onnx.cpp 87.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Paul's avatar
Paul committed
20
21

namespace migraphx {
Paul's avatar
Paul committed
22
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
23

24
25
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
26
27
28
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
29
30
31
32
33
34
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
35
    using op_func =
36
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
37
38
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
39
40
41
42
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
43
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
44
45

    std::unordered_map<std::string, op_func> ops;
46
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
47
48
49

    onnx_parser()
    {
50
        // sort onnx operator alphabetically through name
Khalique's avatar
Khalique committed
51
        add_generic_op("Abs", op::abs{});
52
53
54
55
56
57
58
59
60
        add_generic_op("Acos", op::acos{});
        add_generic_op("Acosh", op::acosh{});
        add_generic_op("Asin", op::asin{});
        add_generic_op("Asinh", op::asinh{});
        add_generic_op("Atan", op::atan{});
        add_generic_op("Atanh", op::atanh{});
        add_generic_op("Ceil", op::ceil{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Cosh", op::cosh{});
Shucai Xiao's avatar
Shucai Xiao committed
61
        add_generic_op("Erf", op::erf{});
62
        add_generic_op("Exp", op::exp{});
Khalique's avatar
Khalique committed
63
        add_generic_op("Dropout", op::identity{});
64
65
        add_generic_op("Log", op::log{});
        add_generic_op("Floor", op::floor{});
Khalique's avatar
Khalique committed
66
        add_generic_op("Identity", op::identity{});
kahmed10's avatar
kahmed10 committed
67
        add_generic_op("Reciprocal", op::recip{});
68
69
70
71
        add_generic_op("Relu", op::relu{});
        add_generic_op("Round", op::round{});
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Sign", op::sign{});
Shucai Xiao's avatar
Shucai Xiao committed
72
        add_generic_op("Sin", op::sin{});
73
        add_generic_op("Sinh", op::sinh{});
74
        add_generic_op("Sqrt", op::sqrt{});
75
76
        add_generic_op("Tan", op::tan{});
        add_generic_op("Tanh", op::tanh{});
Paul's avatar
Paul committed
77

Khalique's avatar
Khalique committed
78
79
80
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
Shucai Xiao's avatar
Shucai Xiao committed
81
        add_binary_op("Pow", op::pow{});
Shucai Xiao's avatar
Shucai Xiao committed
82
        add_binary_op("PRelu", op::prelu{});
83
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
84

Khalique's avatar
Khalique committed
85
86
87
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
88

89
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
90
91
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
92
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
93
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
94
        add_mem_op("Clip", &onnx_parser::parse_clip);
95
        add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
96
        add_mem_op("Constant", &onnx_parser::parse_constant);
97
98
99
100
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
        add_mem_op("Conv", &onnx_parser::parse_conv<op::convolution>);
        add_mem_op("ConvInteger", &onnx_parser::parse_conv<op::quant_convolution>);
kahmed10's avatar
kahmed10 committed
101
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
102
103
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
104
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
105
        add_mem_op("Gather", &onnx_parser::parse_gather);
Paul's avatar
Paul committed
106
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
107
108
109
110
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
111
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
112
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
113
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
114
115
116
117
        add_mem_op("LRN", &onnx_parser::parse_lrn);
        add_mem_op("MatMul", &onnx_parser::parse_matmul<op::dot>);
        add_mem_op("MatMulInteger", &onnx_parser::parse_matmul<op::quant_dot>);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
kahmed10's avatar
kahmed10 committed
118
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
Shucai Xiao's avatar
Shucai Xiao committed
119
120
121
122
123
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
        add_mem_op("ReduceMax", &onnx_parser::parse_reduce_oper<op::reduce_max>);
Shucai Xiao's avatar
Shucai Xiao committed
124
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
Shucai Xiao's avatar
Shucai Xiao committed
125
        add_mem_op("ReduceMin", &onnx_parser::parse_reduce_oper<op::reduce_min>);
Shucai Xiao's avatar
Shucai Xiao committed
126
127
128
        add_mem_op("ReduceProd", &onnx_parser::parse_reduce_oper<op::reduce_prod>);
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
129
130
131
132
133
134
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Pad", &onnx_parser::parse_pad);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
135
        add_mem_op("Split", &onnx_parser::parse_split);
136
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
kahmed10's avatar
kahmed10 committed
137
        add_mem_op("Tile", &onnx_parser::parse_tile);
138
139
140
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
141
142
143
144
145
146
147

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
148
149
150
151
152
153
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
154
155
156
157
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
158
159
160
161
162
163
164
165
166
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
167
168
169
170
171
172
173
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
174
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
175
176
177
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
178

