nodes.py 71.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
comfyanonymous's avatar
comfyanonymous committed
11

12
from PIL import Image, ImageOps, ImageSequence
comfyanonymous's avatar
comfyanonymous committed
13
14
from PIL.PngImagePlugin import PngInfo
import numpy as np
15
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
16

comfyanonymous's avatar
comfyanonymous committed
17
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
18
19


20
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.samplers
22
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
24
import comfy.utils
25
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
26

27
import comfy.clip_vision
28

29
import comfy.model_management
30
31
from comfy.cli_args import args

32
import importlib
comfyanonymous's avatar
comfyanonymous committed
33

34
import folder_paths
35
import latent_preview
space-nuko's avatar
space-nuko committed
36

37
def before_node_execution():
38
    comfy.model_management.throw_exception_if_processing_interrupted()
39

40
def interrupt_processing(value=True):
41
    comfy.model_management.interrupt_current_processing(value)
42

43
44
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
45
46
47
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
48
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
49
50
51
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

52
53
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
54
    def encode(self, clip, text):
55
56
57
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
58
59
60
61
62
63
64
65

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

66
67
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
68
69
70
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
71
72
73
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
74
75
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
76
77
78
79
80
81
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
82
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
83
        out = []
comfyanonymous's avatar
comfyanonymous committed
84
85
86
87
88

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]
89
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
90
91
92

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
93
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
98
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
99
100
101
102
103
104
105
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
106
107
108
            out.append(n)
        return (out, )

109
110
111
112
113
114
115
116
117
118
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

119
    CATEGORY = "conditioning"
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
            print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
137
138
139
140
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
141
142
143
144
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
145
146
147
148
149
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

150
151
    CATEGORY = "conditioning"

152
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
153
154
155
156
157
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
158
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
159
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
160
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
class ConditioningSetAreaPercentage:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, width, height, x, y, strength):
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = ("percentage", height, width, y, x)
            n[1]['strength'] = strength
            n[1]['set_area_to_bounds'] = False
            c.append(n)
        return (c, )

Jacob Segal's avatar
Jacob Segal committed
187
188
189
190
191
192
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
193
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
194
195
196
197
198
199
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

200
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
201
        c = []
202
203
204
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
205
206
207
208
209
210
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
211
            n[1]['set_area_to_bounds'] = set_area_to_bounds
212
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
213
214
215
            c.append(n)
        return (c, )

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

235
236
237
238
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
239
240
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
241
242
243
244
245
246
247
248
249
250
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
        c = []
        for t in conditioning:
            d = t[1].copy()
251
252
            d['start_percent'] = start
            d['end_percent'] = end
253
254
255
256
            n = [t[0], d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
261
262
263
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

264
265
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
266
    def decode(self, vae, samples):
267
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
268

269
270
271
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
272
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
comfyanonymous's avatar
comfyanonymous committed
273
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
274
                            }}
275
276
277
278
279
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

280
    def decode(self, vae, samples, tile_size):
281
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
282

comfyanonymous's avatar
comfyanonymous committed
283
284
285
286
287
288
289
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

290
291
    CATEGORY = "latent"

292
293
294
295
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
296
        if pixels.shape[1] != x or pixels.shape[2] != y:
297
298
299
300
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
301

302
303
304
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
305
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
306

comfyanonymous's avatar
comfyanonymous committed
307
308
309
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
310
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
311
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
312
                            }}
comfyanonymous's avatar
comfyanonymous committed
313
314
315
316
317
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

318
    def encode(self, vae, pixels, tile_size):
319
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
320
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
321
        return ({"samples":t}, )
322

323
324
325
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
326
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
327
328
329
330
331
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

332
    def encode(self, vae, pixels, mask, grow_mask_by=6):
333
334
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
335
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
336

337
        pixels = pixels.clone()
338
        if pixels.shape[1] != x or pixels.shape[2] != y:
339
340
341
342
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
343

344
        #grow mask by a few pixels to keep things seamless in latent space
345
346
347
348
349
350
351
352
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

353
        m = (1.0 - mask.round()).squeeze(1)
354
355
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
356
            pixels[:,:,:,i] *= m
357
358
359
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

