nodes.py 68.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
comfyanonymous's avatar
comfyanonymous committed
11

12
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
13
14
from PIL.PngImagePlugin import PngInfo
import numpy as np
15
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
16

comfyanonymous's avatar
comfyanonymous committed
17
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
18
19


20
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.samplers
22
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
24
import comfy.utils
25
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
26

27
import comfy.clip_vision
28

29
import comfy.model_management
30
31
from comfy.cli_args import args

32
import importlib
comfyanonymous's avatar
comfyanonymous committed
33

34
import folder_paths
35
import latent_preview
space-nuko's avatar
space-nuko committed
36

37
def before_node_execution():
38
    comfy.model_management.throw_exception_if_processing_interrupted()
39

40
def interrupt_processing(value=True):
41
    comfy.model_management.interrupt_current_processing(value)
42

43
44
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
45
46
47
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
48
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
49
50
51
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

52
53
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
54
    def encode(self, clip, text):
55
56
57
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
58
59
60
61
62
63
64
65

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

66
67
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
68
69
70
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
71
72
73
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
74
75
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
76
77
78
79
80
81
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
82
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
83
        out = []
comfyanonymous's avatar
comfyanonymous committed
84
85
86
87
88

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]
89
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
90
91
92

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
93
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
94
95
96
97
98
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
99
100
101
102
103
104
105
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
106
107
108
            out.append(n)
        return (out, )

109
110
111
112
113
114
115
116
117
118
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

119
    CATEGORY = "conditioning"
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
            print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
137
138
139
140
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
141
142
143
144
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
145
146
147
148
149
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

150
151
    CATEGORY = "conditioning"

152
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
153
154
155
156
157
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
158
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
159
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
160
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
class ConditioningSetAreaPercentage:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, width, height, x, y, strength):
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = ("percentage", height, width, y, x)
            n[1]['strength'] = strength
            n[1]['set_area_to_bounds'] = False
            c.append(n)
        return (c, )

Jacob Segal's avatar
Jacob Segal committed
187
188
189
190
191
192
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
193
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
194
195
196
197
198
199
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

200
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
201
        c = []
202
203
204
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
205
206
207
208
209
210
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
211
            n[1]['set_area_to_bounds'] = set_area_to_bounds
212
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
213
214
215
            c.append(n)
        return (c, )

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

235
236
237
238
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
239
240
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
241
242
243
244
245
246
247
248
249
250
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
        c = []
        for t in conditioning:
            d = t[1].copy()
251
252
            d['start_percent'] = start
            d['end_percent'] = end
253
254
255
256
            n = [t[0], d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
261
262
263
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

264
265
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
266
    def decode(self, vae, samples):
267
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
268

269
270
271
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
272
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
comfyanonymous's avatar
comfyanonymous committed
273
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
274
                            }}
275
276
277
278
279
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

280
    def decode(self, vae, samples, tile_size):
281
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
282

comfyanonymous's avatar
comfyanonymous committed
283
284
285
286
287
288
289
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

290
291
    CATEGORY = "latent"

292
293
294
295
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
296
        if pixels.shape[1] != x or pixels.shape[2] != y:
297
298
299
300
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
301

302
303
304
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
305
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
306

comfyanonymous's avatar
comfyanonymous committed
307
308
309
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
310
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
311
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
312
                            }}
comfyanonymous's avatar
comfyanonymous committed
313
314
315
316
317
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

318
    def encode(self, vae, pixels, tile_size):
319
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
320
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
321
        return ({"samples":t}, )
322

323
324
325
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
326
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
327
328
329
330
331
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

332
    def encode(self, vae, pixels, mask, grow_mask_by=6):
333
334
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
335
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
336

337
        pixels = pixels.clone()
338
        if pixels.shape[1] != x or pixels.shape[2] != y:
339
340
341
342
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
343

344
        #grow mask by a few pixels to keep things seamless in latent space
345
346
347
348
349
350
351
352
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

353
        m = (1.0 - mask.round()).squeeze(1)
354
355
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
356
            pixels[:,:,:,i] *= m
357
358
359
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

360
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
361

Dr.Lt.Data's avatar
Dr.Lt.Data committed
362
363
class SaveLatent:
    def __init__(self):
364
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
365
366
367
368

