nodes.py 49.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10
11
12
13
14

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


comfyanonymous's avatar
comfyanonymous committed
19
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31
32

def before_node_execution():
33
    comfy.model_management.throw_exception_if_processing_interrupted()
34

35
def interrupt_processing(value=True):
36
    comfy.model_management.interrupt_current_processing(value)
37

38
39
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
40
41
42
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
43
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
44
45
46
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

47
48
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
49
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
50
51
52
53
54
55
56
57
58
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

59
60
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
61
62
63
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
64
65
66
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
67
68
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
69
70
71
72
73
74
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
75
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
76
        out = []
comfyanonymous's avatar
comfyanonymous committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
91
92
93
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
98
99
100
101
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

107
108
    CATEGORY = "conditioning"

109
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
115
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
116
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
117
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
118

Jacob Segal's avatar
Jacob Segal committed
119
120
121
122
123
124
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
125
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
126
127
128
129
130
131
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

132
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
133
        c = []
134
135
136
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
137
138
139
140
141
142
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
143
            n[1]['set_area_to_bounds'] = set_area_to_bounds
144
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
145
146
147
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
148
149
150
151
152
153
154
155
156
157
class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

158
159
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
160
    def decode(self, vae, samples):
161
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
178
179
180
181
182
183
184
185
186
187
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

188
189
    CATEGORY = "latent"

190
191
192
193
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
194
        if pixels.shape[1] != x or pixels.shape[2] != y:
195
196
197
198
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
199

200
201
202
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
203
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
204

comfyanonymous's avatar
comfyanonymous committed
205
206
207
208
209
210
211
212
213
214
215
216
217
class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
218
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
219
220
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
221

222
223
224
225
226
227
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
228
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
229
230
231
232
233
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

234
    def encode(self, vae, pixels, mask, grow_mask_by=6):
235
236
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
237
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
238

239
        pixels = pixels.clone()
240
        if pixels.shape[1] != x or pixels.shape[2] != y:
241
242
243
244
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
245

246
        #grow mask by a few pixels to keep things seamless in latent space
247
248
249
250
251
252
253
254
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

255
        m = (1.0 - mask.round()).squeeze(1)
256
257
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
258
            pixels[:,:,:,i] *= m
259
260
261
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

262
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
263
264
265
266

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
267
268
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
269
270
271
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

272
    CATEGORY = "advanced/loaders"
273

comfyanonymous's avatar
comfyanonymous committed
274
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
275
276
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
277
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
278

279
280
281
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
282
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
283
284
285
286
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

287
    CATEGORY = "loaders"
288

289
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
290
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
291
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
292
293
        return out

sALTaccount's avatar
sALTaccount committed
294
295
296
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
297
        paths = []
sALTaccount's avatar
sALTaccount committed
298
        for search_path in folder_paths.get_folder_paths("diffusers"):
299
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
300
                paths += next(os.walk(search_path))[1]
301
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
302
303
304
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

305
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
306
307

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
308
309
310
311
312
313
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
314

315
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
316
317


318
319
320
321
322
323
324
325
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

326
    CATEGORY = "loaders"
327
328
329
330
331
332

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

349
350
351
352
353
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
354
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
355
356
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
357
358
359
360
361
362
363
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
364
        lora_path = folder_paths.get_full_path("loras", lora_name)
365
366
367
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
384
385
386
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
387
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
388
389
390
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

391
392
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
393
394
    #TODO: scale factor?
    def load_vae(self, vae_name):
395
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
396
397
398
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
399
400
401
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
402
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
403
404
405
406
407
408
409

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
410
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
411
412
413
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

414
415
416
417
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
418
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
419
420
421
422
423
424
425

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
426
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
427
428
429
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
430
431
432
433

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
434
435
436
437
438
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
439
440
441
442
443
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

444
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
445
446
447
448
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
449
450
451
452
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
453
454
455
            c.append(n)
        return (c, )

456
457
458
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
459
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
460
461
462
463
464
465
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

466
    def load_clip(self, clip_name):
467
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
468
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
469
470
        return (clip,)

471
472
473
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
474
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
475
476
477
478
479
480
481
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
482
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
483
        clip_vision = comfy.clip_vision.load(clip_path)
484
485
486
487
488
489
490
491
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
492
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
493
494
    FUNCTION = "encode"

495
    CATEGORY = "conditioning"
496
497
498
499
500
501
502
503

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
504
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
505
506
507
508
509
510
511

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
512
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
513
514
515
516
517
518
519
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
520
521
522
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
523
524
525
526
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
527
    CATEGORY = "conditioning/style_model"
528