179
    template <class T>
Khalique's avatar
Khalique committed
180
    void add_binary_op(std::string name, T x)
181
    {
182
        add_op(name, [this, x](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
183
            if(args.size() != 2)
Paul's avatar
Paul committed
184
                MIGRAPHX_THROW("binary operators should have 2 operands");
185
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
186
            {
187
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
188
189
                if(broadcasted != 0)
                {
190
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
193
194
                    return prog.add_instruction(x, args[0], l);
                }
195
                return prog.add_instruction(x, args);
196
            }
Paul's avatar
Paul committed
197
            else
198
            {
Khalique's avatar
Khalique committed
199
                return add_broadcastable_binary_op(args[0], args[1], x);
200
201
202
203
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
204
205
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
206
207
208
209
210
211
212
213
214
215
216
217
218
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
219
        if(s0.size() > s1.size())
220
221
222
223
224
225
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
226
227
228
229
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
230
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
231
                           if(a != b and a != 1 and b != 1)
232
                           {
Shucai Xiao's avatar
Shucai Xiao committed
233
234
235
236
237
238
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
239
240
241
242

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
243
244
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
245
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
246
247
248
249
250
251
252
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
253
254
255
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
256
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
257
258
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
259
260
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
261
            auto out_lens = compute_broadcasted_lens(s0, s1);
262
263
264
265
266
267
268
269
270

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

Khalique's avatar
Khalique committed
271
272
273
274
275
276
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
277
278
    }

Paul's avatar
Paul committed
279
    template <class T>
Paul's avatar
Paul committed
280
281
    void add_generic_op(std::string name, T x)
    {
282
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
283
284
285
286
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
287
    template <class T>
Khalique's avatar
Khalique committed
288
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
289
    {
290
        add_op(name, [this, x](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
291
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
292
293
294
295
296
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
297
        });
Khalique's avatar
Khalique committed
298
299
    }

kahmed10's avatar
kahmed10 committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
            return prog.add_instruction(op::add{}, curr_ins, bias_bcast);
        }
        return curr_ins;
    }

319
320
    template <class Op>
    void check_asym_padding(instruction_ref& ins,
321
                            const std::vector<int64_t>& padding,
322
323
324
325
326
                            Op& op,
                            float pad_val = 0)
    {
        if(padding[0] != padding[2] || padding[1] != padding[3])
        {
327
328
329
            ins = prog.add_instruction(
                op::pad{{0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]}, pad_val},
                ins);
330
331
332
333
334
335
336
337
        }
        else
        {
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
        }
    }

338
339
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
340
    {
kahmed10's avatar
kahmed10 committed
341
342
343
344
345
346
347
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
348
        {
kahmed10's avatar
kahmed10 committed
349
350
351
352
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
353
        }
kahmed10's avatar
kahmed10 committed
354
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
355
        {
kahmed10's avatar
kahmed10 committed
356
357
358
359
360
361
362
363
364
365
366
367
368
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
369
        }
kahmed10's avatar
kahmed10 committed
370
371
372
373
374
375
376
377
378
379
380
381
382

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
            return prog.add_instruction(op::clip{}, args[0], min_arg, max_arg);
        if(min_used)
            return prog.add_instruction(op::max{}, args[0], min_arg);

        return prog.add_instruction(op::identity{}, args[0]);
Khalique's avatar
Khalique committed
383
384
    }

Shucai Xiao's avatar
Shucai Xiao committed
385
    template <class Op>
386
387
    instruction_ref
    parse_softmax(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
388
    {
389
        int64_t axis = 1;
390
        if(contains(info.attributes, "axis"))
391
        {
392
            axis = parse_value(info.attributes.at("axis")).at<int>();
393
394
        }

395
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
396
397
    }

Shucai Xiao's avatar
Shucai Xiao committed
398
    template <class Op>
399
400
    instruction_ref
    parse_arg_op(const std::string&, node_info info, std::vector<instruction_ref> args)
401
    {
402
        int64_t axis = 0;
403
        if(contains(info.attributes, "axis"))
404
        {
405
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
406
407
        }

Shucai Xiao's avatar
Shucai Xiao committed
408
        int keep_dims = 1;
409
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
410
        {
411
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
412
413
        }

Shucai Xiao's avatar
Shucai Xiao committed
414
        if(keep_dims == 0)
415
        {
416
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
417
            return prog.add_instruction(op::squeeze{{axis}}, ins);
418
419
420
        }
        else
        {
421
            return prog.add_instruction(Op{axis}, std::move(args));
422
        }
423
424
    }

425
426
    template <class Op>
    instruction_ref process_auto_pad_attribute(instruction_ref ins,
427
                                               node_info info,
428
                                               Op& op,
429
430
431
432
                                               std::array<std::size_t, 2> k_lens,
                                               std::array<std::size_t, 2> dilation,
                                               const std::vector<std::size_t>& in_lens,
                                               float value = 0.0f)
433
    {
434
        if(!contains(info.attributes, "auto_pad"))
435
436
437
438
        {
            return ins;
        }

439
        auto auto_pad = info.attributes["auto_pad"].s();
440
441
        if(auto_pad.find("SAME") != std::string::npos)
        {
442
443
444
445
446
447
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            std::vector<int64_t> padding(in_lens.size());
            calculate_padding(
                0, padding, in_lens[2], op.stride[0], dilation[0], k_lens[0], is_same_upper);
            calculate_padding(
                1, padding, in_lens[3], op.stride[1], dilation[1], k_lens[1], is_same_upper);
448

