onnx.cpp 108 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
14
#include <migraphx/make_op.hpp>
Paul's avatar
Paul committed
15
16
17
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
Paul's avatar
Paul committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gru.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/lstm.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn_last_cell_output.hpp>
#include <migraphx/op/rnn_last_hs_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/undefined.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/op/unsqueeze.hpp>

Paul's avatar
Paul committed
48
namespace migraphx {
Paul's avatar
Paul committed
49
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
50

51
52
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
53
54
55
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
56
57
58
59
60
61
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
62
    using op_func =
63
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
64
65
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
66
67
68
69
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
70
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
71
72

    std::unordered_map<std::string, op_func> ops;
73
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
74
75
76

    onnx_parser()
    {
77
        // sort onnx operator alphabetically through name
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        add_generic_op("Abs", "abs");
        add_generic_op("Acos", "acos");
        add_generic_op("Acosh", "acosh");
        add_generic_op("Asin", "asin");
        add_generic_op("Asinh", "asinh");
        add_generic_op("Atan", "atan");
        add_generic_op("Atanh", "atanh");
        add_generic_op("Ceil", "ceil");
        add_generic_op("Concat", "concat");
        add_generic_op("Cos", "cos");
        add_generic_op("Cosh", "cosh");
        add_generic_op("Erf", "erf");
        add_generic_op("Exp", "exp");
        add_generic_op("Flatten", "flatten");
        add_generic_op("Floor", "floor");
        add_generic_op("Gather", "gather", true);
        add_generic_op("Identity", "identity");
        add_generic_op("Log", "log");
        add_generic_op("LogSoftmax", "logsoftmax");
        add_generic_op("Neg", "neg");
        add_generic_op("Reciprocal", "recip");
        add_generic_op("Relu", "relu");
        add_generic_op("Round", "round");
        add_generic_op("Sigmoid", "sigmoid");
        add_generic_op("Sign", "sign");
        add_generic_op("Sin", "sin");
        add_generic_op("Sinh", "sinh");
        add_generic_op("Softmax", "softmax");
        add_generic_op("Sqrt", "sqrt");
        add_generic_op("Squeeze", "squeeze", true);
        add_generic_op("Tan", "tan");
        add_generic_op("Tanh", "tanh");
        add_generic_op("Unsqueeze", "unsqueeze", true);

        add_binary_op("Add", "add");
        add_binary_op("Div", "div");
        add_binary_op("Mul", "mul");
        add_binary_op("Pow", "pow");
        add_binary_op("PRelu", "prelu");
        add_binary_op("Sub", "sub");

        add_variadic_op("Sum", "add");
        add_variadic_op("Max", "max");
        add_variadic_op("Min", "min");
Paul's avatar
Paul committed
122

123
        add_mem_op("ATen", &onnx_parser::parse_aten);
124
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
125
126
        add_mem_op("ArgMax", "argmax", &onnx_parser::parse_arg_op);
        add_mem_op("ArgMin", "argmin", &onnx_parser::parse_arg_op);
127
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
128
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
129
        add_mem_op("Clip", &onnx_parser::parse_clip);
Paul's avatar
Paul committed
130
        add_mem_op("Constant", &onnx_parser::parse_constant);
131
132
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
133
134
        add_mem_op("Conv", "convolution", &onnx_parser::parse_conv);
        add_mem_op("ConvInteger", "quant_convolution", &onnx_parser::parse_conv);
kahmed10's avatar
kahmed10 committed
135
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
136
        add_mem_op("Dropout", &onnx_parser::parse_dropout);
137
        add_mem_op("Elu", &onnx_parser::parse_elu);
138
        add_mem_op("Equal", "equal", &onnx_parser::parse_compare_op);
139
        add_mem_op("Expand", &onnx_parser::parse_expand);
Shucai Xiao's avatar
Shucai Xiao committed
140
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
141
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
142
143
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
144
        add_mem_op("Greater", "greater", &onnx_parser::parse_compare_op);
145
146
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
147
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
148
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
149
        add_mem_op("Less", "less", &onnx_parser::parse_compare_op);
150
        add_mem_op("LRN", &onnx_parser::parse_lrn);
151
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
152
153
        add_mem_op("MatMul", "dot", &onnx_parser::parse_matmul);
        add_mem_op("MatMulInteger", "quant_dot", &onnx_parser::parse_matmul);
154
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
155
        add_mem_op("NonZero", &onnx_parser::parse_nonzero);
kahmed10's avatar
kahmed10 committed
156
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
157
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
158
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
159
160
161
162
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
163
164
165
166
167
        add_mem_op("ReduceMax", "reduce_max", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMean", "reduce_mean", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMin", "reduce_min", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceProd", "reduce_prod", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceSum", "reduce_sum", &onnx_parser::parse_reduce_oper);
Shucai Xiao's avatar
Shucai Xiao committed
168
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
169
170
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
Shucai Xiao's avatar
Shucai Xiao committed
171
        add_mem_op("Selu", &onnx_parser::parse_selu);
172
173
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
174
        add_mem_op("Split", &onnx_parser::parse_split);
kahmed10's avatar
kahmed10 committed
175
        add_mem_op("Tile", &onnx_parser::parse_tile);
176
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
177
        add_mem_op("Upsample", &onnx_parser::parse_upsample);
Shucai Xiao's avatar
Shucai Xiao committed
178
        add_mem_op("Where", &onnx_parser::parse_where);
179
180
181
182
183
184
185

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
186
        // Support name format of all lower case or the first letter capital
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        map_actv_funcs.insert(std::make_pair("tanh", make_op("tanh")));
        map_actv_funcs.insert(std::make_pair("relu", make_op("relu")));
        map_actv_funcs.insert(std::make_pair("sigmoid", make_op("sigmoid")));
        map_actv_funcs.insert(std::make_pair("leakyrelu", make_op("leaky_relu")));
        map_actv_funcs.insert(std::make_pair("elu", make_op("elu")));
    }

    static operation load(const std::string& name, const node_info& info)
    {
        auto op = make_op(name);
        auto v  = op.to_value();
        for(auto&& x : v)
        {
            if(info.attributes.count(x.get_key()) == 0)
                continue;
            literal s = parse_value(info.attributes.at(x.get_key()));
            if(x.is_array())
            {
                std::vector<value> values;
                s.visit([&](auto y) {
                    std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                        return value(z);
                    });
                });
                x = values;
            }
            else
            {
                s.visit([&](auto y) { x = y.front(); });
            }
        }
        op.from_value(v);
        return op;
Paul's avatar
Paul committed
220
221
222
223
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
224
225
226
227
228
229
230
231
232
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
233
234
235
236
237
    {
        ops.emplace(name, f);
    }

    template <class F>
238
    void add_mem_op(const std::string& name, F f)
Paul's avatar
Paul committed
239
    {
Paul's avatar
Paul committed
240
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
241
242
243
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
244

