"git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "04ecc83465310985d0ef00ec396db3d2264e2728"
nodes.py 45.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
13

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16


comfyanonymous's avatar
comfyanonymous committed
17
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
18
import comfy.samplers
19
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
21
22
import comfy.utils

23
import comfy.clip_vision
24

25
import comfy.model_management
26
import importlib
comfyanonymous's avatar
comfyanonymous committed
27

28
import folder_paths
29
30

def before_node_execution():
31
    comfy.model_management.throw_exception_if_processing_interrupted()
32

33
def interrupt_processing(value=True):
34
    comfy.model_management.interrupt_current_processing(value)
35

36
37
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
38
39
40
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
41
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
42
43
44
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

45
46
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
47
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
48
49
50
51
52
53
54
55
56
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

57
58
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
66
67
68
69
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
70
71
72
73
74
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

75
76
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
77
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
78
79
80
81
82
83
84
85
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
86
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
87

Jacob Segal's avatar
Jacob Segal committed
88
89
90
91
92
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
Jacob Segal's avatar
Jacob Segal committed
93
                              "set_area_to_bounds": ([False, True],),
Jacob Segal's avatar
Jacob Segal committed
94
95
96
97
98
99
100
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

Jacob Segal's avatar
Jacob Segal committed
101
    def append(self, conditioning, mask, set_area_to_bounds, strength, min_sigma=0.0, max_sigma=99.0):
Jacob Segal's avatar
Jacob Segal committed
102
103
104
105
106
107
108
        c = []
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
109
            n[1]['set_area_to_bounds'] = set_area_to_bounds
Jacob Segal's avatar
Jacob Segal committed
110
111
112
113
114
115
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
116
117
118
119
120
121
122
123
124
125
class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

126
127
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
128
    def decode(self, vae, samples):
129
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
146
147
148
149
150
151
152
153
154
155
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

156
157
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
158
    def encode(self, vae, pixels):
159
160
161
162
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
163
164
165
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
166

comfyanonymous's avatar
comfyanonymous committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
203
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
204

205
        pixels = pixels.clone()
206
207
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
208
            mask = mask[:,:,:x,:y]
209

210
        #grow mask by a few pixels to keep things seamless in latent space
211
        kernel_tensor = torch.ones((1, 1, 6, 6))
212
213
        mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round()).squeeze(1)
214
215
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
216
            pixels[:,:,:,i] *= m
217
218
219
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

220
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
221
222
223
224

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
225
226
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
227
228
229
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

230
    CATEGORY = "advanced/loaders"
231

comfyanonymous's avatar
comfyanonymous committed
232
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
233
234
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
235
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
236

237
238
239
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
240
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
241
242
243
244
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

245
    CATEGORY = "loaders"
246

247
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
248
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
249
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
250
251
        return out

sALTaccount's avatar
sALTaccount committed
252
253
254
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
255
        paths = []
sALTaccount's avatar
sALTaccount committed
256
        for search_path in folder_paths.get_folder_paths("diffusers"):
257
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
258
                paths += next(os.walk(search_path))[1]
259
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
260
261
262
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

263
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
264
265

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
266
267
268
269
270
271
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
272

273
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
274
275


276
277
278
279
280
281
282
283
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

284
    CATEGORY = "loaders"
285
286
287
288
289
290

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

307
308
309
310
311
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
312
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
313
314
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
315
316
317
318
319
320
321
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
322
        lora_path = folder_paths.get_full_path("loras", lora_name)
323
324
325
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
342
343
344
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
345
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
346
347
348
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

349
350
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
351
352
    #TODO: scale factor?
    def load_vae(self, vae_name):
353
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
354
355
356
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
357
358
359
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
360
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
361
362
363
364
365
366
367

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
368
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
369
370
371
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

372
373
374
375
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
376
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
377
378
379
380
381
382
383

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
384
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
385
386
387
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
388
389
390
391

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
392
393
394
395
396
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
397
398
399
400
401
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

402
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
403
404
405
406
407
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
408
409
410
411
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
412
413
414
            c.append(n)
        return (c, )

415
416
417
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
418
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
419
420
421
422
423
424
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

425
    def load_clip(self, clip_name):
426
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
427
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
428
429
        return (clip,)

430
431
432
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
433
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
434
435
436
437
438
439
440
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
441
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
442
        clip_vision = comfy.clip_vision.load(clip_path)
443
444
445
446
447
448
449
450
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
451
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
452
453
    FUNCTION = "encode"

