onnx.cpp 39.4 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
40
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
41
42
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
43
44
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

Khalique's avatar
Khalique committed
67
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
68
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
69
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
70
71
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
72
73
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
74
75
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
76
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
77
78
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
79
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
80
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
81
82
83
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
84
        add_mem_op("Concat", &onnx_parser::parse_concat);
85
86
87
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
88
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
89
        add_mem_op("RNN", &onnx_parser::parse_rnn);
90
91
92
93
94
95
96

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
97
98
99
100
101
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
102
103
104
105
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
106
107
108
109
110
111
112
113
114
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
115
116
117
118
119
120
121
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
122
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
123
124
125
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
126

127
    template <class T>
Khalique's avatar
Khalique committed
128
    void add_binary_op(std::string name, T x)
129
    {
Paul's avatar
Paul committed
130
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
131
            if(args.size() != 2)
Paul's avatar
Paul committed
132
                MIGRAPHX_THROW("binary operators should have 2 operands");
133
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
134
135
136
137
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
138
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
139
140
141
142
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
143
                return prog.add_instruction(x, args);
144
            }
Paul's avatar
Paul committed
145
            else
146
            {
Khalique's avatar
Khalique committed
147
                return add_broadcastable_binary_op(args[0], args[1], x);
148
149
150
151
            }
        });
    }

Khalique's avatar
Khalique committed
152
153
154
155
156
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
157
158
159
160
161
162
163
164
165
166
167
168
169
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
170
171
172
173
174
175
176
177
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
178
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
179
180
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
181
182
183
184
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
185
186
187
188
189
190
191
192
193

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
194
195
    }

Paul's avatar
Paul committed
196
    template <class T>
Paul's avatar
Paul committed
197
198
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
199
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
200
201
202
203
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
204
    template <class T>
Khalique's avatar
Khalique committed
205
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
206
    {
Paul's avatar
Paul committed
207
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
208
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
209
210
211
212
213
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
214
        });
Khalique's avatar
Khalique committed
215
216
    }

Paul's avatar
Paul committed
217
    instruction_ref
Paul's avatar
Paul committed
218
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
219
220
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
221
222
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
223
224
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
225
226
    }

Paul's avatar
Paul committed
227
    instruction_ref
Paul's avatar
Paul committed
228
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
229
    {
230
        op::convolution op;
Paul's avatar
Paul committed
231
232
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
233
            if(contains(attributes, "auto_pad"))
234
            {
Paul's avatar
Paul committed
235
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
236
237
238
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
239
            if(padding.size() != 4)
240
            {
Paul's avatar
Paul committed
241
                MIGRAPHX_THROW("padding should have 4 values");
242
            }
Scott Thornton's avatar
Scott Thornton committed
243
            if(padding[0] != padding[2] || padding[1] != padding[3])
244
            {
Paul's avatar
Paul committed
245
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
246
247
248
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
249
        }
Paul's avatar
Paul committed
250
251
252
253
254
255
256
257
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
258
        if(contains(attributes, "auto_pad"))
259
260
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
261
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
262
            {
Paul's avatar
Paul committed
263
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
264
265
            }

wsttiger's avatar
fixes  
wsttiger committed
266
            if(s.find("SAME") != std::string::npos)
267
268
269
270
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
271
272
273
274
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
275
276
277
278
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
279
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
280
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
281
        }
Paul's avatar
Paul committed
282
283
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
284

Paul's avatar
Paul committed
285
286
287
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
288
    {
Khalique's avatar
Khalique committed
289
290
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
291
        {
Khalique's avatar
Khalique committed
292
293
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
294
        }
Paul's avatar
Paul committed
295
296
        if(contains(attributes, "pads"))
        {
297
298
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
299
            if(padding.size() != 4)
300
            {
Paul's avatar
Paul committed
301
                MIGRAPHX_THROW("padding should have 4 values");
302
            }
Scott Thornton's avatar
Scott Thornton committed
303
            if(padding[0] != padding[2] || padding[1] != padding[3])
304
            {
Paul's avatar
Paul committed
305
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
306
307
308
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
309
310
311
312
313
314
315
316
317
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
318
        if(contains(attributes, "auto_pad"))
319
320
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
321
            if(to_upper(s) != "NOTSET")
322
            {
Paul's avatar
Paul committed
323
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
324
325
326
            }
        }

Paul's avatar
Paul committed
327
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
328
329
    }