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
369
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
370
371
372
373
374
375
376
377
378
379
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
380
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
381
382
383
384
385
386

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

387
388
389
390
391
392
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
393
394

        file = f"{filename}_{counter:05}_.latent"
395
396
397
398
399
400
401
402

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
403
404
        file = os.path.join(full_output_folder, file)

405
406
        output = {}
        output["latent_tensor"] = samples["samples"]
407
        output["latent_format_version_0"] = torch.tensor([])
408

409
        comfy.utils.save_torch_file(output, file, metadata=metadata)
410
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
411
412
413
414
415


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
416
417
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
418
419
420
421
422
423
424
425
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
426
427
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
428
429
430
431
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
432
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
433

434
435
436
437
438
439
440
441
442
443
444
445
446
447
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
448

comfyanonymous's avatar
comfyanonymous committed
449
450
451
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
452
453
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
454
455
456
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

457
    CATEGORY = "advanced/loaders"
458

comfyanonymous's avatar
comfyanonymous committed
459
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
460
461
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
462
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
463

464
465
466
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
467
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
468
469
470
471
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

472
    CATEGORY = "loaders"
473

474
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
475
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
476
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
477
        return out[:3]
478

sALTaccount's avatar
sALTaccount committed
479
480
481
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
482
        paths = []
sALTaccount's avatar
sALTaccount committed
483
        for search_path in folder_paths.get_folder_paths("diffusers"):
484
            if os.path.exists(search_path):
485
486
487
488
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

489
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
490
491
492
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

493
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
494
495

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
496
497
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
498
499
500
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
501
                    break
502

503
        return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
504
505


506
507
508
509
510
511
512
513
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

514
    CATEGORY = "loaders"
515
516
517
518
519
520

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

537
class LoraLoader:
538
539
540
    def __init__(self):
        self.loaded_lora = None

541
542
543
544
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
545
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
546
547
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
548
549
550
551
552
553
554
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
555
556
557
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

558
        lora_path = folder_paths.get_full_path("loras", lora_name)
559
560
561
562
563
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
564
565
566
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
567
568
569
570
571
572

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
573
574
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
575
class VAELoader:
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    @staticmethod
    def vae_list():
        vaes = folder_paths.get_filename_list("vae")
        approx_vaes = folder_paths.get_filename_list("vae_approx")
        sdxl_taesd_enc = False
        sdxl_taesd_dec = False
        sd1_taesd_enc = False
        sd1_taesd_dec = False

        for v in approx_vaes:
            if v.startswith("taesd_decoder."):
                sd1_taesd_dec = True
            elif v.startswith("taesd_encoder."):
                sd1_taesd_enc = True
            elif v.startswith("taesdxl_decoder."):
                sdxl_taesd_dec = True
            elif v.startswith("taesdxl_encoder."):
                sdxl_taesd_enc = True
        if sd1_taesd_dec and sd1_taesd_enc:
            vaes.append("taesd")
        if sdxl_taesd_dec and sdxl_taesd_enc:
            vaes.append("taesdxl")
        return vaes

    @staticmethod
    def load_taesd(name):
        sd = {}
        approx_vaes = folder_paths.get_filename_list("vae_approx")

        encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
        decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))

        enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
        for k in enc:
            sd["taesd_encoder.{}".format(k)] = enc[k]

        dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
        for k in dec:
            sd["taesd_decoder.{}".format(k)] = dec[k]

        if name == "taesd":
            sd["vae_scale"] = torch.tensor(0.18215)
        elif name == "taesdxl":
            sd["vae_scale"] = torch.tensor(0.13025)
        return sd

comfyanonymous's avatar
comfyanonymous committed
622
623
    @classmethod
    def INPUT_TYPES(s):
624
        return {"required": { "vae_name": (s.vae_list(), )}}
comfyanonymous's avatar
comfyanonymous committed
625
626
627
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

628
629
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
630
631
    #TODO: scale factor?
    def load_vae(self, vae_name):
632
633
634
635
636
        if vae_name in ["taesd", "taesdxl"]:
            sd = self.load_taesd(vae_name)
        else:
            vae_path = folder_paths.get_full_path("vae", vae_name)
            sd = comfy.utils.load_torch_file(vae_path)
comfyanonymous's avatar
comfyanonymous committed
637
        vae = comfy.sd.VAE(sd=sd)
comfyanonymous's avatar
comfyanonymous committed
638
639
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
640
641
642
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
643
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
644
645
646
647
648
649
650