245
246
247
248
249
250
251
252
253
    template <class F>
    void add_mem_op(const std::string& onnx_name, const std::string& op_name, F f)
    {
        add_op(onnx_name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, onnx_name, op_name, std::forward<decltype(xs)>(xs)...);
        });
    }

    void add_binary_op(const std::string& onnx_name, const std::string& op_name)
254
    {
255
        add_op(onnx_name, [this, op_name](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
256
            if(args.size() != 2)
Paul's avatar
Paul committed
257
                MIGRAPHX_THROW("binary operators should have 2 operands");
258
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
259
            {
260
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
261
262
                if(broadcasted != 0)
                {
263
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
264
265
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
266
                    return prog.add_instruction(make_op(op_name), args[0], l);
267
                }
268
                return prog.add_instruction(make_op(op_name), args);
269
            }
Paul's avatar
Paul committed
270
            else
271
            {
272
                return add_broadcastable_binary_op(args[0], args[1], op_name);
273
274
275
276
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
277
278
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
279
280
281
282
283
284
285
286
287
288
289
290
291
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
292
        if(s0.size() > s1.size())
293
294
295
296
297
298
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
299
300
301
302
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
303
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
304
                           if(a != b and a != 1 and b != 1)
305
                           {
Shucai Xiao's avatar
Shucai Xiao committed
306
307
308
309
310
311
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
312
313
314
315

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
316
317
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
318
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
319
320
321
322
        {
            return ins;
        }

323
        return prog.add_instruction(make_op("contiguous"), ins);
Shucai Xiao's avatar
Shucai Xiao committed
324
325
    }

326
327
    instruction_ref
    add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, const std::string& name)
Khalique's avatar
Khalique committed
328
    {
Khalique's avatar
Khalique committed
329
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
330
331
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
332
333
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
334
            auto out_lens = compute_broadcasted_lens(s0, s1);
335
336
337
338
339
340
341
342
343

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

344
            return prog.add_instruction(make_op(name), l0, l1);
Khalique's avatar
Khalique committed
345
346
347
        }
        else
        {
348
            return prog.add_instruction(make_op(name), {arg0, arg1});
Khalique's avatar
Khalique committed
349
        }
350
351
    }

352
353
354
    void add_generic_op(const std::string& onnx_name,
                        const std::string& op_name,
                        bool contiguous = false)
Paul's avatar
Paul committed
355
    {
356
357
358
359
360
361
362
363
364
365
366
367
        add_op(
            onnx_name,
            [this, op_name, contiguous](const node_info& info, std::vector<instruction_ref> args) {
                auto op = load(op_name, info);
                if(contiguous)
                {
                    std::transform(args.begin(), args.end(), args.begin(), [&](auto arg) {
                        return this->make_contiguous(arg);
                    });
                }
                return prog.add_instruction(op, args);
            });
Paul's avatar
Paul committed
368
369
    }

370
    void add_variadic_op(const std::string& onnx_name, const std::string& op_name)
Khalique's avatar
Khalique committed
371
    {
372
        add_op(onnx_name, [this, op_name](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
373
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
374
375
                                   args.end(),
                                   args.front(),
376
377
                                   [this, op_name](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, op_name);
Khalique's avatar
Khalique committed
378
                                   });
Khalique's avatar
Khalique committed
379
        });
Khalique's avatar
Khalique committed
380
381
    }

kahmed10's avatar
kahmed10 committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
396
            return prog.add_instruction(make_op("add"), curr_ins, bias_bcast);
kahmed10's avatar
kahmed10 committed
397
398
399
400
        }
        return curr_ins;
    }

401
    static bool is_asym_padding(const std::vector<int64_t>& padding)
402
    {
403
404
405
406
407
408
409
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
410
                return true;
411
412
            }
        }
kahmed10's avatar
kahmed10 committed
413
414
        return false;
    }
415

kahmed10's avatar
kahmed10 committed
416
417
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
418
                            value& v,
419
420
                            int count_include_pad = 0,
                            float pad_val         = 0)
kahmed10's avatar
kahmed10 committed
421
422
423
424
425
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

426
        if(is_asym_padding(padding) or count_include_pad == 1)
427
        {
428
429
430
431
432
433
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
434
435
436
        }
        else
        {
437
            v["padding"] = std::vector<size_t>(left_pad_it, right_pad_it);
438
439
440
        }
    }

441
442
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
443
    {
kahmed10's avatar
kahmed10 committed
444
445
446
447
448
449
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

Shucai Xiao's avatar
Shucai Xiao committed
450
        if(args.size() == 3 and args[2]->name() != "undefined")
Khalique's avatar
Khalique committed
451
        {
kahmed10's avatar
kahmed10 committed
452
453
            max_arg  = args[2];
            max_used = true;
Khalique's avatar
Khalique committed
454
        }
Shucai Xiao's avatar
Shucai Xiao committed
455
456

        if(args.size() >= 2 and args[1]->name() != "undefined")
Khalique's avatar
Khalique committed
457
        {
kahmed10's avatar
kahmed10 committed
458
459
460
461
462
463
464
465
466
467
468
469
470
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
471
        }
kahmed10's avatar
kahmed10 committed
472
473

        if(min_used)
Shucai Xiao's avatar
Shucai Xiao committed
474
        {
kahmed10's avatar
kahmed10 committed
475
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
476
        }
kahmed10's avatar
kahmed10 committed
477
478

        if(max_used)
Shucai Xiao's avatar
Shucai Xiao committed
479
        {
kahmed10's avatar
kahmed10 committed
480
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
481
        }
kahmed10's avatar
kahmed10 committed
482
483

        if(min_used and max_used)
Shucai Xiao's avatar
Shucai Xiao committed
484
        {
485
            return prog.add_instruction(make_op("clip"), args[0], min_arg, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
486
487
488
489
490
491
492
        }
        else if(max_used)
        {
            return prog.add_instruction(make_op("min"), args[0], max_arg);
        }
        else if(min_used)
        {
493
            return prog.add_instruction(make_op("max"), args[0], min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
494
495
496
497
498
        }
        else
        {
            return prog.add_instruction(make_op("identity"), args[0]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
499
500
    }

501
502
503
504
    instruction_ref parse_arg_op(const std::string&,
                                 const std::string& op_name,
                                 node_info info,
                                 std::vector<instruction_ref> args)
505
    {
506
        int64_t axis = 0;
507
        if(contains(info.attributes, "axis"))
508
        {
509
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
510
511
        }

Shucai Xiao's avatar
Shucai Xiao committed
512
        int keep_dims = 1;
513
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
514
        {
515
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
516
517
        }

Shucai Xiao's avatar
Shucai Xiao committed
518
        if(keep_dims == 0)
519
        {
520
            auto ins = prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
521
            return prog.add_instruction(op::squeeze{{axis}}, ins);
522
523
524
        }
        else
        {
525
            return prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
526
        }
527
528
    }

kahmed10's avatar
kahmed10 committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

605
606
607
608
609
610
611
612
613
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