449
            check_asym_padding(ins, padding, op, value);
450
451
452
453
454
        }

        return ins;
    }

kahmed10's avatar
kahmed10 committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

531
    template <class Op>
Paul's avatar
Paul committed
532
    instruction_ref
533
    parse_conv(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
534
    {
535
        Op op;
536
537
        auto l0      = args[0];
        auto weights = args[1];
538
        std::vector<int64_t> padding;
539
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
540
        {
541
            if(contains(info.attributes, "auto_pad"))
542
            {
543
544
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
545
                {
546
547
                    MIGRAPHX_THROW(
                        "PARSE_CONV: auto_pad and padding cannot be specified simultaneously");
548
                }
549
            }
550
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
551
            if(padding.size() != 4)
552
            {
553
                MIGRAPHX_THROW("PARSE_CONV: padding should have 4 values");
554
            }
555
            check_asym_padding(l0, padding, op);
Paul's avatar
Paul committed
556
        }
557
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
558
        {
559
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
560
        }
561
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
562
        {
563
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
564
        }
565
        if(contains(info.attributes, "auto_pad"))
566
        {
567
            auto s = info.attributes["auto_pad"].s();
wsttiger's avatar
fixes  
wsttiger committed
568
            if(s.find("SAME") != std::string::npos)
569
            {
570
571
572
573
574
575
                op.padding_mode                 = op::padding_mode_t::same;
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
576
                padding.resize(input_dims.size());
577
578
579
580
581
582
                calculate_padding(
                    0, padding, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(
                    1, padding, input_dims[3], op.stride[1], op.dilation[1], weight_w);

                check_asym_padding(l0, padding, op);
583
            }
584
585
586
587
588

            auto in_lens                      = args[0]->get_shape().lens();
            auto weight_lens                  = args[1]->get_shape().lens();
            std::array<std::size_t, 2> k_lens = {weight_lens[2], weight_lens[3]};
            l0 = process_auto_pad_attribute(l0, info, op, k_lens, op.dilation, in_lens);
589
        }
590
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
591
        {
592
            op.group = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
593
        }
kahmed10's avatar
kahmed10 committed
594
595
596
597
598

        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

599
600
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
601
602
603
604
605
    {
        op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asymm_padding = false;
606
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
607
        {
608
            if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
609
            {
610
611
                auto s = info.attributes["auto_pad"].s();
                if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
612
613
614
615
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
            }
616
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
            if(padding.size() != 4)
            {
                MIGRAPHX_THROW("padding should have 4 values");
            }
            if(padding[0] != padding[2] || padding[1] != padding[3])
            {
                asymm_padding = true;
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
631
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
632
        {
633
            copy(info.attributes["strides"].ints(), op.stride.begin());
kahmed10's avatar
kahmed10 committed
634
        }
635
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
636
        {
637
            copy(info.attributes["dilations"].ints(), op.dilation.begin());
Paul's avatar
Paul committed
638
        }
639
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
640
        {
641
642
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
643
644
645
646
647
648
649
650
651
652
            {
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }
        }

653
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
654
        {
655
            op.group = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
        }

        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape{dims[2], dims[3]};
        if(asymm_padding)
        {
            op::slice slice_op;
            slice_op.axes   = {0, 1, 2, 3};
            slice_op.starts = {0, 0, 0 + padding[0], 0 + padding[1]};
            slice_op.ends   = {
                dims[0], dims[1], curr_shape[0] - padding[2], curr_shape[1] - padding[3]};

            l1 = prog.add_instruction(slice_op, l1);
        }

672
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
673
674
        {
            std::vector<int64_t> output_padding;
675
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
676
677
678
679
            output_padding = {0, 0, 0, 0, 0, 0, output_padding[0], output_padding[1]};
            l1             = prog.add_instruction(op::pad{output_padding}, l1);
        }

680
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
681
682
        {
            std::vector<int64_t> output_shape;
683
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
            dims       = to_int64_vector(l1->get_shape().lens());
            curr_shape = {dims[2], dims[3]};
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding = {0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       0,
                                                       output_shape[0] - curr_shape[0],
                                                       output_shape[1] - curr_shape[1]};
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
701
    }
Paul's avatar
Paul committed
702

703
704
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
705
    {
Khalique's avatar
Khalique committed
706
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
707
        auto l0 = args[0];
Khalique's avatar
Khalique committed
708
        if(starts_with(name, "Global"))
709
        {
Khalique's avatar
Khalique committed
710
711
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
712
        }
713

714
        if(contains(info.attributes, "pads"))
Paul's avatar
Paul committed
715
        {
716
            if(contains(info.attributes, "auto_pad"))
717
            {
718
                auto s = info.attributes["auto_pad"].s();
719
720
721
722
723
724
725
                if(to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW(
                        "PARSE_POOLING: auto_pad and padding cannot be specified simultaneously");
                }
            }

726
            std::vector<std::int64_t> padding;
727
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
728
            if(padding.size() != 4)
729
            {
730
                MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values");
731
            }
732
733
734
735
            float pad_val = 0;
            if(op.mode == "max")
                pad_val = std::numeric_limits<float>::lowest();
            check_asym_padding(l0, padding, op, pad_val);
Paul's avatar
Paul committed
736
        }
737