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
651
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
652
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
653
654
        return (controlnet,)

655
656
657
658
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
659
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
660
661
662
663
664
665
666

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
667
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
668
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
669
670
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
671
672
673
674

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
675
676
677
678
679
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
680
681
682
683
684
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

685
    def apply_controlnet(self, conditioning, control_net, image, strength):
686
687
688
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
689
690
691
692
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
693
694
695
696
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
697
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
698
699
700
            c.append(n)
        return (c, )

701
702
703
704
705
706
707
708
709

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
710
711
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
712
713
714
715
716
717
718
719
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

720
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
737
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
738
739
740
741
742
743
744
745
746
747
748
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

764
765
766
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
767
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
768
769
770
771
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

772
    CATEGORY = "advanced/loaders"
773

774
    def load_clip(self, clip_name):
775
        clip_path = folder_paths.get_full_path("clip", clip_name)
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
793
794
        return (clip,)

795
796
797
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
798
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
799
800
801
802
803
804
805
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
806
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
807
        clip_vision = comfy.clip_vision.load(clip_path)
808
809
810
811
812
813
814
815
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
816
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
817
818
    FUNCTION = "encode"

819
    CATEGORY = "conditioning"
820
821
822
823
824
825
826
827

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
828
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
829
830
831
832
833
834
835

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
836
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
837
838
839
840
841
842
843
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
844
845
846
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
847
848
849
850
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
851
    CATEGORY = "conditioning/style_model"
852

853
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
854
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
855
        c = []
856
857
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
858
859
860
            c.append(n)
        return (c, )

861
862
863
864
865
866
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
867
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
868
869
870
871
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

872
    CATEGORY = "conditioning"
873

874
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
875
876
877
        if strength == 0:
            return (conditioning, )

878
879
880
        c = []
        for t in conditioning:
            o = t[1].copy()
881
882
883
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
884
            else:
885
                o["unclip_conditioning"] = [x]
886
887
888
889
            n = [t[0], o]
            c.append(n)
        return (c, )

890
891
892
893
894
895
896
897
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
898
    CATEGORY = "loaders"
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
920
    CATEGORY = "conditioning/gligen"
921
922
923
924
925
926
927
928
929
930
931
932
933
934

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
935

comfyanonymous's avatar
comfyanonymous committed
936
937
938
939
940
941
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
942
943
        return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
944
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
comfyanonymous's avatar
comfyanonymous committed
945
946
947
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

948
949
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
950
951
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
952
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
953

comfyanonymous's avatar
comfyanonymous committed
954

955
956
957
958
959
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
960
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
961
962
                              }}
    RETURN_TYPES = ("LATENT",)
963
    FUNCTION = "frombatch"
964

965
    CATEGORY = "latent/batch"
966

967
    def frombatch(self, samples, batch_index, length):
968
969
970
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1011
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1012

comfyanonymous's avatar
comfyanonymous committed
1013
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
1014
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1015
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
1016
1017
1018
1019

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1020
1021
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1022
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
1023
1024
1025
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

1026
1027
    CATEGORY = "latent"

1028
    def upscale(self, samples, upscale_method, width, height, crop):
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        if width == 0 and height == 0:
            s = samples
        else:
            s = samples.copy()

            if width == 0:
                height = max(64, height)
                width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
            elif height == 0:
                width = max(64, width)
                height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
            else:
                width = max(64, width)
                height = max(64, height)

            s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1045
1046
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1047
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
1048
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
1075
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1076
1077

    def rotate(self, samples, rotation):
1078
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1079
1080
1081
1082
1083
1084
1085
1086
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

1087
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
1088
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1099
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1100
1101

    def flip(self, samples, flip_method):
1102
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1103
        if flip_method.startswith("x"):
1104
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1105
        elif flip_method.startswith("y"):
1106
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1107
1108

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1109
1110
1111
1112

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1113
1114
1115
1116
1117
1118
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1119
1120
1121
1122
1123
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1124
1125
1126
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1127
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1151