454
    CATEGORY = "conditioning"
455
456
457
458
459
460
461
462

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
463
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
464
465
466
467
468
469
470

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
471
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
472
473
474
475
476
477
478
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
479
480
481
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
482
483
484
485
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
486
    CATEGORY = "conditioning/style_model"
487

488
489
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
490
        c = []
491
492
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
493
494
495
            c.append(n)
        return (c, )

496
497
498
499
500
501
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
502
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
503
504
505
506
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

507
    CATEGORY = "conditioning"
508

509
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
510
511
512
        c = []
        for t in conditioning:
            o = t[1].copy()
513
            x = (clip_vision_output, strength, noise_augmentation)
514
515
516
517
518
519
520
521
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

522
523
524
525
526
527
528
529
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
530
    CATEGORY = "loaders"
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
552
    CATEGORY = "conditioning/gligen"
553
554
555
556
557
558
559
560
561
562
563
564
565
566

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
567

comfyanonymous's avatar
comfyanonymous committed
568
569
570
571
572
573
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
574
575
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
576
577
578
579
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

580
581
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
582
583
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
584
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
585

comfyanonymous's avatar
comfyanonymous committed
586

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, batch_index):
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
        s["samples"] = s_in[batch_index:batch_index + 1].clone()
        s["batch_index"] = batch_index
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
605

comfyanonymous's avatar
comfyanonymous committed
606
607
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
608
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
609
610
611
612

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
613
614
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
615
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
616
617
618
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

619
620
    CATEGORY = "latent"

621
    def upscale(self, samples, upscale_method, width, height, crop):
622
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
623
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
624
625
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
626
627
628
629
630
631
632
633
634
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
635
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
636
637

    def rotate(self, samples, rotation):
638
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
639
640
641
642
643
644
645
646
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

647
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
648
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
649
650
651
652
653
654
655
656
657
658

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
659
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
660
661

    def flip(self, samples, flip_method):
662
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
663
        if flip_method.startswith("x"):
664
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
665
        elif flip_method.startswith("y"):
666
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
667
668

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
669
670
671
672

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
673
674
675
676
677
678
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
679
680
681
682
683
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
684
685
686
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
687
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
711

comfyanonymous's avatar
comfyanonymous committed
712
713
714
715
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
716
717
718
719
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
720
721
722
723
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
724
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
725
726

    def crop(self, samples, width, height, x, y):
727
728
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
752
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
753
754
        return (s,)

755
756
757
758
759
760
761
762
763
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

764
    CATEGORY = "latent/inpaint"
765
766
767
768
769
770

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)

771
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
772
    device = comfy.model_management.get_torch_device()
773
    latent_image = latent["samples"]
774

comfyanonymous's avatar
comfyanonymous committed
775
776
777
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
778
779
        skip = latent["batch_index"] if "batch_index" in latent else 0
        noise = comfy.sample.prepare_noise(latent_image, seed, skip)
comfyanonymous's avatar
comfyanonymous committed
780

781
    noise_mask = None
782
    if "noise_mask" in latent:
783
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
784

785
786
787
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask)
788
789
790
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
791

comfyanonymous's avatar
comfyanonymous committed
792
793
794
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
795
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

811
812
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
813
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
814
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
815

comfyanonymous's avatar
comfyanonymous committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
839

comfyanonymous's avatar
comfyanonymous committed
840
841
842
843
844
845
846
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
847
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
848
849
850

class SaveImage:
    def __init__(self):
851
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
852
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
853
854
855
856

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
857
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
858
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
859
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
860
861
862
863
864
865
866
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

867
868
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
869
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
870
        def map_filename(filename):
871
            prefix_len = len(os.path.basename(filename_prefix))
872
873
874
875
876
877
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
878

879
880
881
882
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
883

884
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
885

m957ymj75urz's avatar
m957ymj75urz committed
886
887
888
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
889
        full_output_folder = os.path.join(self.output_dir, subfolder)
890

891
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
892
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
893
894
            return {}

895
        try:
896
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
897
898
        except ValueError:
            counter = 1
899
        except FileNotFoundError:
900
            os.makedirs(full_output_folder, exist_ok=True)
901
            counter = 1
pythongosssss's avatar
pythongosssss committed
902

m957ymj75urz's avatar
m957ymj75urz committed
903
        results = list()
comfyanonymous's avatar
comfyanonymous committed
904
905
        for image in images:
            i = 255. * image.cpu().numpy()
906
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
907
908
909
910
911
912
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
913