738
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
739
        {
740
            copy(info.attributes["strides"].ints(), op.stride.begin());
Paul's avatar
Paul committed
741
        }
742
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
743
        {
744
            copy(info.attributes["kernel_shape"].ints(), op.lengths.begin());
Paul's avatar
Paul committed
745
        }
746

747
        if(contains(info.attributes, "auto_pad"))
748
        {
749
750
751
752
753
754
            auto s = info.attributes["auto_pad"].s();
            if(s.find("SAME") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::same;
            }

755
            auto in_lens = args[0]->get_shape().lens();
756
757
758
759
760
761
762
763
            float val    = 0.0f;
            // MaxPool
            if(op.mode == "max")
            {
                val = std::numeric_limits<float>::lowest();
            }

            l0 = process_auto_pad_attribute(l0, info, op, op.lengths, {1, 1}, in_lens, val);
764
765
        }

766
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
767
768
    }

Paul's avatar
Paul committed
769
    instruction_ref
770
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
771
    {
772
        op::reshape op;
Paul's avatar
Paul committed
773
774
        if(args.size() == 1)
        {
775
            literal s = parse_value(info.attributes.at("shape"));
776
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
777
778
779
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
780
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
781
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
782
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
783
        }
784

Shucai Xiao's avatar
Shucai Xiao committed
785
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
786
787
    }

Paul's avatar
Paul committed
788
    instruction_ref
789
    parse_flatten(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
790
    {
791
        int64_t axis = 1;
792
        if(contains(info.attributes, "axis"))
Paul's avatar
Paul committed
793
        {
794
            axis = parse_value(info.attributes.at("axis")).at<int>();
Paul's avatar
Paul committed
795
        }
796
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
797
798
    }

799
    instruction_ref
800
    parse_squeeze(const std::string&, node_info info, std::vector<instruction_ref> args)
801
802
    {
        op::squeeze op;
803
        literal s = parse_value(info.attributes.at("axes"));
804
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
805
        return prog.add_instruction(op, make_contiguous(args[0]));
806
807
808
    }

    instruction_ref
809
    parse_unsqueeze(const std::string&, node_info info, std::vector<instruction_ref> args)
810
811
    {
        op::unsqueeze op;
812
        literal s = parse_value(info.attributes.at("axes"));
813
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
814
        return prog.add_instruction(op, make_contiguous(args[0]));
815
816
    }

Scott Thornton's avatar
Scott Thornton committed
817
    instruction_ref
818
    parse_concat(const std::string&, node_info info, std::vector<instruction_ref> args)
Scott Thornton's avatar
Scott Thornton committed
819
    {
Shucai Xiao's avatar
Shucai Xiao committed
820
        // change to hande axis to be negative values
821
        if(!contains(info.attributes, "axis"))
Shucai Xiao's avatar
Shucai Xiao committed
822
823
824
825
        {
            MIGRAPHX_THROW("PARSE_CONCAT: attribute axis is required!");
        }

826
        int axis = parse_value(info.attributes.at("axis")).at<int>();
Scott Thornton's avatar
Scott Thornton committed
827
828
829
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
830

831
    instruction_ref
832
    parse_gather(const std::string&, node_info info, std::vector<instruction_ref> args)
833
    {
834
        int axis = 0;
835
        if(contains(info.attributes, "axis"))
836
        {
837
            axis = parse_value(info.attributes.at("axis")).at<int>();
838
        }
839

840
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
841
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
842
843
    }

844
    instruction_ref
845
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
846
847
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
870
        {
871
            literal s = parse_value(info.attributes.at("axes"));
872
873
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
874
875

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
876
        {
Shucai Xiao's avatar
Shucai Xiao committed
877
878
879
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
880
        }
Shucai Xiao's avatar
Shucai Xiao committed
881
        else if(contains(info.attributes, "ends"))
882
        {
883
884
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
885
        }
Shucai Xiao's avatar
Shucai Xiao committed
886
887
888
889
890
891
892
893

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
894
        {
895
            literal s = parse_value(info.attributes.at("starts"));
896
897
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
898

kahmed10's avatar
kahmed10 committed
899
900
901
902
903
904
905
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

906
907
908
        return prog.add_instruction(op, args[0]);
    }

909
910
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
911
    {
912
        literal v = parse_value(info.attributes.at("value"));
913
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
914
        if(v.get_shape().elements() == 0)
915
916
917
918
        {
            return prog.add_literal(literal{});
        }

919
        auto dim_size = info.attributes.at("value").t().dims_size();
920
921
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
922
        {
923
            migraphx::shape scalar_shape{v.get_shape().type()};
924
925
926
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
927
928
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
929

Paul's avatar
Paul committed
930
    instruction_ref
931
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
932
933
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
934
        float beta  = 1.0f;
Paul's avatar
Paul committed
935
936
        bool transa = false;
        bool transb = false;
937
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
938
        {
939
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
940
        }
941
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
942
        {
943
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
944
        }
945
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
946
        {
947
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
948
        }
949
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
950
        {
951
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
952
        }
953
954
955
956
957
958