Paul's avatar
Paul committed
330
    instruction_ref
Paul's avatar
Paul committed
331
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
332
    {
333
        op::reshape op;
Paul's avatar
Paul committed
334
335
336
337
338
339
340
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
341
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
342
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
343
        }
Paul's avatar
Paul committed
344
345
346
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
347
    instruction_ref
Paul's avatar
Paul committed
348
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
349
    {
350
        uint64_t axis = 1;
Paul's avatar
Paul committed
351
352
353
354
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
355
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
356
357
    }

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
376
377
378
379
380
381
382
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
383

384
385
386
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
387
        int axis = 0;
388
389
390
391
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
392
        op::gather op{axis};
393
394
395
        return prog.add_instruction(op, std::move(args));
    }

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
416
417
418
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
419
420
421
422
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
423

Paul's avatar
Paul committed
424
    instruction_ref
Paul's avatar
Paul committed
425
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
426
427
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
428
        float beta  = 1.0f;
Paul's avatar
Paul committed
429
430
431
432
433
434
435
436
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
437
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
438
439
440
441
442
443
444
445
446
447
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
448
449
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
450
451
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
452
            if(beta != 0.f)
453
            {
Khalique's avatar
Khalique committed
454
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
455
                auto l4 = args[2];
Khalique's avatar
Khalique committed
456
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
457
                    return l3;
Khalique's avatar
Khalique committed
458
                if(beta != 1.f)
Khalique's avatar
Khalique committed
459
460
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
461
462
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
463
464
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
465
            }
Paul's avatar
Paul committed
466
        }
Shucai Xiao's avatar
Shucai Xiao committed
467
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
468
469
    }

470
    instruction_ref
Paul's avatar
Paul committed
471
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
472
    {
Scott Thornton's avatar
Scott Thornton committed
473
474
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
475
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
476
        bool is_test                                      = false;
477
478
479
480
481
482
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
483
            momentum = parse_value(attributes.at("momentum")).at<float>();
484
485
486
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
487
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
488
489
490
        }
        if(contains(attributes, "spatial"))
        {
491
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
492
493
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
494
        }
Paul's avatar
Paul committed
495
        (void)is_test;
Paul's avatar
Paul committed
496
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
497
        return prog.add_instruction(op, std::move(args));
498
499
    }

500
501
502
503
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
504
        float alpha = 0.01; // default alpha val for leaky relu
505
506
507
508
509
510
511
512
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
513
514
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
515
516
517
518
519
520
521
522
523
524
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
542

Khalique's avatar
Khalique committed
543
544
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
545
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
546

Paul's avatar
Paul committed
547
548
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
549
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
550
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
551
    }
Khalique's avatar
Khalique committed
552

Khalique's avatar
Khalique committed
553
554
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
555
556
557
558
559
560
561
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
562
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
563
564
    }

565
566
567
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
568
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
569
570
    {
        if(args.size() != 1)
571
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
608
609
        if(contains(attributes, "extra_shape"))
        {
610
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
611
612
        }

613
614
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
615
            if(args.size() != 1)
616
            {
617
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
618
619
            }

Shucai Xiao's avatar
Shucai Xiao committed
620
621
            if(contains(attributes, "shape"))
            {
622
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
623
                               "at the same time");
624
625
            }

626
627
628
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
629
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
630
            }
631

632
633
634
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
635
636
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
637
638
639
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
640
641
            if(!contains(attributes, "shape"))
            {
642
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
643
644
645
            }

            literal ls = parse_value(attributes.at("shape"));
646
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
647
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
648
            migraphx::shape s{type, dims};
649
650
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
651
652
653
        }
        else
        {
654
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
655
656
657
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
658
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        migraphx::shape w_shape     = args[1]->get_shape();
        std::size_t hidden_size     = w_shape.lens()[1];

        if(contains(attributes, "hidden_size"))
        {
            hidden_size = parse_value(attributes.at("hidden_size")).at<int>();
        }
        else
        {
            MIGRAPHX_THROW("RNN: hidden size attribute missing");
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

        op::rnn::rnn_direction_t dirct = op::rnn::forward;
        if(direction == "bidirectional")
        {
            dirct = op::rnn::bidirectional;
        }
        else if(direction == "reverse")
        {
            dirct = op::rnn::reverse;
        }

691
692
693
694
695
        std::vector<std::string> vec_names{"tanh"};
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
696
            for_each(names.begin(), names.end(), [&](auto& fn) { vec_names.push_back(fn); });
697
698
        }