614
    void recalc_conv_attributes(value& v, size_t kdims)
615
    {
616
        if(v["padding"].size() != kdims)
617
        {
618
619
            v["padding"].resize(kdims);
            std::fill_n(v["padding"].begin(), kdims, 0);
620
        }
621
        if(v["stride"].size() != kdims)
622
        {
623
624
            v["stride"].resize(kdims);
            std::fill_n(v["stride"].begin(), kdims, 1);
625
        }
626
        if(v["dilation"].size() != kdims)
627
        {
628
629
            v["dilation"].resize(kdims);
            std::fill_n(v["dilation"].begin(), kdims, 1);
630
631
632
        }
    }

633
    static void cal_auto_padding_size(node_info info,
634
                                      value& v,
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
                                      const std::vector<std::size_t>& k_lens,
                                      const std::vector<std::size_t>& dilation,
                                      const std::vector<std::size_t>& in_lens,
                                      std::vector<int64_t>& paddings)
    {
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

        if(!contains(info.attributes, "auto_pad"))
        {
            return;
        }

        auto auto_pad = info.attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            paddings.resize(2 * kdims);

            for(size_t i = 0; i < paddings.size() / 2; i++)
            {
                calculate_padding(i,
                                  paddings,
                                  in_lens[i + 2],
659
                                  v["stride"][i].to<int64_t>(),
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
        }
    }

    static void check_padding_mode(node_info info, const std::string& op_name)
    {
        // ensure pads availabe only when auto_pad is "NOT_SET"
        if(contains(info.attributes, "pads") and contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_" + op_name +
                               ": auto_pad and padding cannot be specified simultaneously");
            }
        }
    }

681
682
683
684
    instruction_ref parse_conv(const std::string&,
                               const std::string& op_name,
                               node_info info,
                               std::vector<instruction_ref> args)
Paul's avatar
Paul committed
685
    {
686
687
        auto op      = make_op(op_name);
        auto values  = op.to_value();
688
689
        auto l0      = args[0];
        auto weights = args[1];
690
691
692
693
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

694
695
696
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV");

697
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
698
        {
699
700
701
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
702
        }
703
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
704
        {
705
706
707
708
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
            check_attr_sizes(
                kdims, values["dilation"].size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
709
        }
710
711
712
713

        std::vector<int64_t> padding;
        if(contains(info.attributes, "pads"))
        {
714
            values["padding"].clear();
715
716
717
718
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
        }

719
        if(contains(info.attributes, "auto_pad"))
720
        {
721
722
            auto weight_lens = weights->get_shape().lens();
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
723
724
725
726
727
728
            cal_auto_padding_size(info,
                                  values,
                                  k_lens,
                                  values["dilation"].to_vector<std::size_t>(),
                                  in_lens,
                                  padding);
Shucai Xiao's avatar
Shucai Xiao committed
729
730
731
732
733
            auto auto_pad = info.attributes["auto_pad"].s();
            if(auto_pad.find("SAME") != std::string::npos)
            {
                values["padding_mode"] = to_value(op::padding_mode_t::same);
            }
734
        }
735
        check_asym_padding(l0, padding, values);
736

737
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
738
        {
739
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
740
        }
kahmed10's avatar
kahmed10 committed
741

742
        recalc_conv_attributes(values, kdims);
743

744
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
745
746
747
748
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

749
750
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
751
    {
752
753
754
        operation op = make_op("deconvolution");
        value values = op.to_value();
        // op::deconvolution op;
kahmed10's avatar
kahmed10 committed
755
756
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
757
758
759
760
761
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

762
763
764
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

765
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
766
        {
767
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
768
769
770
771

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
772
            {
kahmed10's avatar
kahmed10 committed
773
774
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
775
                values["padding"].clear();
kahmed10's avatar
kahmed10 committed
776
777
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
778
                               std::back_inserter(values["padding"]),
kahmed10's avatar
kahmed10 committed
779
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
780
781
            }
        }
782
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
783
        {
784
785
786
787
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(
                kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
788
        }
789
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
790
        {
791
792
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
kahmed10's avatar
kahmed10 committed
793
            check_attr_sizes(
794
                kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
795
        }
796
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
797
        {
798
799
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
800
            {
kahmed10's avatar
kahmed10 committed
801
802
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
803
804
805
806
            }

            if(s.find("SAME") != std::string::npos)
            {
807
                values["padding_mode"] = to_value(op::padding_mode_t::same);
kahmed10's avatar
kahmed10 committed
808
809
810
            }
        }

811
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
812
        {
813
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
814
815
        }

816
        recalc_conv_attributes(values, kdims);
kahmed10's avatar
kahmed10 committed
817

818
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
819
820
        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
821
822
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
823
        {
kahmed10's avatar
kahmed10 committed
824
825
826
827
828
829
830
831
832
833
834
835
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
836

kahmed10's avatar
kahmed10 committed
837
            l1 = prog.add_instruction(op::slice{axes, starts, ends}, l1);
kahmed10's avatar
kahmed10 committed
838
839
        }

840
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
841
        {
kahmed10's avatar
kahmed10 committed
842
843
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
844
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
845
846
847
848
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = prog.add_instruction(op::pad{output_padding}, l1);
kahmed10's avatar
kahmed10 committed
849
850
        }

851
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
852
853
        {
            std::vector<int64_t> output_shape;
854
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
855
856
857
858
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
859
860
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
861
862
863
864
865
866
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
kahmed10's avatar
kahmed10 committed
867
868
869
870
871
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
872
    }
Paul's avatar
Paul committed
873

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    static void
    tune_padding_to_symmetric(int64_t& left, int64_t& right, const int stride, int64_t& s_start)
    {
        s_start = 0;
        if(left > right)
        {
            right = left;
        }
        else if(left < right)
        {
            auto diff = right - left;
            s_start   = (diff + stride - 1) / stride;
            left      = left + s_start * stride;
            right     = left;
        }
    }

891
    static void tune_padding_size(const value& v,
892
893
894
895
896
                                  std::vector<int64_t>& padding,
                                  int count_include_pad,
                                  std::vector<int64_t>& s_start)
    {
        // maxpooling or count_include_pad is 1, no change is required.
897
        if(v.at("mode").to<std::string>() == "max" or count_include_pad == 1)
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
        {
            return;
        }

        // if padding is symmetric, return directly
        if(!is_asym_padding(padding))
        {
            return;
        }

        // asymmetric padding, make it symmetric
        std::size_t n_dims = padding.size() / 2;
        s_start.resize(n_dims);
        for(std::size_t i = 0; i < n_dims; ++i)
        {
913
914
            tune_padding_to_symmetric(
                padding[i], padding[i + n_dims], v.at("stride")[i].to<int64_t>(), s_start[i]);
915
916
917
        }
    }