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

959
960
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
961
962
        if(args.size() == 3)
        {
963
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
964
            {
Shucai Xiao's avatar
Shucai Xiao committed
965
                auto out_lens   = l1->get_shape().lens();
966
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
967
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
968
969
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
970
                {
971
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
972
                }
973
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
974
            }
Paul's avatar
Paul committed
975
        }
976
977

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
978
979
    }

980
    template <class Op>
981
    instruction_ref
982
    parse_matmul(const std::string&, const node_info&, std::vector<instruction_ref> args)
983
    {
Shucai Xiao's avatar
Shucai Xiao committed
984
985
        auto l0      = args[0];
        auto l1      = args[1];
986
987
988
989
990
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
991
        if(l0_lens.size() == 1)
992
993
994
995
996
997
998
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
999
        if(l1_lens.size() == 1)
1000
1001
1002
1003
1004
1005
1006
1007
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1008
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1009
1010
1011
1012
1013
1014
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1015
            l0_broadcasted_lens = output_lens;
1016
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1017
            l1_broadcasted_lens = output_lens;
1018
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1019
            if(l0_lens != l0_broadcasted_lens)
1020
1021
1022
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1023
            if(l1_lens != l1_broadcasted_lens)
1024
1025
1026
1027
1028
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1029
        auto dot_res     = prog.add_instruction(Op{1, 0}, bl0, bl1);
1030
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1031
        if(is_a_prepended)
1032
1033
1034
1035
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1036
        if(is_b_appended)
1037
1038
1039
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1040

1041
1042
1043
        return dot_res;
    }

1044
    instruction_ref
1045
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1046
    {
Scott Thornton's avatar
Scott Thornton committed
1047
1048
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1049
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1050
        if(contains(info.attributes, "epsilon"))
1051
        {
1052
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1053
        }
1054
        if(contains(info.attributes, "momentum"))
1055
        {
1056
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1057
        }
1058
        if(contains(info.attributes, "spatial"))
1059
        {
1060
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1061
1062
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1063
        }
Paul's avatar
Paul committed
1064
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1065
        return prog.add_instruction(op, std::move(args));
1066
1067
    }

1068
1069
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1070
1071
1072
1073
1074
1075
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
1076
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1077
        {
1078
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

        auto mean            = prog.add_instruction(op::reduce_mean{{2, 3}}, x);
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
        auto l0              = prog.add_instruction(op::sqdiff{}, x, mean_bcast);
        auto variance        = prog.add_instruction(op::reduce_mean{{2, 3}}, l0);
        auto l1              = prog.add_instruction(op::sub{}, x, mean_bcast);
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
        auto l2              = prog.add_instruction(op::add{}, variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(op::rsqrt{}, l2);
        auto l4              = prog.add_instruction(op::mul{}, l1, l3);
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
        auto l5         = prog.add_instruction(op::mul{}, l4, scale_bcast);
        return prog.add_instruction(op::add{}, l5, bias_bcast);
    }

1103
1104
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1105
    {
Khalique's avatar
Khalique committed
1106
        float alpha = 0.01; // default alpha val for leaky relu
1107
        if(contains(info.attributes, "alpha"))
1108
        {
1109
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1110
1111
1112
1113
1114
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1115
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1116
1117
    {
        float alpha = 1.0; // default alpha val for elu
1118
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1119
        {
1120
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1121
1122
1123
1124
1125
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

1126
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1127
1128
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1129
1130
1131
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1132
1133
1134
1135
1136
1137
1138
1139
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1140
1141
1142
1143
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1144
1145
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1146
1147
1148
    {
        float scale = 1.0;
        std::vector<float> bias{};
1149
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1150
        {
1151
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1152
1153
        }

1154
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1155
        {
1156
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1157
1158
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1159
1160
1161
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1162

Shucai Xiao's avatar
Shucai Xiao committed
1163
1164
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1165

1166
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
1167
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
1168
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
1169
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1170
    }
Khalique's avatar
Khalique committed
1171

Khalique's avatar
Khalique committed
1172
    instruction_ref
1173
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1174
1175
    {
        std::vector<int64_t> perm{};
1176
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1177
        {
1178
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1179
1180
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1181
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1182
1183
    }

1184
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1185
1186
    {
        std::vector<int64_t> pads{};
1187
1188
1189
1190
1191
1192
1193
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1194
        {
1195
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1196
1197
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1198
1199
1200
1201
1202
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1203
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1204
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1205
1206
1207
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
1208

kahmed10's avatar
kahmed10 committed
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1238
        {
1239
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1240
        }
1241

Khalique's avatar
Khalique committed
1242
1243
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1244
1245
1246
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1247
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1248
1249
    {
        if(args.size() != 1)
1250
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1263
1264
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1265
1266
1267
1268
1269
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1270
        if(contains(info.attributes, "dtype"))
1271
        {
1272
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1273
        }
Shucai Xiao's avatar
Shucai Xiao committed
1274
        shape::type_t type = get_type(dtype);
1275