1152
1153
1154
1155
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1156
1157
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1171
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1172

1173
1174
1175
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1176

1177
1178
1179
1180
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1181

1182
1183
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1184
1185
1186
1187
1188
1189
1190
1191
1192
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1193
1194
1195
1196
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1197
1198
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1199
1200
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1201
1202
1203
1204
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1205
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1206
1207

    def crop(self, samples, width, height, x, y):
1208
1209
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1223
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1224
1225
        return (s,)

1226
1227
1228
1229
1230
1231
1232
1233
1234
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1235
    CATEGORY = "latent/inpaint"
1236
1237
1238

    def set_mask(self, samples, mask):
        s = samples.copy()
1239
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1240
1241
        return (s,)

space-nuko's avatar
space-nuko committed
1242
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1243
    latent_image = latent["samples"]
comfyanonymous's avatar
comfyanonymous committed
1244
1245
1246
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1247
1248
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1249

1250
    noise_mask = None
1251
    if "noise_mask" in latent:
1252
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1253

1254
    callback = latent_preview.prepare_callback(model, steps)
1255
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
1256
1257
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
comfyanonymous's avatar
comfyanonymous committed
1258
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1259
1260
1261
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1262

comfyanonymous's avatar
comfyanonymous committed
1263
1264
1265
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1266
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1267
1268
1269
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1270
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1271
1272
1273
1274
1275
1276
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1277
1278
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1279
1280
1281
1282

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1283
1284
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1285
1286
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1287

comfyanonymous's avatar
comfyanonymous committed
1288
1289
1290
1291
1292
1293
1294
1295
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1296
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1297
1298
1299
1300
1301
1302
1303
1304
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1305
1306
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1307
1308
1309
1310
1311

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1312

space-nuko's avatar
space-nuko committed
1313
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1314
1315
1316
1317
1318
1319
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1320
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1321
1322
1323

class SaveImage:
    def __init__(self):
1324
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1325
        self.type = "output"
1326
        self.prefix_append = ""
comfyanonymous's avatar
comfyanonymous committed
1327
1328
1329
1330

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1331
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1332
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1333
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1334
1335
1336
1337
1338
1339
1340
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1341
1342
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1343
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1344
        filename_prefix += self.prefix_append
1345
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1346
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1347
1348
        for image in images:
            i = 255. * image.cpu().numpy()
1349
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1350
1351
1352
1353
1354
1355
1356
1357
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1358

1359
            file = f"{filename}_{counter:05}_.png"
1360
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1361
1362
1363
1364
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1365
            })
1366
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1367

m957ymj75urz's avatar
m957ymj75urz committed
1368
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1369

pythongosssss's avatar
pythongosssss committed
1370
1371
class PreviewImage(SaveImage):
    def __init__(self):
1372
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1373
        self.type = "temp"
1374
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
pythongosssss's avatar
pythongosssss committed
1375
1376
1377

    @classmethod
    def INPUT_TYPES(s):
1378
        return {"required":
pythongosssss's avatar
pythongosssss committed
1379
1380
1381
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1382

1383
1384
1385
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1386
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1387
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1388
        return {"required":
1389
                    {"image": (sorted(files), {"image_upload": True})},
1390
                }
1391
1392

    CATEGORY = "image"
1393

1394
    RETURN_TYPES = ("IMAGE", "MASK")
1395
1396
    FUNCTION = "load_image"
    def load_image(self, image):
1397
        image_path = folder_paths.get_annotated_filepath(image)
1398
        i = Image.open(image_path)
1399
        i = ImageOps.exif_transpose(i)
1400
        image = i.convert("RGB")
1401
        image = np.array(image).astype(np.float32) / 255.0
1402
        image = torch.from_numpy(image)[None,]
1403
1404
1405
1406
1407
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1408
        return (image, mask.unsqueeze(0))
1409

1410
1411
    @classmethod
    def IS_CHANGED(s, image):
1412
        image_path = folder_paths.get_annotated_filepath(image)
1413
1414
1415
1416
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1417