529
530
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
531
        c = []
532
533
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
534
535
536
            c.append(n)
        return (c, )

537
538
539
540
541
542
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
543
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
544
545
546
547
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

548
    CATEGORY = "conditioning"
549

550
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
551
552
553
        c = []
        for t in conditioning:
            o = t[1].copy()
554
            x = (clip_vision_output, strength, noise_augmentation)
555
556
557
558
559
560
561
562
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

563
564
565
566
567
568
569
570
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
571
    CATEGORY = "loaders"
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
593
    CATEGORY = "conditioning/gligen"
594
595
596
597
598
599
600
601
602
603
604
605
606
607

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
608

comfyanonymous's avatar
comfyanonymous committed
609
610
611
612
613
614
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
615
616
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
617
618
619
620
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

621
622
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
623
624
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
625
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
626

comfyanonymous's avatar
comfyanonymous committed
627

628
629
630
631
632
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
633
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
634
635
                              }}
    RETURN_TYPES = ("LATENT",)
636
    FUNCTION = "frombatch"
637

638
    CATEGORY = "latent/batch"
639

640
    def frombatch(self, samples, batch_index, length):
641
642
643
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
684
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
685

comfyanonymous's avatar
comfyanonymous committed
686
687
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
688
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
689
690
691
692

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
693
694
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
695
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
696
697
698
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

699
700
    CATEGORY = "latent"

701
    def upscale(self, samples, upscale_method, width, height, crop):
702
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
703
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
704
705
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
706
707
708
709
710
711
712
713
714
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
715
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
716
717

    def rotate(self, samples, rotation):
718
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
719
720
721
722
723
724
725
726
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

727
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
728
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
729
730
731
732
733
734
735
736
737
738

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
739
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
740
741

    def flip(self, samples, flip_method):
742
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
743
        if flip_method.startswith("x"):
744
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
745
        elif flip_method.startswith("y"):
746
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
747
748

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
749
750
751
752

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
753
754
755
756
757
758
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
759
760
761
762
763
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
764
765
766
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
767
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
791

comfyanonymous's avatar
comfyanonymous committed
792
793
794
795
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
796
797
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
798
799
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
800
801
802
803
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
804
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
805
806

    def crop(self, samples, width, height, x, y):
807
808
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
809
810
811
812
813
814
815
816
817
818
819
820
821
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
822
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
823
824
        return (s,)

825
826
827
828
829
830
831
832
833
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

834
    CATEGORY = "latent/inpaint"
835
836
837

    def set_mask(self, samples, mask):
        s = samples.copy()
838
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
839
840
        return (s,)

841
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
842
    device = comfy.model_management.get_torch_device()
843
    latent_image = latent["samples"]
844

comfyanonymous's avatar
comfyanonymous committed
845
846
847
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
848
849
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
850

851
    noise_mask = None
852
    if "noise_mask" in latent:
853
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
854

855
    pbar = comfy.utils.ProgressBar(steps)
856
857
    def callback(step, x0, x, total_steps):
        pbar.update_absolute(step + 1, total_steps)
858

859
860
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
861
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
862
863
864
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
865

comfyanonymous's avatar
comfyanonymous committed
866
867
868
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
869
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

885
886
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
887
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
888
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
889

comfyanonymous's avatar
comfyanonymous committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
913

comfyanonymous's avatar
comfyanonymous committed
914
915
916
917
918
919
920
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
921
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
922
923
924

class SaveImage:
    def __init__(self):
925
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
926
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
927
928
929
930

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
931
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
932
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
933
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
934
935
936
937
938
939
940
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

941
942
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
943
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
944
        def map_filename(filename):
945
            prefix_len = len(os.path.basename(filename_prefix))
946
947
948
949
950
951
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
952

953
954
955
956
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
957

958
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
959

m957ymj75urz's avatar
m957ymj75urz committed
960
961
962
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
963
        full_output_folder = os.path.join(self.output_dir, subfolder)
964

965
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
966
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
967
968
            return {}

969
        try:
970
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
971
972
        except ValueError:
            counter = 1
973
        except FileNotFoundError:
974
            os.makedirs(full_output_folder, exist_ok=True)
975
            counter = 1
pythongosssss's avatar
pythongosssss committed
976

m957ymj75urz's avatar
m957ymj75urz committed
977
        results = list()
comfyanonymous's avatar
comfyanonymous committed
978
979
        for image in images:
            i = 255. * image.cpu().numpy()
980
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
981
982
983
984
985
986
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
987