360
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

class InpaintModelConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "pixels": ("IMAGE", ),
                             "mask": ("MASK", ),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/inpaint"

    def encode(self, positive, negative, pixels, vae, mask):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")

        orig_pixels = pixels
        pixels = orig_pixels.clone()
        if pixels.shape[1] != x or pixels.shape[2] != y:
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]

        m = (1.0 - mask.round()).squeeze(1)
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
            pixels[:,:,:,i] *= m
            pixels[:,:,:,i] += 0.5
        concat_latent = vae.encode(pixels)
        orig_latent = vae.encode(orig_pixels)

        out_latent = {}

        out_latent["samples"] = orig_latent
        out_latent["noise_mask"] = mask

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()
                d["concat_latent_image"] = concat_latent
                d["concat_mask"] = mask
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1], out_latent)


Dr.Lt.Data's avatar
Dr.Lt.Data committed
418
419
class SaveLatent:
    def __init__(self):
420
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
421
422
423
424

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
425
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
426
427
428
429
430
431
432
433
434
435
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
436
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
437
438
439
440
441
442

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

443
444
445
446
447
448
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
449
450

        file = f"{filename}_{counter:05}_.latent"
451
452
453
454
455
456
457
458

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
459
460
        file = os.path.join(full_output_folder, file)

461
462
        output = {}
        output["latent_tensor"] = samples["samples"]
463
        output["latent_format_version_0"] = torch.tensor([])
464

465
        comfy.utils.save_torch_file(output, file, metadata=metadata)
466
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
467
468
469
470
471


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
472
473
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
474
475
476
477
478
479
480
481
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
482
483
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
484
485
486
487
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
488
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
489

490
491
492
493
494
495
496
497
498
499
500
501
502
503
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
504

comfyanonymous's avatar
comfyanonymous committed
505
506
507
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
508
509
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
510
511
512
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

513
    CATEGORY = "advanced/loaders"
514

comfyanonymous's avatar
comfyanonymous committed
515
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
516
517
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
518
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
519

520
521
522
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
523
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
524
525
526
527
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

528
    CATEGORY = "loaders"
529

530
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
531
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
532
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
533
        return out[:3]
534

sALTaccount's avatar
sALTaccount committed
535
536
537
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
538
        paths = []
sALTaccount's avatar
sALTaccount committed
539
        for search_path in folder_paths.get_folder_paths("diffusers"):
540
            if os.path.exists(search_path):
541
542
543
544
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

545
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
546
547
548
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

549
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
550
551

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
552
553
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
554
555
556
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
557
                    break
558

559
        return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
560
561


562
563
564
565
566
567
568
569
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

570
    CATEGORY = "loaders"
571
572
573
574
575
576

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

593
class LoraLoader:
594
595
596
    def __init__(self):
        self.loaded_lora = None

597
598
599
600
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
601
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
602
603
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
604
605
606
607
608
609
610
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
611
612
613
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

614
        lora_path = folder_paths.get_full_path("loras", lora_name)
615
616
617
618
619
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
620
621
622
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
623
624
625
626
627
628

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
629
630
        return (model_lora, clip_lora)

631
632
633
634
635
636
637
638
639
640
641
642
643
class LoraLoaderModelOnly(LoraLoader):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_lora_model_only"

    def load_lora_model_only(self, model, lora_name, strength_model):
        return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)

comfyanonymous's avatar
comfyanonymous committed
644
class VAELoader:
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
    @staticmethod
    def vae_list():
        vaes = folder_paths.get_filename_list("vae")
        approx_vaes = folder_paths.get_filename_list("vae_approx")
        sdxl_taesd_enc = False
        sdxl_taesd_dec = False
        sd1_taesd_enc = False
        sd1_taesd_dec = False

        for v in approx_vaes:
            if v.startswith("taesd_decoder."):
                sd1_taesd_dec = True
            elif v.startswith("taesd_encoder."):
                sd1_taesd_enc = True
            elif v.startswith("taesdxl_decoder."):
                sdxl_taesd_dec = True
            elif v.startswith("taesdxl_encoder."):
                sdxl_taesd_enc = True
        if sd1_taesd_dec and sd1_taesd_enc:
            vaes.append("taesd")
        if sdxl_taesd_dec and sdxl_taesd_enc:
            vaes.append("taesdxl")
        return vaes

    @staticmethod
    def load_taesd(name):
        sd = {}
        approx_vaes = folder_paths.get_filename_list("vae_approx")

        encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
        decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))

        enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
        for k in enc:
            sd["taesd_encoder.{}".format(k)] = enc[k]

        dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
        for k in dec:
            sd["taesd_decoder.{}".format(k)] = dec[k]

        if name == "taesd":
            sd["vae_scale"] = torch.tensor(0.18215)
        elif name == "taesdxl":
            sd["vae_scale"] = torch.tensor(0.13025)
        return sd

comfyanonymous's avatar
comfyanonymous committed
691
692
    @classmethod
    def INPUT_TYPES(s):
693
        return {"required": { "vae_name": (s.vae_list(), )}}
comfyanonymous's avatar
comfyanonymous committed
694
695
696
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