918
919
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
920
    {
921
922
923
924
925
        std::string mode = ends_with(name, "MaxPool") ? "max" : "average";
        operation op     = make_op("pooling", {{"mode", mode}});
        value values     = op.to_value();
        auto l0          = args[0];
        auto in_lens     = l0->get_shape().lens();
926
927
928
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
929
        if(starts_with(name, "Global"))
930
        {
931
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
932
        }
933

934
935
        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
Paul's avatar
Paul committed
936
        {
Shucai Xiao's avatar
Shucai Xiao committed
937
            values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
938
        }
939

940
941
942
943
944
945
        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
Paul's avatar
Paul committed
946
        }
947

948
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
949
        {
950
951
952
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
953
        }
954
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
955
        {
956
957
958
959
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
960
        }
961

962
963
964
965
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
966
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
967
968
        if(contains(info.attributes, "pads"))
        {
969
            values["padding"].clear();
970
971
972
973
974
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

975
        if(contains(info.attributes, "auto_pad"))
976
        {
977
            values["padding"].clear();
978
            // return paddings could be empty, then setting to 0 for no padding
979
980
981
982
983
984
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
985
        }
986

987
988
989
990
        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
991
992
        }

993
        if(values["padding"].size() != kdims)
994
        {
995
996
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
997
        }
998

999
        if(values["stride"].size() != kdims)
1000
        {
1001
1002
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
1003
        }
1004
1005
1006
1007
1008
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
1009
        tune_padding_size(values, paddings, count_include_pad, slice_start);
1010
1011
1012
1013
1014
1015
1016
1017

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
1018
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();
1019

1020
1021
1022
1023
1024
1025
1026
1027
1028
            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }

1029
        check_asym_padding(l0, paddings, values, count_include_pad, pad_val);
1030
        in_lens = l0->get_shape().lens();
1031
1032
        for(size_t i = 0; i < kdims; i++)
        {
1033
1034
            if(values["lengths"][i].to<int64_t>() >
               in_lens[i + 2] + 2 * values["padding"][i].to<int64_t>())
1035
            {
1036
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
1037
1038
            }
        }
1039
        op.from_value(values);
1040
1041
1042
1043
1044
1045
        auto l1 = prog.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = prog.add_instruction(op::slice{axes, slice_start, slice_end}, l1);
1046
1047
        }

1048
        return l1;
Paul's avatar
Paul committed
1049
1050
    }

Paul's avatar
Paul committed
1051
    instruction_ref
1052
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1053
    {
1054
        op::reshape op;
Paul's avatar
Paul committed
1055
1056
        if(args.size() == 1)
        {
1057
            literal s = parse_value(info.attributes.at("shape"));
1058
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1059
1060
1061
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
1062
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1063
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
1064
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1065
        }
1066

Shucai Xiao's avatar
Shucai Xiao committed
1067
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
1068
1069
    }

Shucai Xiao's avatar
Shucai Xiao committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
1120
1121
1122
        auto dim_diff  = prog.add_instruction(make_op("sub"), arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(make_op("mul"), dim_diff, l_stride);
        auto ind       = prog.add_instruction(make_op("add"), l_shape_idx, delta);
Shucai Xiao's avatar
Shucai Xiao committed
1123
1124
1125
1126
1127

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

1128
    instruction_ref
1129
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1130
1131
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1154
        {
1155
            literal s = parse_value(info.attributes.at("axes"));
1156
1157
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1158
1159

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1160
        {
Shucai Xiao's avatar
Shucai Xiao committed
1161
1162
1163
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1164
        }
Shucai Xiao's avatar
Shucai Xiao committed
1165
        else if(contains(info.attributes, "ends"))
1166
        {
1167
1168
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1169
        }
Shucai Xiao's avatar
Shucai Xiao committed
1170
1171
1172
1173
1174
1175
1176
1177

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1178
        {
1179
            literal s = parse_value(info.attributes.at("starts"));
1180
1181
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1182

kahmed10's avatar
kahmed10 committed
1183
1184
1185
1186
1187
1188
1189
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1190
1191
1192
        return prog.add_instruction(op, args[0]);
    }

1193
1194
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1195
    {
1196
        literal v = parse_value(info.attributes.at("value"));
1197
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1198
        if(v.get_shape().elements() == 0)
1199
1200
1201
1202
        {
            return prog.add_literal(literal{});
        }

1203
        auto dim_size = info.attributes.at("value").t().dims_size();
1204
1205
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1206
        {
1207
            migraphx::shape scalar_shape{v.get_shape().type()};
1208
1209
1210
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1211
1212
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1213

Paul's avatar
Paul committed
1214
    instruction_ref
1215
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1216
1217
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1218
        float beta  = 1.0f;
Paul's avatar
Paul committed
1219
1220
        bool transa = false;
        bool transb = false;
1221
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1222
        {
1223
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1224
        }
1225
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1226
        {
1227
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1228
        }
1229
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1230
        {
1231
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1232
        }
1233
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1234
        {
1235
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1236
        }
1237
1238
1239
1240
1241
1242

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1243
1244
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1245
1246
        if(args.size() == 3)
        {
1247
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1248
            {
Shucai Xiao's avatar
Shucai Xiao committed
1249
                auto out_lens   = l1->get_shape().lens();
1250
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1251
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1252
1253
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1254
                {
1255
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1256
                }
1257
1258
                return prog.add_instruction(
                    make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2, l3);
1259
            }
Paul's avatar
Paul committed
1260
        }
1261

1262
        return prog.add_instruction(make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2);
Paul's avatar
Paul committed
1263
1264
    }

1265
1266
1267
1268
    instruction_ref parse_matmul(const std::string&,
                                 const std::string& op_name,
                                 const node_info&,
                                 std::vector<instruction_ref> args)
1269
    {
Shucai Xiao's avatar
Shucai Xiao committed
1270
1271
        auto l0      = args[0];
        auto l1      = args[1];
1272
1273
1274
1275
1276
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1277
        if(l0_lens.size() == 1)
1278
1279
1280
1281
1282
1283
1284
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1285
        if(l1_lens.size() == 1)
1286
1287
1288
1289
1290
1291
1292
1293
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1294
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1295
1296
1297
1298
1299
1300
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1301
            l0_broadcasted_lens = output_lens;
1302
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1303
            l1_broadcasted_lens = output_lens;
1304
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1305
            if(l0_lens != l0_broadcasted_lens)
1306
1307
1308
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1309
            if(l1_lens != l1_broadcasted_lens)
1310
1311
1312
1313
1314
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1315
1316
        auto dot_res =
            prog.add_instruction(make_op(op_name, {{"alpha", 1}, {"beta", 0}}), bl0, bl1);
1317
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1318
        if(is_a_prepended)
1319
1320
1321
1322
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1323
        if(is_b_appended)
1324
1325
1326
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1327

1328
1329
1330
        return dot_res;
    }

1331
    instruction_ref
1332
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1333
    {
Scott Thornton's avatar
Scott Thornton committed
1334
1335
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1336
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1337
        if(contains(info.attributes, "epsilon"))
1338
        {
1339
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1340
        }
1341
        if(contains(info.attributes, "momentum"))
1342
        {
1343
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1344
        }
1345
        if(contains(info.attributes, "spatial"))
1346
        {
1347
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1348
1349
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1350
        }
Paul's avatar
Paul committed
1351
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1352
        return prog.add_instruction(op, std::move(args));
1353
1354
    }