1276
        if(contains(info.attributes, "input_as_shape"))
1277
        {
1278
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1279
1280
        }

1281
        if(contains(info.attributes, "value"))
1282
        {
1283
            value = parse_value(info.attributes.at("value")).at<float>();
1284
1285
        }

1286
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1287
        {
1288
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1289
1290
        }

1291
1292
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1293
            if(args.size() != 1)
1294
            {
1295
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1296
1297
            }

1298
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1299
            {
1300
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1301
                               "at the same time");
1302
1303
            }

1304
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1305
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1306

1307
1308
1309
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1310
1311
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1312
1313
1314
        }
        else if(input_as_shape == 0)
        {
1315
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1316
            {
1317
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1318
1319
            }

1320
            literal ls = parse_value(info.attributes.at("shape"));
1321
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1322
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1323
            migraphx::shape s{type, dims};
1324
1325
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1326
1327
1328
        }
        else
        {
1329
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1330
1331
1332
        }
    }

1333
1334
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1335
1336
    {
        literal l_val{};
1337
        if(contains(info.attributes, "value"))
1338
        {
1339
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1340
            if(l_val.get_shape().elements() != 1)
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1352

Shucai Xiao's avatar
Shucai Xiao committed
1353
        if(args.empty())
1354
        {
Shucai Xiao's avatar
Shucai Xiao committed
1355
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1356
1357
1358
        }
        else
        {
1359
1360
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1361
            if(args[0]->get_shape().elements() == 0)
1362
            {
1363
                s = migraphx::shape{type, {1}, {0}};
1364
            }
1365
1366
1367
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1368
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1369

1370
1371
1372
1373
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1374

Shucai Xiao's avatar
Shucai Xiao committed
1375
            literal l_out{};
1376
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1377
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1378
                // l_val contains only one element
1379
                std::vector<val_type> out_vec(s.elements(), val.front());
1380
1381
1382
1383
1384
1385
1386
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1387
    instruction_ref
1388
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1389
    {
Shucai Xiao's avatar
Shucai Xiao committed
1390
        auto in_lens             = args[0]->get_shape().lens();
1391
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1392
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1393
1394
1395
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1396
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1397
1398
    }

Shucai Xiao's avatar
Shucai Xiao committed
1399
    std::vector<instruction_ref>
1400
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1401
1402
    {
        migraphx::shape input_shape = args[0]->get_shape();
1403
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1404

1405
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1406
        {
1407
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1408
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1409
1410
1411
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1412
1413
1414
1415
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1416
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1417
        {
1418
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1419
1420
        }

1421
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1422
1423
        if(direction == "bidirectional")
        {
1424
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1425
1426
1427
        }
        else if(direction == "reverse")
        {
1428
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1429
1430
        }

1431
        std::vector<std::string> vec_names{"tanh"};
1432
        if(contains(info.attributes, "activations"))
1433
        {
1434
            auto names = info.attributes.at("activations").strings();
1435
            vec_names.clear();
1436
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1437
1438
1439
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1440
1441
        }

1442
1443
1444
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1445
        if(name_it != vec_names.end())
1446
1447
1448
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1449

Shucai Xiao's avatar
Shucai Xiao committed
1450
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1451
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1452
        // if only one actv function is provided, we use it in both
1453
        // forward and reverse direction
1454
        if(dirct == op::rnn_direction::bidirectional)
1455
        {
Shucai Xiao's avatar
Shucai Xiao committed
1456
            if(vec_names.size() == 1)
1457
1458
1459
1460
1461
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1462
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1463
1464
1465
1466
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1467

Shucai Xiao's avatar
Shucai Xiao committed
1468
1469
        // To be added later
        float clip = 0.0;
1470
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1471
        {
1472
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1473
1474
        }

1475
1476
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1477
        if(args.size() < 6)
1478
1479
1480
1481
1482
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1483
1484
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1485
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1486

1487
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1488
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1489

Shucai Xiao's avatar
Shucai Xiao committed
1490
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1491
1492
    }

1493
    std::vector<instruction_ref>
1494
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1495
1496
1497
1498
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1499
        if(contains(info.attributes, "hidden_size"))
1500
        {
1501
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1502
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1503
1504
1505
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1506
1507
1508
1509
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1510
        if(contains(info.attributes, "direction"))
1511
        {
1512
            direction = info.attributes.at("direction").s();
1513
1514
        }

1515
        op::rnn_direction dirct = op::rnn_direction::forward;
1516
1517
        if(direction == "bidirectional")
        {
1518
            dirct = op::rnn_direction::bidirectional;
1519
1520
1521
        }
        else if(direction == "reverse")
        {
1522
            dirct = op::rnn_direction::reverse;
1523
1524
        }

1525
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1526
        if(contains(info.attributes, "activations"))
1527
        {
1528
            auto names = info.attributes.at("activations").strings();
1529
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1530
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1531
1532
1533
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1534
1535
        }