697
698
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
699
700
    #TODO: scale factor?
    def load_vae(self, vae_name):
701
702
703
704
705
        if vae_name in ["taesd", "taesdxl"]:
            sd = self.load_taesd(vae_name)
        else:
            vae_path = folder_paths.get_full_path("vae", vae_name)
            sd = comfy.utils.load_torch_file(vae_path)
comfyanonymous's avatar
comfyanonymous committed
706
        vae = comfy.sd.VAE(sd=sd)
comfyanonymous's avatar
comfyanonymous committed
707
708
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
709
710
711
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
712
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
713
714
715
716
717
718
719

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
720
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
721
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
722
723
        return (controlnet,)

724
725
726
727
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
728
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
729
730
731
732
733
734
735

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
736
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
737
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
738
739
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
740
741
742
743

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
744
745
746
747
748
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
749
750
751
752
753
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

754
    def apply_controlnet(self, conditioning, control_net, image, strength):
755
756
757
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
758
759
760
761
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
762
763
764
765
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
766
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
767
768
769
            c.append(n)
        return (c, )

770
771
772
773
774
775
776
777
778

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
779
780
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
781
782
783
784
785
786
787
788
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

789
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
806
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
807
808
809
810
811
812
813
814
815
816
817
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

833
834
835
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
836
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
837
838
839
840
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

841
    CATEGORY = "advanced/loaders"
842

843
    def load_clip(self, clip_name):
844
        clip_path = folder_paths.get_full_path("clip", clip_name)
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
862
863
        return (clip,)

864
865
866
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
867
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
868
869
870
871
872
873
874
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
875
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
876
        clip_vision = comfy.clip_vision.load(clip_path)
877
878
879
880
881
882
883
884
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
885
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
886
887
    FUNCTION = "encode"

888
    CATEGORY = "conditioning"
889
890
891
892
893
894
895
896

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
897
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
898
899
900
901
902
903
904

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
905
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
906
907
908
909
910
911
912
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
913
914
915
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
916
917
918
919
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
920
    CATEGORY = "conditioning/style_model"
921

922
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
923
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
924
        c = []
925
926
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
927
928
929
            c.append(n)
        return (c, )

930
931
932
933
934
935
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
936
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
937
938
939
940
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

941
    CATEGORY = "conditioning"
942

943
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
944
945
946
        if strength == 0:
            return (conditioning, )

947
948
949
        c = []
        for t in conditioning:
            o = t[1].copy()
950
951
952
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
953
            else:
954
                o["unclip_conditioning"] = [x]
955
956
957
958
            n = [t[0], o]
            c.append(n)
        return (c, )

959
960
961
962
963
964
965
966
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
967
    CATEGORY = "loaders"
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
989
    CATEGORY = "conditioning/gligen"
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
1004

comfyanonymous's avatar
comfyanonymous committed
1005
class EmptyLatentImage:
1006
1007
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
1008
1009
1010

    @classmethod
    def INPUT_TYPES(s):
1011
1012
        return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1013
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
comfyanonymous's avatar
comfyanonymous committed
1014
1015
1016
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

1017
1018
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1019
    def generate(self, width, height, batch_size=1):
1020
        latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
1021
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
1022

comfyanonymous's avatar
comfyanonymous committed
1023

1024
1025
1026
1027
1028
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
1029
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
1030
1031
                              }}
    RETURN_TYPES = ("LATENT",)
1032
    FUNCTION = "frombatch"
1033

1034
    CATEGORY = "latent/batch"
1035

1036
    def frombatch(self, samples, batch_index, length):
1037
1038
1039
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1080
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1081

comfyanonymous's avatar
comfyanonymous committed
1082
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
1083
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1084
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
1085
1086
1087
1088

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1089
1090
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1091
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
1092
1093
1094
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

1095
1096
    CATEGORY = "latent"