1355
1356
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1357
1358
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
kahmed10's avatar
kahmed10 committed
1359
1360
        // mean = reduce_mean({D1, D2, ... Dk}, x)
        // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2)
kahmed10's avatar
kahmed10 committed
1361
1362

        float epsilon = 1e-5f;
1363
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1364
        {
1365
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1366
1367
1368
1369
1370
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();
kahmed10's avatar
kahmed10 committed
1371
1372
1373
        auto ndims = dims.size();
        assert(ndims >= 2);
        auto kdims = ndims - 2;
kahmed10's avatar
kahmed10 committed
1374

kahmed10's avatar
kahmed10 committed
1375
1376
1377
1378
        std::vector<int64_t> axes(kdims);
        std::iota(axes.begin(), axes.end(), 2);

        auto mean            = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x);
kahmed10's avatar
kahmed10 committed
1379
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
1380
        auto l0              = prog.add_instruction(make_op("sqdiff"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1381
        auto variance        = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), l0);
1382
        auto l1              = prog.add_instruction(make_op("sub"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1383
1384
1385
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
1386
1387
1388
        auto l2              = prog.add_instruction(make_op("add"), variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(make_op("rsqrt"), l2);
        auto l4              = prog.add_instruction(make_op("mul"), l1, l3);
kahmed10's avatar
kahmed10 committed
1389
1390
1391
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
1392
1393
        auto l5         = prog.add_instruction(make_op("mul"), l4, scale_bcast);
        return prog.add_instruction(make_op("add"), l5, bias_bcast);
kahmed10's avatar
kahmed10 committed
1394
1395
    }

1396
1397
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1398
    {
Khalique's avatar
Khalique committed
1399
        float alpha = 0.01; // default alpha val for leaky relu
1400
        if(contains(info.attributes, "alpha"))
1401
        {
1402
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1403
        }
1404
        auto op = make_op("leaky_relu", {{"alpha", alpha}});
1405
1406
1407
        return prog.add_instruction(op, args.front());
    }

1408
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1409
1410
    {
        float alpha = 1.0; // default alpha val for elu
1411
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1412
        {
1413
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1414
        }
1415
        auto op = make_op("elu", {{"alpha", alpha}});
Khalique's avatar
Khalique committed
1416
1417
1418
        return prog.add_instruction(op, args.front());
    }

1419
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1420
1421
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1422
1423
1424
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1425
1426
1427
1428
1429
1430
1431
1432
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1433
1434
1435
1436
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1437
1438
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1439
1440
1441
    {
        float scale = 1.0;
        std::vector<float> bias{};
1442
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1443
        {
1444
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1445
1446
        }

1447
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1448
        {
1449
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1450
1451
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1452
1453
1454
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1455

Shucai Xiao's avatar
Shucai Xiao committed
1456
1457
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1458

1459
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
1460
1461
1462
1463
        auto img_scaled =
            prog.add_instruction(migraphx::make_op("mul"), args.front(), scale_tensor);
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
        return prog.add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1464
    }
Khalique's avatar
Khalique committed
1465

Khalique's avatar
Khalique committed
1466
    instruction_ref
1467
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1468
1469
    {
        std::vector<int64_t> perm{};
1470
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1471
        {
1472
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1473
1474
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1475
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1476
1477
    }

1478
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1479
1480
    {
        std::vector<int64_t> pads{};
1481
1482
1483
1484
1485
1486
1487
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1488
        {
1489
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1490
1491
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1492
1493
1494
1495
1496
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1497
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1498
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1499
        {
1500
            return prog.add_instruction(make_op("identity"), args.front());
1501
        }
1502

kahmed10's avatar
kahmed10 committed
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1532
        {
1533
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1534
        }
1535

Khalique's avatar
Khalique committed
1536
1537
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
Shucai Xiao's avatar
Shucai Xiao committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

    instruction_ref
    parse_selu(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        auto type   = args[0]->get_shape().type();
        auto lens   = args[0]->get_shape().lens();
        float alpha = 1.67326f;
        if(contains(info.attributes, "alpha"))
        {
            alpha = info.attributes.at("alpha").f();
        }

        float gamma = 1.0507f;
        if(contains(info.attributes, "gamma"))
        {
            gamma = info.attributes.at("gamma").f();
        }

        auto l_alpha = prog.add_literal({{type, {1}}, {alpha}});
        auto l_gamma = prog.add_literal({{type, {1}}, {gamma / 2.0f}});
        if(lens != std::vector<std::size_t>{1})
        {
            l_alpha =
                prog.add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), l_alpha);
            l_gamma =
                prog.add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), l_gamma);
        }

        auto sign_x = prog.add_instruction(make_op("sign"), args[0]);
        auto exp_x  = prog.add_instruction(make_op("exp"), args[0]);

        auto alpha_ex  = prog.add_instruction(make_op("mul"), l_alpha, exp_x);
        auto aex_alpha = prog.add_instruction(make_op("sub"), alpha_ex, l_alpha);

        auto ins1 = prog.add_instruction(make_op("add"), aex_alpha, args[0]);
        auto ins2 = prog.add_instruction(make_op("sub"), aex_alpha, args[0]);

        auto sign2   = prog.add_instruction(make_op("mul"), sign_x, ins2);
        auto ins_sub = prog.add_instruction(make_op("sub"), ins1, sign2);

        return prog.add_instruction(make_op("mul"), ins_sub, l_gamma);
    }

1581
1582
1583
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1584
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1585
1586
    {
        if(args.size() != 1)
1587
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1600
1601
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1602
1603
1604
1605
1606
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1607
        if(contains(info.attributes, "dtype"))
1608
        {
1609
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1610
        }
Shucai Xiao's avatar
Shucai Xiao committed
1611
        shape::type_t type = get_type(dtype);
1612

1613
        if(contains(info.attributes, "input_as_shape"))
1614
        {
1615
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1616
1617
        }

1618
        if(contains(info.attributes, "value"))
1619
        {
1620
            value = parse_value(info.attributes.at("value")).at<float>();
1621
1622
        }

1623
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1624
        {
1625
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1626
1627
        }

1628
1629
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1630
            if(args.size() != 1)
1631
            {
1632
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1633
1634
            }

1635
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1636
            {
1637
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1638
                               "at the same time");
1639
1640
            }

1641
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1642
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1643

1644
1645
1646
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1647
1648
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1649
1650
1651
        }
        else if(input_as_shape == 0)
        {
1652
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1653
            {
1654
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1655
1656
            }

1657
            literal ls = parse_value(info.attributes.at("shape"));
1658
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1659
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1660
            migraphx::shape s{type, dims};
1661
1662
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1663
1664
1665
        }
        else
        {
1666
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1667
1668
1669
        }
    }