1536
        // need 4 activation functions
1537
        if(dirct == op::rnn_direction::bidirectional)
1538
        {
Shucai Xiao's avatar
Shucai Xiao committed
1539
            // 4 activation functions are used in the bidirectional
1540
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1541
1542
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1543
1544
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1545
1546
1547
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1548
            if(vec_names.size() == 1)
1549
            {
1550
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1551
            }
1552
            else if(vec_names.size() == 2)
1553
            {
1554
1555
1556
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1557
            }
1558
            else if(vec_names.size() == 3)
1559
            {
1560
                vec_names.push_back(vec_names.at(2));
1561
1562
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1563
        else
1564
        {
1565
            if(vec_names.size() == 1)
1566
            {
1567
                vec_names.push_back(vec_names.at(0));
1568
1569
1570
            }
        }

1571
1572
1573
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1574
        if(name_it != vec_names.end())
1575
1576
1577
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1578

Shucai Xiao's avatar
Shucai Xiao committed
1579
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1580
1581
1582
1583
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1584
1585

        float clip = 0.0;
1586
        if(contains(info.attributes, "clip"))
1587
        {
1588
            clip = parse_value(info.attributes.at("clip")).at<float>();
1589
1590
1591
        }

        int linear_before_reset = 0;
1592
        if(contains(info.attributes, "linear_before_reset"))
1593
        {
1594
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1595
1596
        }

Shucai Xiao's avatar
Shucai Xiao committed
1597
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1598
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1599
1600
1601
1602
1603
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1604
1605
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1606
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1607
            std::move(args));
1608
1609

        // second output for last gru output
1610
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1611

Shucai Xiao's avatar
Shucai Xiao committed
1612
        return {hidden_states, last_output};
1613
1614
    }

Shucai Xiao's avatar
Shucai Xiao committed
1615
    std::vector<instruction_ref>
1616
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1617
1618
1619
1620
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1621
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1622
        {
1623
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1624
1625
1626
1627
1628
1629
1630
1631
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1632
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1633
        {
1634
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1635
1636
        }

Shucai Xiao's avatar
Shucai Xiao committed
1637
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1638
1639
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1640
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1641
1642
1643
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1644
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1645
        }
Shucai Xiao's avatar
Shucai Xiao committed
1646
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1647
        {
Shucai Xiao's avatar
Shucai Xiao committed
1648
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1649
1650
1651
1652
1653
1654
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1655
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
1656
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
1657
        {
1658
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
1659
1660
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1661
1662
1663
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1664
1665
1666
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1667
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1668
1669
1670
1671
1672
1673
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1674
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1675
1676
1677
1678
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1679
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1680
1681
1682
1683
1684
1685
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1686
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1687
1688
1689

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1690
1691
1692
1693
1694
1695
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1696
1697
1698
1699
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1700
1701
1702
1703
1704
1705
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1706
1707
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1708
1709
1710
1711
1712
1713
1714
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1715
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1716

Shucai Xiao's avatar
Shucai Xiao committed
1717
1718
1719
1720
1721
1722
1723
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1724
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1725

Shucai Xiao's avatar
Shucai Xiao committed
1726
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1727
1728
1729
1730
1731
1732
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1733
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1734
1735
1736

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1737
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1738
1739
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1740
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1741
1742
1743
            }
        }

1744
1745
1746
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1747
        if(name_it != vec_names.end())
1748
1749
1750
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1751
1752

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1753
1754
1755
1756
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1757
1758

        float clip = 0.0;
1759
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1760
        {
1761
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1762
1763
1764
        }

        int input_forget = 0;
1765
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
1766
        {
1767
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1768
1769
1770
1771
1772
1773
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1774
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1775
1776
1777
1778
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1779
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1780
1781

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1782
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1783
1784
1785
1786
1787
1788

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1789

Shucai Xiao's avatar
Shucai Xiao committed
1790
    template <class T>
1791
1792
    instruction_ref
    parse_reduce_oper(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1793
1794
1795
1796
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1797
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1798
        std::iota(axes.begin(), axes.end(), 0);
1799
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
1800
1801
        {
            axes.clear();
1802
            auto&& attr_axes = info.attributes["axes"].ints();
1803
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1804
1805
1806
        }

        int keep_dims = 1;
1807
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
1808
        {
1809
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1810
1811
1812
1813
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1814
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1815
1816
1817
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1818
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1819
            return prog.add_instruction(op::squeeze{axes}, ins);
1820
1821
        }
    }
1822

Shucai Xiao's avatar
Shucai Xiao committed
1823
    instruction_ref
1824
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1825
1826
    {
        auto abs_ins = prog.add_instruction(op::abs{}, args[0]);
1827
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1828
1829
1830
    }

    instruction_ref
1831
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1832
1833
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1834
        auto sum_ins    = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1835
1836
1837
        return prog.add_instruction(op::sqrt{}, sum_ins);
    }

1838
1839
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1840
    {
1841
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1842
1843
1844
        return prog.add_instruction(op::log{}, sum_ins);
    }

1845
1846
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1847
1848
    {
        auto exp_ins = prog.add_instruction(op::exp{}, args[0]);
1849
        auto sum_ins = parse_reduce_oper<op::reduce_sum>({}, std::move(info), {exp_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1850
1851
1852
        return prog.add_instruction(op::log{}, sum_ins);
    }