Shucai Xiao's avatar
Shucai Xiao committed
699
        for_each(vec_names.begin(), vec_names.end(), [&](auto& fn) {
700
701
702
703
704
705
706
707
708
            if(map_actv_funcs.count(fn) == 0)
            {
                MIGRAPHX_THROW("RNN: activation function " + fn + " not supported");
            }
        });

        // bidirectional should have two activation functions
        // if only one actv function is provides, we use it in both
        // forward and reverse direction
Shucai Xiao's avatar
Shucai Xiao committed
709
        if(dirct == op::rnn::bidirectional)
710
        {
Shucai Xiao's avatar
Shucai Xiao committed
711
            if(vec_names.size() == 1)
712
713
714
715
716
717
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

        std::vector<operation> vec_actv_funcs;
Shucai Xiao's avatar
Shucai Xiao committed
718
        for_each(vec_names.begin(), vec_names.end(), [&](auto& fn) {
719
720
            vec_actv_funcs.push_back(map_actv_funcs[fn]);
        });
Shucai Xiao's avatar
Shucai Xiao committed
721

Shucai Xiao's avatar
Shucai Xiao committed
722
723
724
725
726
727
728
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
729
730
731
        std::vector<instruction_ref> result;
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
732
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
733
734
735
        result.push_back(hidden_states);

        // second out for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
736
737
        // auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
        // result.push_back(last_output);
Shucai Xiao's avatar
Shucai Xiao committed
738
739

        return result;
Shucai Xiao's avatar
Shucai Xiao committed
740
741
    }

Paul's avatar
Paul committed
742
743
744
745
746
747
748
749
750
751
752
753
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
754
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
755
756
757
758
759
760
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
761
762
763
764
765
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
766
767
768
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
769
770
771
772
773
774
775
776
777
778
779
780
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
781
782
783
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
784
            this->parse_node(p.first);
Paul's avatar
Paul committed
785
786
787
        }
    }

Paul's avatar
Paul committed
788
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
789
    {
Paul's avatar
Paul committed
790
        if(name.empty())
Paul's avatar
Paul committed
791
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
792
793
794
795
796
797
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
798
799
800
801
802
803
804
805
806
807
                // For RNN, LSTM, and GRU operators, one of the input arguments
                // is prim::Undefined, and it is ignored by protobuf. We use a
                // hack to ignore this argument for these three operators
                std::string op_type = node.op_type();
                if((op_type == "RNN" || op_type == "LSTM" || op_type == "GRU") &&
                   input.empty() == true)
                {
                    continue;
                }

Paul's avatar
Paul committed
808
809
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
810
811
812
                    assert(name != input);
                    this->parse_node(input);
                    args.push_back(instructions.at(input));
Paul's avatar
Paul committed
813
814
815
816
817
818
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
819
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
820
821
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
822
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
823
824
825
            }
            else
            {
Paul's avatar
Paul committed
826
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
827
            }
Paul's avatar
Paul committed
828
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
829
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
830
831
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
832
833
834
            }
            else
            {
Paul's avatar
Paul committed
835
836
837
838
839
840
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
858
        std::size_t n = 0;
Paul's avatar
Paul committed
859
860
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
861
            if(node.output().empty())
Paul's avatar
Paul committed
862
            {
Paul's avatar
Paul committed
863
                if(node.name().empty())
Paul's avatar
Paul committed
864
865
866
867
868
869
870
871
872
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
898
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
899
900
901
902
903
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
904
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
905
906
907
908
909
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
910
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
911
        if(dims.empty())
Khalique's avatar
Khalique committed
912
913
914
        {
            dims = {1};
        }
915
916
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
917
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
918
919
920
921
922
923
924
925
926
927
928
929
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
930
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
931
932
933
934
935
936
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
937
            MIGRAPHX_THROW("Invalid tensor type");
938
        }
Paul's avatar
Paul committed
939
940
941
942
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
943
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
944
945
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
946
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
947
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
948
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
949
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
950
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
951
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
952
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
953
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
954
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
955
956
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
957
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
958
959
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
960
961
962
963
964
965
966
967
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
968
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
990
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
991
992
993
994
995
996
997
998
999
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1000
        auto&& tensor_dims = t.tensor_type().shape().dim();
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1012
1013
        return {shape_type, dims};
    }
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1059
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1060
} // namespace migraphx