatar
Shucai Xiao committed
2780
2781
        case onnx::TensorProto::UINT64:
            return create_literal(shape::uint64_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2782
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2783
        {
Khalique's avatar
Khalique committed
2784
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2785
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2786
2787
2788
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2789
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2790
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2791
        }
Shucai Xiao's avatar
Shucai Xiao committed
2792
2793
2794
2795
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2796
2797
2798
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2799
2800
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2801
        MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
Paul's avatar
Paul committed
2802
2803
    }

Khalique's avatar
Khalique committed
2804
    static literal
2805
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2806
    {
Khalique's avatar
Khalique committed
2807
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2808
        if(dims.empty())
2809
            return literal{{shape_type}, data};
2810
2811
2812
        return literal{{shape_type, dims}, data};
    }

2813
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2814
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2815
2816
    {
        if(dims.empty())
2817
            return literal{{shape_type}, data.begin(), data.end()};
2818
        return literal{{shape_type, dims}, data.begin(), data.end()};
2819
2820
    }

2821
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2822
    {
Shucai Xiao's avatar
Shucai Xiao committed
2823
        shape::type_t shape_type = get_type(t.tensor_type().elem_type());
2824
2825
2826
2827
2828
        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2829
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2830
        auto&& tensor_dims = t.tensor_type().shape().dim();
2831
2832
2833
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2834
2835
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2836
                           {
2837
                               if(static_cast<int>(d.dim_value()) <= 0)
2838
2839
2840
                               {
                                   return default_dim_value;
                               }
2841
                               return d.dim_value();
2842
                           }
2843
2844
2845
2846
                           else
                           {
                               return default_dim_value;
                           }
2847
                       });
2848

2849
2850
2851
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2852
2853
        return {shape_type, dims};
    }
2854

Shucai Xiao's avatar
Shucai Xiao committed
2855
2856
    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2857
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2858
2859
2860
2861
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2862
2863
};

Paul Fultz II's avatar
Paul Fultz II committed
2864
template <class... Ts>
2865
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2866
2867
{
    onnx_parser parser;
2868
2869
2870
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2871

2872
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2873
    {
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2884
    }
2885
    else
Paul's avatar
Paul committed
2886
    {
2887
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2888
2889
2890
2891
    }
    return std::move(parser.prog);
}

2892
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2893
2894
2895
2896
2897
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2898
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2899
2900
2901
2902
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2903
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2904
2905
2906
2907
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2908
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2909
} // namespace migraphx