1853
1854
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1855
1856
    {
        auto square_ins = prog.add_instruction(op::mul{}, args[0], args[0]);
1857
        return parse_reduce_oper<op::reduce_sum>({}, std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
1858
1859
    }

Shucai Xiao's avatar
Shucai Xiao committed
1860
    instruction_ref
1861
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
1862
    {
1863
        if(!contains(info.attributes, "to"))
1864
1865
1866
1867
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

1868
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
1869
1870
1871
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1872

1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
1926
1927
1928
1929
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1930
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
1931
1932
1933
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
1934
1935
1936
1937
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
1938

Shucai Xiao's avatar
Shucai Xiao committed
1939
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
1940
1941
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1942
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
1943
1944
        }

Shucai Xiao's avatar
Shucai Xiao committed
1945
1946
1947
1948
1949
1950
1951
1952
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
1953
        {
Shucai Xiao's avatar
Shucai Xiao committed
1954
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
1955
        }
Shucai Xiao's avatar
Shucai Xiao committed
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
        auto diff          = prog.add_instruction(op::sub{}, on_val, off_val);
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
        auto l_mul         = prog.add_instruction(op::mul{}, tr_out, unsq_diff_val);
        return prog.add_instruction(op::add{}, l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
1970
1971
    }

kahmed10's avatar
kahmed10 committed
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

Paul's avatar
Paul committed
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2004
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2005
2006
2007
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2024
2025
    void parse_graph(const onnx::GraphProto& graph)
    {
2026
        for(auto&& f : graph.initializer())
2027
2028
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2029
2030
2031
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2032
2033
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2034
            {
2035
2036
2037
2038
2039
2040
2041
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2042
2043
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2044
        }
2045
2046

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2047
        {
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2067
2068
2069
2070
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2083
        }
Shucai Xiao's avatar
Shucai Xiao committed
2084

2085
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2086
        auto prog_output = graph.output();
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2107
2108
    }

Shucai Xiao's avatar
Shucai Xiao committed
2109
    void parse_undefined(const std::string& name)
2110
    {
Shucai Xiao's avatar
Shucai Xiao committed
2111
        auto ins           = prog.add_instruction(op::undefined{});
2112
2113
2114
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2139
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2140
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2141
2142
2143
2144
2145
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2146
2147
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2148
2149
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
2150
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
2151
2152
2153
2154
2155
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2156
2157
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2158
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2159
2160
            switch(t.data_type())
            {
2161
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2162
2163
2164
2165
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2166
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2167
2168
2169
2170
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
2171
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2172
2173
2174
2175
2176
2177
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2178
2179
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2180
            MIGRAPHX_THROW("Invalid tensor type");
2181
        }
Paul's avatar
Paul committed
2182
2183
2184
2185
2186
2187
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2188
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2189
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2190
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2191
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2192
2193
2194
2195
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2196
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2197
        {
Khalique's avatar
Khalique committed
2198
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2199
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2200
2201
2202
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2203
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2204
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2205
        }
Paul's avatar
Paul committed
2206
2207
2208
2209
2210
2211
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2212
2213
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2214
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2215
2216
    }

Khalique's avatar
Khalique committed
2217
    static literal
2218
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2219
    {
Khalique's avatar
Khalique committed
2220
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2221
        if(dims.empty())
2222
            return literal{{shape_type}, data};
2223
2224
2225
        return literal{{shape_type, dims}, data};
    }

2226
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2227
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2228
2229
    {
        if(dims.empty())
2230
            return literal{{shape_type}, data.begin(), data.end()};
2231
        return literal{{shape_type, dims}, data.begin(), data.end()};
2232
2233
    }

2234
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2245
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2246
2247
2248
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
2249
        case onnx::TensorProto::UINT8: shape_type = shape::uint8_type; break;
Paul's avatar
Paul committed
2250
2251
2252
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2253
2254
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2255
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2256
        }
2257
2258
2259
2260
2261
2262

        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2263
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2264
        auto&& tensor_dims = t.tensor_type().shape().dim();
2265
2266
2267
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2268
2269
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2270
                           {
2271
                               if(static_cast<int>(d.dim_value()) <= 0)
2272
2273
2274
                               {
                                   return default_dim_value;
                               }
2275
                               return d.dim_value();
2276
                           }
2277
2278
2279
2280
                           else
                           {
                               return default_dim_value;
                           }
2281
                       });
2282

2283
2284
2285
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2286
2287
        return {shape_type, dims};
    }
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2310
2311
2312

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2313
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2314
2315
2316
2317
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2318
2319
};

Paul Fultz II's avatar
Paul Fultz II committed
2320
template <class... Ts>
2321
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2322
2323
{
    onnx_parser parser;
2324
2325
2326
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2327

2328
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2329
    {
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2340
    }
2341
    else
Paul's avatar
Paul committed
2342
    {
2343
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2344
2345
2346
2347
    }
    return std::move(parser.prog);
}

2348
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2349
2350
2351
2352
2353
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2354
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2355
2356
2357
2358
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2359
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2360
2361
2362
2363
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2364
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2365
} // namespace migraphx