1097
    def upscale(self, samples, upscale_method, width, height, crop):
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
        if width == 0 and height == 0:
            s = samples
        else:
            s = samples.copy()

            if width == 0:
                height = max(64, height)
                width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
            elif height == 0:
                width = max(64, width)
                height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
            else:
                width = max(64, width)
                height = max(64, height)

            s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1114
1115
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1116
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
1117
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
1144
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1145
1146

    def rotate(self, samples, rotation):
1147
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1148
1149
1150
1151
1152
1153
1154
1155
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

1156
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
1157
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1168
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1169
1170

    def flip(self, samples, flip_method):
1171
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1172
        if flip_method.startswith("x"):
1173
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1174
        elif flip_method.startswith("y"):
1175
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1176
1177

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1178
1179
1180
1181

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1182
1183
1184
1185
1186
1187
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1188
1189
1190
1191
1192
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1193
1194
1195
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1196
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1220

1221
1222
1223
1224
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1225
1226
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1240
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1241

1242
1243
1244
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1245

1246
1247
1248
1249
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1250

1251
1252
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1253
1254
1255
1256
1257
1258
1259
1260
1261
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1262
1263
1264
1265
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1266
1267
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1268
1269
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1270
1271
1272
1273
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1274
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1275
1276

    def crop(self, samples, width, height, x, y):
1277
1278
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1292
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1293
1294
        return (s,)

1295
1296
1297
1298
1299
1300
1301
1302
1303
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1304
    CATEGORY = "latent/inpaint"
1305
1306
1307

    def set_mask(self, samples, mask):
        s = samples.copy()
1308
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1309
1310
        return (s,)

space-nuko's avatar
space-nuko committed
1311
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1312
    latent_image = latent["samples"]
comfyanonymous's avatar
comfyanonymous committed
1313
1314
1315
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1316
1317
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1318

1319
    noise_mask = None
1320
    if "noise_mask" in latent:
1321
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1322

1323
    callback = latent_preview.prepare_callback(model, steps)
1324
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
1325
1326
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
comfyanonymous's avatar
comfyanonymous committed
1327
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1328
1329
1330
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1331

comfyanonymous's avatar
comfyanonymous committed
1332
1333
1334
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1335
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1336
1337
1338
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1339
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1340
1341
1342
1343
1344
1345
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1346
1347
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1348
1349
1350
1351

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1352
1353
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1354
1355
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1356

comfyanonymous's avatar
comfyanonymous committed
1357
1358
1359
1360
1361
1362
1363
1364
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1365
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1366
1367
1368
1369
1370
1371
1372
1373
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1374
1375
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1376
1377
1378
1379
1380

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1381

space-nuko's avatar
space-nuko committed
1382
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1383
1384
1385
1386
1387
1388
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1389
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1390
1391
1392

class SaveImage:
    def __init__(self):
1393
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1394
        self.type = "output"
1395
        self.prefix_append = ""
1396
        self.compress_level = 4
comfyanonymous's avatar
comfyanonymous committed
1397
1398
1399
1400

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1401
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1402
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1403
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1404
1405
1406
1407
1408
1409
1410
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1411
1412
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1413
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1414
        filename_prefix += self.prefix_append
1415
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1416
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1417
1418
        for image in images:
            i = 255. * image.cpu().numpy()
1419
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1420
1421
1422
1423
1424
1425
1426
1427
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1428

1429
            file = f"{filename}_{counter:05}_.png"
1430
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
m957ymj75urz's avatar
m957ymj75urz committed
1431
1432
1433
1434
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1435
            })
1436
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1437

m957ymj75urz's avatar
m957ymj75urz committed
1438
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1439

pythongosssss's avatar
pythongosssss committed
1440
1441
class PreviewImage(SaveImage):
    def __init__(self):
1442
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1443
        self.type = "temp"
1444
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
1445
        self.compress_level = 1
pythongosssss's avatar
pythongosssss committed
1446
1447
1448

    @classmethod
    def INPUT_TYPES(s):
1449
        return {"required":
pythongosssss's avatar
pythongosssss committed
1450
1451
1452
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1453

1454
1455
1456
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1457
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1458
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1459
        return {"required":
1460
                    {"image": (sorted(files), {"image_upload": True})},
1461
                }
1462
1463