988
            file = f"{filename}_{counter:05}_.png"
989
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
990
991
992
993
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
994
            })
995
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
996

m957ymj75urz's avatar
m957ymj75urz committed
997
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
998

pythongosssss's avatar
pythongosssss committed
999
1000
class PreviewImage(SaveImage):
    def __init__(self):
1001
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1002
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1003
1004
1005

    @classmethod
    def INPUT_TYPES(s):
1006
        return {"required":
pythongosssss's avatar
pythongosssss committed
1007
1008
1009
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1010

1011
1012
1013
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1014
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1015
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1016
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1017
                    {"image": (sorted(files), )},
1018
                }
1019
1020

    CATEGORY = "image"
1021

1022
    RETURN_TYPES = ("IMAGE", "MASK")
1023
1024
    FUNCTION = "load_image"
    def load_image(self, image):
1025
        image_path = folder_paths.get_annotated_filepath(image)
1026
1027
        i = Image.open(image_path)
        image = i.convert("RGB")
1028
        image = np.array(image).astype(np.float32) / 255.0
1029
        image = torch.from_numpy(image)[None,]
1030
1031
1032
1033
1034
1035
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1036

1037
1038
    @classmethod
    def IS_CHANGED(s, image):
1039
        image_path = folder_paths.get_annotated_filepath(image)
1040
1041
1042
1043
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1044

1045
1046
1047
1048
1049
1050
1051
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1052
class LoadImageMask:
1053
    _color_channels = ["alpha", "red", "green", "blue"]
1054
1055
    @classmethod
    def INPUT_TYPES(s):
1056
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1057
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1058
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1059
                    {"image": (sorted(files), ),
1060
                     "channel": (s._color_channels, ), }
1061
1062
                }

1063
    CATEGORY = "mask"
1064
1065
1066
1067

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1068
        image_path = folder_paths.get_annotated_filepath(image)
1069
        i = Image.open(image_path)
1070
1071
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1085
        image_path = folder_paths.get_annotated_filepath(image)
1086
1087
1088
1089
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1101
1102
1103
1104
1105
1106
1107
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1108
1109
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1110
1111
1112
1113
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1114
    CATEGORY = "image/upscaling"
1115

comfyanonymous's avatar
comfyanonymous committed
1116
1117
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1118
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1119
1120
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1121

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1138
1139
1140
1141
1142
1143
1144
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1145
1146
1147
1148
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1149
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1150
1151
1152
1153
1154
1155
1156
1157
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1158
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1171

1172
1173
1174
1175
1176
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1177
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1197

Guo Y.K's avatar
Guo Y.K committed
1198
1199
1200
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1201
1202
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1203
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1204
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1205
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1206
1207
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1208
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1209
1210
1211
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1212
    "LatentFromBatch": LatentFromBatch,
1213
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1214
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1215
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1216
    "LoadImage": LoadImage,
1217
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1218
    "ImageScale": ImageScale,
1219
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1220
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1221
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1222
1223
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1224
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1225
    "KSamplerAdvanced": KSamplerAdvanced,
1226
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1227
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1228
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1229
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1230
    "LatentCrop": LatentCrop,
1231
    "LoraLoader": LoraLoader,
1232
    "CLIPLoader": CLIPLoader,
1233
    "CLIPVisionEncode": CLIPVisionEncode,
1234
    "StyleModelApply": StyleModelApply,
1235
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1236
1237
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1238
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1239
1240
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1241
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1242
    "VAEEncodeTiled": VAEEncodeTiled,
1243
    "TomePatchModel": TomePatchModel,
1244
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1245
1246
1247
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1248
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1249
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1250
1251
}

City's avatar
City committed
1252
1253
1254
1255
1256
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1257
1258
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1273
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1274
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1275
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
1288
1289
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1319
1320
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1321
1322
1323
1324
1325
1326
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1327
def load_custom_nodes():
1328
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1329
    node_import_times = []
1330
1331
1332
1333
1334
1335
1336
1337
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1338
            time_before = time.time()
1339
            load_custom_node(module_path)
1340
1341
1342
1343
            node_import_times.append((time.time() - time_before, module_path))

    slow_nodes = list(filter(lambda a: a[0] > 1.0, node_import_times))
    if len(slow_nodes) > 0:
1344
        print("\nDetected some custom nodes that were slow to import:")
1345
1346
1347
        for n in sorted(slow_nodes):
            print("{:6.1f} seconds to import:".format(n[0]), n[1])
        print()
1348

1349
def init_custom_nodes():
1350
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1351
1352
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1353
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1354
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1355
    load_custom_nodes()