914
            file = f"{filename}_{counter:05}_.png"
915
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
916
917
918
919
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
920
            })
921
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
922

m957ymj75urz's avatar
m957ymj75urz committed
923
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
924

pythongosssss's avatar
pythongosssss committed
925
926
class PreviewImage(SaveImage):
    def __init__(self):
927
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
928
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
929
930
931

    @classmethod
    def INPUT_TYPES(s):
932
        return {"required":
pythongosssss's avatar
pythongosssss committed
933
934
935
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
936

937
938
939
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
940
        input_dir = folder_paths.get_input_directory()
941
        return {"required":
942
                    {"image": (sorted(os.listdir(input_dir)), )},
943
                }
944
945

    CATEGORY = "image"
946

947
    RETURN_TYPES = ("IMAGE", "MASK")
948
949
    FUNCTION = "load_image"
    def load_image(self, image):
950
        image_path = folder_paths.get_annotated_filepath(image)
951
952
        i = Image.open(image_path)
        image = i.convert("RGB")
953
        image = np.array(image).astype(np.float32) / 255.0
954
        image = torch.from_numpy(image)[None,]
955
956
957
958
959
960
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
961

962
963
    @classmethod
    def IS_CHANGED(s, image):
964
        image_path = folder_paths.get_annotated_filepath(image)
965
966
967
968
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
969

970
971
972
973
974
975
976
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

977
class LoadImageMask:
978
    _color_channels = ["alpha", "red", "green", "blue"]
979
980
    @classmethod
    def INPUT_TYPES(s):
981
        input_dir = folder_paths.get_input_directory()
982
        return {"required":
983
                    {"image": (sorted(os.listdir(input_dir)), ),
984
                    "channel": (s._color_channels, ),}
985
986
                }

987
    CATEGORY = "mask"
988
989
990
991

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
992
        image_path = folder_paths.get_annotated_filepath(image)
993
        i = Image.open(image_path)
994
995
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1009
        image_path = folder_paths.get_annotated_filepath(image)
1010
1011
1012
1013
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1014

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1025
1026
1027
1028
1029
1030
1031
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1032
1033
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1034
1035
1036
1037
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1038
    CATEGORY = "image/upscaling"
1039

comfyanonymous's avatar
comfyanonymous committed
1040
1041
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1042
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1043
1044
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1045

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1062
1063
1064
1065
1066
1067
1068
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1069
1070
1071
1072
1073
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1074
1075
1076
1077
1078
1079
1080
1081
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1082
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1095

1096
1097
1098
1099
1100
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1101
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1121

Guo Y.K's avatar
Guo Y.K committed
1122
1123
1124
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1125
1126
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1127
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1128
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1129
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1130
1131
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1132
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1133
1134
1135
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1136
    "LatentFromBatch": LatentFromBatch,
comfyanonymous's avatar
comfyanonymous committed
1137
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1138
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1139
    "LoadImage": LoadImage,
1140
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1141
    "ImageScale": ImageScale,
1142
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1143
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1144
1145
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1146
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1147
    "KSamplerAdvanced": KSamplerAdvanced,
1148
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1149
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1150
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1151
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1152
    "LatentCrop": LatentCrop,
1153
    "LoraLoader": LoraLoader,
1154
    "CLIPLoader": CLIPLoader,
1155
    "CLIPVisionEncode": CLIPVisionEncode,
1156
    "StyleModelApply": StyleModelApply,
1157
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1158
1159
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1160
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1161
1162
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1163
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1164
    "VAEEncodeTiled": VAEEncodeTiled,
1165
    "TomePatchModel": TomePatchModel,
1166
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1167
1168
1169
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1170
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1171
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1172
1173
}

City's avatar
City committed
1174
1175
1176
1177
1178
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1179
1180
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1196
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1238
1239
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1240
1241
1242
1243
1244
1245
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1246
def load_custom_nodes():
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
    node_paths = folder_paths.get_folder_paths("custom_nodes")
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
            load_custom_node(module_path)
1257

1258
1259
def init_custom_nodes():
    load_custom_nodes()
1260
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1261
1262
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1263
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))