    CATEGORY = "image"
1464

1465
    RETURN_TYPES = ("IMAGE", "MASK")
1466
1467
    FUNCTION = "load_image"
    def load_image(self, image):
1468
        image_path = folder_paths.get_annotated_filepath(image)
1469
1470
1471
1472
1473
        img = Image.open(image_path)
        output_images = []
        output_masks = []
        for i in ImageSequence.Iterator(img):
            i = ImageOps.exif_transpose(i)
1474
1475
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            output_images.append(image)
            output_masks.append(mask.unsqueeze(0))

        if len(output_images) > 1:
            output_image = torch.cat(output_images, dim=0)
            output_mask = torch.cat(output_masks, dim=0)
1490
        else:
1491
1492
1493
1494
            output_image = output_images[0]
            output_mask = output_masks[0]

        return (output_image, output_mask)
1495

1496
1497
    @classmethod
    def IS_CHANGED(s, image):
1498
        image_path = folder_paths.get_annotated_filepath(image)
1499
1500
1501
1502
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1503

1504
1505
1506
1507
1508
1509
1510
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1511
class LoadImageMask:
1512
    _color_channels = ["alpha", "red", "green", "blue"]
1513
1514
    @classmethod
    def INPUT_TYPES(s):
1515
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1516
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1517
        return {"required":
1518
                    {"image": (sorted(files), {"image_upload": True}),
1519
                     "channel": (s._color_channels, ), }
1520
1521
                }

1522
    CATEGORY = "mask"
1523
1524
1525
1526

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1527
        image_path = folder_paths.get_annotated_filepath(image)
1528
        i = Image.open(image_path)
1529
        i = ImageOps.exif_transpose(i)
1530
        if i.getbands() != ("R", "G", "B", "A"):
1531
1532
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1533
            i = i.convert("RGBA")
1534
1535
1536
1537
1538
1539
1540
1541
1542
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1543
        return (mask.unsqueeze(0),)
1544
1545
1546

    @classmethod
    def IS_CHANGED(s, image, channel):
1547
        image_path = folder_paths.get_annotated_filepath(image)
1548
1549
1550
1551
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1552

1553
    @classmethod
1554
    def VALIDATE_INPUTS(s, image):
1555
1556
1557
1558
1559
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

comfyanonymous's avatar
comfyanonymous committed
1560
class ImageScale:
1561
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1562
1563
1564
1565
1566
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1567
1568
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1569
1570
1571
1572
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1573
    CATEGORY = "image/upscaling"
1574

comfyanonymous's avatar
comfyanonymous committed
1575
    def upscale(self, image, upscale_method, width, height, crop):
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
        if width == 0 and height == 0:
            s = image
        else:
            samples = image.movedim(-1,1)

            if width == 0:
                width = max(1, round(samples.shape[3] * height / samples.shape[2]))
            elif height == 0:
                height = max(1, round(samples.shape[2] * width / samples.shape[3]))

            s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
            s = s.movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
1588
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1589

comfyanonymous's avatar
comfyanonymous committed
1590
class ImageScaleBy:
1591
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1641

comfyanonymous's avatar
comfyanonymous committed
1642
1643
1644
1645
1646
1647
1648
1649
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1650
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
comfyanonymous's avatar
comfyanonymous committed
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1664
1665
1666
1667
1668
1669
1670
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1671
1672
1673
1674
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1675
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1676
1677
1678
1679
1680
1681
1682
1683
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1684
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1685
1686
        d1, d2, d3, d4 = image.size()

1687
        new_image = torch.ones(
Guo Y.K's avatar
Guo Y.K committed
1688
1689
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
1690
1691
        ) * 0.5

Guo Y.K's avatar
Guo Y.K committed
1692
1693
1694
1695
1696
1697
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1698

1699
1700
1701
1702
1703
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1704
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1724

Guo Y.K's avatar
Guo Y.K committed
1725
1726
1727
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1728
1729
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1730
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1731
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1732
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1733
1734
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1735
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1736
1737
1738
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1739
    "LatentUpscaleBy": LatentUpscaleBy,
1740
    "LatentFromBatch": LatentFromBatch,
1741
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1742
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1743
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1744
    "LoadImage": LoadImage,
1745
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1746
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1747
    "ImageScaleBy": ImageScaleBy,
1748
    "ImageInvert": ImageInvert,
1749
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1750
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1751
    "EmptyImage": EmptyImage,
comfyanonymous's avatar
comfyanonymous committed
1752
    "ConditioningAverage": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1753
    "ConditioningCombine": ConditioningCombine,
1754
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1755
    "ConditioningSetArea": ConditioningSetArea,
1756
    "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
Jacob Segal's avatar
Jacob Segal committed
1757
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1758
    "KSamplerAdvanced": KSamplerAdvanced,
1759
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1760
    "LatentComposite": LatentComposite,
1761
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1762
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1763
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1764
    "LatentCrop": LatentCrop,
1765
    "LoraLoader": LoraLoader,
1766
    "CLIPLoader": CLIPLoader,
1767
    "UNETLoader": UNETLoader,
1768
    "DualCLIPLoader": DualCLIPLoader,
1769
    "CLIPVisionEncode": CLIPVisionEncode,
1770
    "StyleModelApply": StyleModelApply,
1771
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1772
    "ControlNetApply": ControlNetApply,
1773
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1774
    "ControlNetLoader": ControlNetLoader,
1775
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1776
1777
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1778
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1779
    "VAEEncodeTiled": VAEEncodeTiled,
1780
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1781
1782
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,
1783
    "InpaintModelConditioning": InpaintModelConditioning,
1784