1670
1671
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1672
1673
    {
        literal l_val{};
1674
        if(contains(info.attributes, "value"))
1675
        {
1676
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1677
            if(l_val.get_shape().elements() != 1)
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1689

Shucai Xiao's avatar
Shucai Xiao committed
1690
        if(args.empty())
1691
        {
Shucai Xiao's avatar
Shucai Xiao committed
1692
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1693
1694
1695
        }
        else
        {
1696
1697
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1698
            if(args[0]->get_shape().elements() == 0)
1699
            {
1700
                s = migraphx::shape{type, {1}, {0}};
1701
            }
1702
1703
1704
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1705
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1706

1707
1708
1709
1710
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1711

Shucai Xiao's avatar
Shucai Xiao committed
1712
            literal l_out{};
1713
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1714
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1715
                // l_val contains only one element
1716
                std::vector<val_type> out_vec(s.elements(), val.front());
1717
1718
1719
1720
1721
1722
1723
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1724
    instruction_ref
1725
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1726
    {
Shucai Xiao's avatar
Shucai Xiao committed
1727
        auto in_lens             = args[0]->get_shape().lens();
1728
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1729
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1730
1731
1732
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1733
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1734
1735
    }

Shucai Xiao's avatar
Shucai Xiao committed
1736
    std::vector<instruction_ref>
1737
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1738
1739
    {
        migraphx::shape input_shape = args[0]->get_shape();
1740
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1741

1742
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1743
        {
1744
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1745
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1746
1747
1748
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1749
1750
1751
1752
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1753
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1754
        {
1755
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1756
1757
        }

1758
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1759
1760
        if(direction == "bidirectional")
        {
1761
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1762
1763
1764
        }
        else if(direction == "reverse")
        {
1765
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1766
1767
        }

1768
        std::vector<std::string> vec_names{"tanh"};
1769
        if(contains(info.attributes, "activations"))
1770
        {
1771
            auto names = info.attributes.at("activations").strings();
1772
            vec_names.clear();
1773
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1774
1775
1776
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1777
1778
        }

1779
1780
1781
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1782
        if(name_it != vec_names.end())
1783
1784
1785
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1786

Shucai Xiao's avatar
Shucai Xiao committed
1787
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1788
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1789
        // if only one actv function is provided, we use it in both
1790
        // forward and reverse direction
1791
        if(dirct == op::rnn_direction::bidirectional)
1792
        {
Shucai Xiao's avatar
Shucai Xiao committed
1793
            if(vec_names.size() == 1)
1794
1795
1796
1797
1798
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1799
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1800
1801
1802
1803
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1804

Shucai Xiao's avatar
Shucai Xiao committed
1805
1806
        // To be added later
        float clip = 0.0;
1807
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1808
        {
1809
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1810
1811
        }

1812
1813
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1814
        if(args.size() < 6)
1815
1816
1817
1818
1819
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1820
1821
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1822
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1823

1824
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1825
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1826

Shucai Xiao's avatar
Shucai Xiao committed
1827
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1828
1829
    }

1830
    std::vector<instruction_ref>
1831
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1832
1833
1834
1835
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1836
        if(contains(info.attributes, "hidden_size"))
1837
        {
1838
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1839
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1840
1841
1842
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1843
1844
1845
1846
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1847
        if(contains(info.attributes, "direction"))
1848
        {
1849
            direction = info.attributes.at("direction").s();
1850
1851
        }

1852
        op::rnn_direction dirct = op::rnn_direction::forward;
1853
1854
        if(direction == "bidirectional")
        {
1855
            dirct = op::rnn_direction::bidirectional;
1856
1857
1858
        }
        else if(direction == "reverse")
        {
1859
            dirct = op::rnn_direction::reverse;
1860
1861
        }

1862
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1863
        if(contains(info.attributes, "activations"))
1864
        {
1865
            auto names = info.attributes.at("activations").strings();
1866
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1867
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1868
1869
1870
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1871
1872
        }

1873
        // need 4 activation functions
1874
        if(dirct == op::rnn_direction::bidirectional)
1875
        {
Shucai Xiao's avatar
Shucai Xiao committed
1876
            // 4 activation functions are used in the bidirectional
1877
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1878
1879
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1880
1881
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1882
1883
1884
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1885
            if(vec_names.size() == 1)
1886
            {
1887
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1888
            }
1889
            else if(vec_names.size() == 2)
1890
            {
1891
1892
1893
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1894
            }
1895
            else if(vec_names.size() == 3)
1896
            {
1897
                vec_names.push_back(vec_names.at(2));
1898
1899
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1900
        else
1901
        {
1902
            if(vec_names.size() == 1)
1903
            {
1904
                vec_names.push_back(vec_names.at(0));
1905
1906
1907
            }
        }

1908
1909
1910
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1911
        if(name_it != vec_names.end())
1912
1913
1914
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1915

Shucai Xiao's avatar
Shucai Xiao committed
1916
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1917
1918
1919
1920
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1921
1922

        float clip = 0.0;
1923
        if(contains(info.attributes, "clip"))
1924
        {
1925
            clip = parse_value(info.attributes.at("clip")).at<float>();
1926
1927
1928
        }

        int linear_before_reset = 0;
1929
        if(contains(info.attributes, "linear_before_reset"))
1930
        {
1931
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1932
1933
        }

Shucai Xiao's avatar
Shucai Xiao committed
1934
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1935
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1936
1937
1938
1939
1940
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1941
1942
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1943
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1944
            std::move(args));
1945
1946

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1947
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1948

Shucai Xiao's avatar
Shucai Xiao committed
1949
        return {hidden_states, last_output};
1950
1951
    }

Shucai Xiao's avatar
Shucai Xiao committed
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
2037
    std::vector<instruction_ref>
2038
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2039
2040
2041
2042
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

2043
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
2044
        {
2045
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2046
2047
2048
2049
2050
2051
2052
2053
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
2054
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
2055
        {
2056
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
2057
2058
        }

Shucai Xiao's avatar
Shucai Xiao committed
2059
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2060
2061
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2062
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
2063
2064
2065
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2066
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
2067
        }
Shucai Xiao's avatar
Shucai Xiao committed
2068
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
2069
        {
Shucai Xiao's avatar
Shucai Xiao committed
2070
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2071
2072
2073
2074
2075
2076
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

2077
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
2078
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
2079
        {
2080
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
2081
2082
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
2083
2084
2085
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
2086
2087
        }

Shucai Xiao's avatar
Shucai Xiao committed
2088
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
2089

2090
2091
2092
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2093
        if(name_it != vec_names.end())
2094
2095
2096
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2097
2098

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2099
2100
2101
2102
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
2103
2104

        float clip = 0.0;
2105
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2106
        {
2107
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2108
2109
2110
        }

        int input_forget = 0;
2111
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
2112
        {
2113
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2114
2115
2116
2117
2118
2119
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
2120
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
2121
2122
2123
2124
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
2125
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2126