1785
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1786
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1787
1788

    "LoadLatent": LoadLatent,
1789
    "SaveLatent": SaveLatent,
1790
1791

    "ConditioningZeroOut": ConditioningZeroOut,
1792
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
1793
    "LoraLoaderModelOnly": LoraLoaderModelOnly,
comfyanonymous's avatar
comfyanonymous committed
1794
1795
}

City's avatar
City committed
1796
1797
1798
1799
1800
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
1801
    "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1802
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1817
    "ConditioningAverage ": "Conditioning (Average)",
1818
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1819
    "ConditioningSetArea": "Conditioning (Set Area)",
1820
    "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
Jacob Segal's avatar
Jacob Segal committed
1821
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1822
    "ControlNetApply": "Apply ControlNet",
1823
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1834
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1835
    "LatentComposite": "Latent Composite",
1836
    "LatentBlend": "Latent Blend",
1837
1838
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1839
1840
1841
1842
1843
1844
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1845
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1846
1847
1848
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1849
    "ImageBatch": "Batch Images",
City's avatar
City committed
1850
1851
1852
1853
1854
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1855
1856
EXTENSION_WEB_DIRS = {}

1857
def load_custom_node(module_path, ignore=set()):
1858
1859
1860
1861
1862
1863
1864
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1865
            module_dir = os.path.split(module_path)[0]
1866
1867
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1868
1869
            module_dir = module_path

1870
1871
1872
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1873
1874
1875
1876
1877
1878

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1879
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1880
1881
1882
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1883
1884
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1885
            return True
1886
1887
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1888
            return False
1889
1890
1891
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1892
        return False
1893

Hacker 17082006's avatar
Hacker 17082006 committed
1894
def load_custom_nodes():
1895
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1896
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1897
    node_import_times = []
1898
    for custom_node_path in node_paths:
Enrico Fasoli's avatar
Enrico Fasoli committed
1899
        possible_modules = os.listdir(os.path.realpath(custom_node_path))
1900
1901
1902
1903
1904
1905
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1906
            if module_path.endswith(".disabled"): continue
1907
            time_before = time.perf_counter()
1908
            success = load_custom_node(module_path, base_node_names)
1909
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1910

1911
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1912
        print("\nImport times for custom nodes:")
1913
        for n in sorted(node_import_times):
1914
1915
1916
1917
1918
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1919
        print()
1920

1921
def init_custom_nodes():
1922
1923
1924
1925
1926
1927
1928
    extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
    extras_files = [
        "nodes_latent.py",
        "nodes_hypernetwork.py",
        "nodes_upscale_model.py",
        "nodes_post_processing.py",
        "nodes_mask.py",
1929
        "nodes_compositing.py",
1930
1931
1932
1933
1934
1935
        "nodes_rebatch.py",
        "nodes_model_merging.py",
        "nodes_tomesd.py",
        "nodes_clip_sdxl.py",
        "nodes_canny.py",
        "nodes_freelunch.py",
1936
1937
        "nodes_custom_sampler.py",
        "nodes_hypertile.py",
1938
        "nodes_model_advanced.py",
1939
        "nodes_model_downscale.py",
comfyanonymous's avatar
comfyanonymous committed
1940
        "nodes_images.py",
1941
        "nodes_video_model.py",
1942
        "nodes_sag.py",
Hari's avatar
Hari committed
1943
        "nodes_perpneg.py",
1944
        "nodes_stable3d.py",
1945
        "nodes_sdupscale.py",
1946
        "nodes_photomaker.py",
1947
1948
1949
1950
1951
    ]

    for node_file in extras_files:
        load_custom_node(os.path.join(extras_dir, node_file))

1952
    load_custom_nodes()