Shucai Xiao's avatar
Shucai Xiao committed
2127
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2128
2129

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
2130
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2131
2132
2133

        return {hidden_states, last_output, last_cell_output};
    }
2134

2135
2136
2137
2138
    instruction_ref parse_reduce_oper(const std::string&,
                                      const std::string& op_name,
                                      node_info info,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2139
2140
2141
2142
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
2143
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
2144
        std::iota(axes.begin(), axes.end(), 0);
2145
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
2146
2147
        {
            axes.clear();
2148
            auto&& attr_axes = info.attributes["axes"].ints();
2149
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
2150
2151
2152
        }

        int keep_dims = 1;
2153
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
2154
        {
2155
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2156
2157
2158
2159
        }

        if(keep_dims == 1)
        {
2160
            return prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2161
2162
2163
        }
        else
        {
2164
            auto ins = prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
2165
            return prog.add_instruction(op::squeeze{axes}, ins);
2166
2167
        }
    }
2168

Shucai Xiao's avatar
Shucai Xiao committed
2169
    instruction_ref
2170
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2171
    {
2172
2173
        auto abs_ins = prog.add_instruction(make_op("abs"), args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2174
2175
2176
    }

    instruction_ref
2177
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2178
    {
2179
2180
2181
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        auto sum_ins    = parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
        return prog.add_instruction(make_op("sqrt"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2182
2183
    }

2184
2185
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2186
    {
2187
2188
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), std::move(args));
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2189
2190
    }

2191
2192
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2193
    {
2194
2195
2196
        auto exp_ins = prog.add_instruction(make_op("exp"), args[0]);
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), {exp_ins});
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2197
2198
    }

2199
2200
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2201
    {
2202
2203
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2204
2205
    }

Shucai Xiao's avatar
Shucai Xiao committed
2206
    instruction_ref
2207
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
2208
    {
2209
        if(!contains(info.attributes, "to"))
2210
2211
2212
2213
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2214
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2215
        shape::type_t type = get_type(to_type);
Shucai Xiao's avatar
Shucai Xiao committed
2216
        return prog.add_instruction(make_op("convert", {{"target_type", type}}), std::move(args));
2217
    }
Shucai Xiao's avatar
Shucai Xiao committed
2218

2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2272
2273
2274
2275
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2276
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2277
2278
2279
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2280
2281
2282
2283
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2284

Shucai Xiao's avatar
Shucai Xiao committed
2285
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2286
2287
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2288
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2289
2290
        }

Shucai Xiao's avatar
Shucai Xiao committed
2291
2292
2293
2294
2295
2296
2297
2298
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2299
        {
Shucai Xiao's avatar
Shucai Xiao committed
2300
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2301
        }
Shucai Xiao's avatar
Shucai Xiao committed
2302
2303
2304
2305
2306
2307
2308
2309
2310
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
2311
        auto diff          = prog.add_instruction(make_op("sub"), on_val, off_val);
Shucai Xiao's avatar
Shucai Xiao committed
2312
2313
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
2314
2315
        auto l_mul         = prog.add_instruction(make_op("mul"), tr_out, unsq_diff_val);
        return prog.add_instruction(make_op("add"), l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2316
2317
    }

kahmed10's avatar
kahmed10 committed
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
2399
2400
2401
2402
2403
2404
2405
2406
2407
        case reduce_mode_t::sum:
            l0 = prog.add_instruction(make_op("reduce_sum", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::mean:
            l0 = prog.add_instruction(make_op("reduce_mean", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::max:
            l0 = prog.add_instruction(make_op("reduce_max", {{"axes", {0}}}), l0);
            break;
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
    std::vector<instruction_ref>
    parse_dropout(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto out = prog.add_instruction(make_op("identity"), args[0]);
        auto s   = args[0]->get_shape();
        std::vector<int8_t> vec(s.elements(), 1);
        shape mask_s{shape::bool_type, s.lens()};
        auto mask = prog.add_literal(literal(mask_s, vec));

        return {out, mask};
    }

Shucai Xiao's avatar
Shucai Xiao committed
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
    template <class T>
    std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
    {
        std::vector<std::size_t> indices;
        for(std::size_t i = 0; i < data.size(); ++i)
        {
            if(!float_equal(data[i], 0))
                indices.push_back(i);
        }

        return indices;
    }

    instruction_ref
    parse_nonzero(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument data_arg = args.back()->eval();
        check_arg_empty(data_arg, "PARSE_NONZERO: cannot support non-constant input!");

        std::vector<std::size_t> indices;
        data_arg.visit([&](auto val) {
            using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
            std::vector<val_type> vec_data;
            vec_data.assign(val.begin(), val.end());
            indices = this->nonzero_indices(vec_data);
        });

        shape in_s = args[0]->get_shape();
        shape out_s{shape::int64_type, {in_s.lens().size(), indices.size()}};

        std::vector<int64_t> out_data(out_s.elements());
        for(std::size_t i = 0; i < indices.size(); ++i)
        {
            auto idx = in_s.multi(indices[i]);
            for(std::size_t j = 0; j < in_s.lens().size(); ++j)
            {
                out_data[out_s.index({j, i})] = idx[j];
            }
        }

        return prog.add_literal(literal(out_s, out_data));
    }

2481
2482
2483
2484
    instruction_ref parse_compare_op(const std::string&,
                                     const std::string& op_name,
                                     const node_info&,
                                     std::vector<instruction_ref> args)
2485
    {
2486
        auto l = add_broadcastable_binary_op(args[0], args[1], op_name);
2487
2488
        if(l->get_shape().type() != shape::bool_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2489
            l = prog.add_instruction(make_op("convert", {{"target_type", shape::bool_type}}), l);
2490
2491
2492
2493
        }
        return l;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
    instruction_ref
    parse_upsample(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode != "nearest")
            {
                MIGRAPHX_THROW("PARSE_UPSAMPLE: only nearest mode is supported!");
            }
        }

        auto arg_scale = args[1]->eval();
        check_arg_empty(arg_scale, "PARSE_UPSAMPLE: only constant scale is supported!");
        std::vector<float> vec_scale;
        arg_scale.visit([&](auto v) { vec_scale.assign(v.begin(), v.end()); });

        auto in_s    = args[0]->get_shape();
        auto in_lens = in_s.lens();
        if(in_lens.size() != vec_scale.size())
        {
            MIGRAPHX_THROW("PARSE_UPSAMPLE: ranks of input and scale are different!");
        }

        std::vector<std::size_t> out_lens(in_lens.size());
        std::transform(in_lens.begin(),
                       in_lens.end(),
                       vec_scale.begin(),
                       out_lens.begin(),
                       [&](auto idx, auto scale) { return static_cast<std::size_t>(idx * scale); });

        std::vector<float> idx_scale(in_lens.size());
        std::transform(
            out_lens.begin(),
            out_lens.end(),
            in_lens.begin(),
            idx_scale.begin(),
            [](auto od, auto id) { return (od == id) ? 1.0f : (id - 1.0f) / (od - 1.0f); });

        shape out_s{in_s.type(), out_lens};
        std::vector<int> ind(out_s.elements());

        // map out_idx to in_idx
        shape_for_each(out_s, [&](auto idx) {
            auto in_idx = idx;
            std::transform(idx.begin(),
                           idx.end(),
                           idx_scale.begin(),
                           in_idx.begin(),
                           // nearest mode
                           [](auto index, auto scale) {
                               return static_cast<std::size_t>(std::round(index * scale));
                           });

            ind[out_s.index(idx)] = static_cast<int64_t>(in_s.index(in_idx));
        });

        // reshape input to one-dimension
        std::vector<int64_t> rsp_lens = {static_cast<int64_t>(in_s.elements())};
        shape ind_s{shape::int32_type, out_lens};
        auto rsp     = prog.add_instruction(make_op("reshape", {{"dims", rsp_lens}}), args[0]);
        auto ins_ind = prog.add_literal(literal(ind_s, ind));
        return prog.add_instruction(make_op("gather", {{"axis", 0}}), rsp, ins_ind);
    }

Shucai Xiao's avatar
Shucai Xiao committed
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
    instruction_ref
    parse_where(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto type = args[1]->get_shape().type();
        // the operation of if cond == 1 select x; else select y,
        // is equivalent to cond * (x - y) + y
        auto cond = prog.add_instruction(make_op("convert", {{"target_type", type}}), args[0]);
        auto diff = add_broadcastable_binary_op(args[1], args[2], "sub");
        auto cd   = add_broadcastable_binary_op(diff, cond, "mul");
        return add_broadcastable_binary_op(cd, args[2], "add");
    }

Paul's avatar
Paul committed
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2583
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2584
2585
2586
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2603
2604
    void parse_graph(const onnx::GraphProto& graph)
    {
2605
        for(auto&& f : graph.initializer())
2606
2607
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2608
2609
2610
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2611
2612
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2613
            {
2614
2615
2616
2617
2618
2619
2620
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2621
2622
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2623
        }
2624
2625

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2626
        {
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2646
2647
2648
2649
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2662
        }
Shucai Xiao's avatar
Shucai Xiao committed
2663

2664
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2665
        auto prog_output = graph.output();
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2686
2687
    }

Shucai Xiao's avatar
Shucai Xiao committed
2688
    void parse_undefined(const std::string& name)
2689
    {
Shucai Xiao's avatar
Shucai Xiao committed
2690
2691
2692
2693
2694
        if(!contains(instructions, name))
        {
            auto ins           = prog.add_instruction(op::undefined{});
            instructions[name] = ins;
        }
2695
2696
    }

Paul's avatar
Paul committed
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
    static shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 9: return shape::bool_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }

Paul's avatar
Paul committed
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2744
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2745
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2746
2747
2748
2749
2750
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2751
2752
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2753
2754
        case onnx::AttributeProto::GRAPHS: return {};
        }
Shucai Xiao's avatar
Shucai Xiao committed
2755
        MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
Paul's avatar
Paul committed
2756
2757
2758
2759
2760
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2761
2762
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2763
            const std::string& s = t.raw_data();
Shucai Xiao's avatar
Shucai Xiao committed
2764
2765
            auto type            = get_type(t.data_type());
            return create_literal(type, dims, s.data());
2766
        }
Shucai Xiao's avatar
Shucai Xiao committed
2767

Paul's avatar
Paul committed
2768
2769
        switch(t.data_type())
        {
Shucai Xiao's avatar
Shucai Xiao committed
2770
2771
2772
2773
        case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
        case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
        case onnx::TensorProto::UINT8:
            return create_literal(shape::uint8_type, dims, t.int32_data());
Paul's avatar
Paul committed
2774
        case onnx::TensorProto::INT16:
Shucai Xiao's avatar
Shucai Xiao committed
2775
2776
2777
            return create_literal(shape::int16_type, dims, t.int32_data());
        case onnx::TensorProto::UINT16:
            return create_literal(shape::uint16_type, dims, t.int32_data());
Paul's avatar
Paul committed
2778
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
2779
            return create_literal(shape::int32_type, dims, t.int32_data());
Shucai Xiao's avatar
Shucai Xiao committed
2780
2781
        case onnx::TensorProto::UINT32:
            return create_literal(shape::uint32_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2782
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2783
            return create_literal(shape::int64_type, dims, t.int64_data());
Shucai Xiao's avatar
Shucai Xiao committed
2784
2785
        case onnx::TensorProto::UINT64:
            return create_literal(shape::uint64_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2786
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2787
        {
Khalique's avatar
Khalique committed
2788
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2789
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2790
2791
2792
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2793
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2794
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2795
        }
Shucai Xiao's avatar
Shucai Xiao committed
2796
2797
2798
2799
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2800
2801
2802
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2803
2804
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2805
        MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
Paul's avatar
Paul committed
2806
2807
    }

Khalique's avatar
Khalique committed
2808
    static literal
2809
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2810
    {
Khalique's avatar
Khalique committed
2811
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2812
        if(dims.empty())
2813
            return literal{{shape_type}, data};
2814
2815
2816
        return literal{{shape_type, dims}, data};
    }

2817
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2818
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2819
2820
    {
        if(dims.empty())
2821
            return literal{{shape_type}, data.begin(), data.end()};
2822
        return literal{{shape_type, dims}, data.begin(), data.end()};
2823
2824
    }

2825
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2826
    {
Shucai Xiao's avatar
Shucai Xiao committed
2827
        shape::type_t shape_type = get_type(t.tensor_type().elem_type());
2828
2829
2830
2831
2832
        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2833
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2834
        auto&& tensor_dims = t.tensor_type().shape().dim();
2835
2836
2837
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2838
2839
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2840
                           {
2841
                               if(static_cast<int>(d.dim_value()) <= 0)
2842
2843
2844
                               {
                                   return default_dim_value;
                               }
2845
                               return d.dim_value();
2846
                           }
2847
2848
2849
2850
                           else
                           {
                               return default_dim_value;
                           }
2851
                       });
2852

2853
2854
2855
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2856
2857
        return {shape_type, dims};
    }
2858

Shucai Xiao's avatar
Shucai Xiao committed
2859
2860
    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2861
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2862
2863
2864
2865
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2866
2867
};

Paul Fultz II's avatar
Paul Fultz II committed
2868
template <class... Ts>
2869
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2870
2871
{
    onnx_parser parser;
2872
2873
2874
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2875

2876
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2877
    {
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2888
    }
2889
    else
Paul's avatar
Paul committed
2890
    {
2891
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2892
2893
2894
2895
    }
    return std::move(parser.prog);
}

2896
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2897
2898
2899
2900
2901
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2902
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2903
2904
2905
2906
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2907
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2908
2909
2910
2911
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2912
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2913
} // namespace migraphx