1418
1419
1420
1421
1422
1423
1424
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1425
class LoadImageMask:
1426
    _color_channels = ["alpha", "red", "green", "blue"]
1427
1428
    @classmethod
    def INPUT_TYPES(s):
1429
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1430
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1431
        return {"required":
1432
                    {"image": (sorted(files), {"image_upload": True}),
1433
                     "channel": (s._color_channels, ), }
1434
1435
                }

1436
    CATEGORY = "mask"
1437
1438
1439
1440

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1441
        image_path = folder_paths.get_annotated_filepath(image)
1442
        i = Image.open(image_path)
1443
        i = ImageOps.exif_transpose(i)
1444
1445
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1446
1447
1448
1449
1450
1451
1452
1453
1454
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1455
        return (mask.unsqueeze(0),)
1456
1457
1458

    @classmethod
    def IS_CHANGED(s, image, channel):
1459
        image_path = folder_paths.get_annotated_filepath(image)
1460
1461
1462
1463
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1464

1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1475
class ImageScale:
1476
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1477
1478
1479
1480
1481
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1482
1483
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1484
1485
1486
1487
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1488
    CATEGORY = "image/upscaling"
1489

comfyanonymous's avatar
comfyanonymous committed
1490
    def upscale(self, image, upscale_method, width, height, crop):
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
        if width == 0 and height == 0:
            s = image
        else:
            samples = image.movedim(-1,1)

            if width == 0:
                width = max(1, round(samples.shape[3] * height / samples.shape[2]))
            elif height == 0:
                height = max(1, round(samples.shape[2] * width / samples.shape[3]))

            s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
            s = s.movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
1503
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1504

comfyanonymous's avatar
comfyanonymous committed
1505
class ImageScaleBy:
1506
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1556

comfyanonymous's avatar
comfyanonymous committed
1557
1558
1559
1560
1561
1562
1563
1564
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1565
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
comfyanonymous's avatar
comfyanonymous committed
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1579
1580
1581
1582
1583
1584
1585
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1586
1587
1588
1589
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1590
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1591
1592
1593
1594
1595
1596
1597
1598
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1599
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1612

1613
1614
1615
1616
1617
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1618
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1638

Guo Y.K's avatar
Guo Y.K committed
1639
1640
1641
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1642
1643
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1644
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1645
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1646
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1647
1648
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1649
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1650
1651
1652
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1653
    "LatentUpscaleBy": LatentUpscaleBy,
1654
    "LatentFromBatch": LatentFromBatch,
1655
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1656
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1657
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1658
    "LoadImage": LoadImage,
1659
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1660
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1661
    "ImageScaleBy": ImageScaleBy,
1662
    "ImageInvert": ImageInvert,
1663
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1664
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1665
    "EmptyImage": EmptyImage,
comfyanonymous's avatar
comfyanonymous committed
1666
    "ConditioningAverage": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1667
    "ConditioningCombine": ConditioningCombine,
1668
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1669
    "ConditioningSetArea": ConditioningSetArea,
1670
    "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
Jacob Segal's avatar
Jacob Segal committed
1671
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1672
    "KSamplerAdvanced": KSamplerAdvanced,
1673
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1674
    "LatentComposite": LatentComposite,
1675
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1676
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1677
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1678
    "LatentCrop": LatentCrop,
1679
    "LoraLoader": LoraLoader,
1680
    "CLIPLoader": CLIPLoader,
1681
    "UNETLoader": UNETLoader,
1682
    "DualCLIPLoader": DualCLIPLoader,
1683
    "CLIPVisionEncode": CLIPVisionEncode,
1684
    "StyleModelApply": StyleModelApply,
1685
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1686
    "ControlNetApply": ControlNetApply,
1687
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1688
    "ControlNetLoader": ControlNetLoader,
1689
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1690
1691
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1692
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1693
    "VAEEncodeTiled": VAEEncodeTiled,
1694
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1695
1696
1697
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1698
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1699
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1700
1701

    "LoadLatent": LoadLatent,
1702
    "SaveLatent": SaveLatent,
1703
1704

    "ConditioningZeroOut": ConditioningZeroOut,
1705
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
comfyanonymous's avatar
comfyanonymous committed
1706
1707
}

City's avatar
City committed
1708
1709
1710
1711
1712
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
1713
    "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1714
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1729
    "ConditioningAverage ": "Conditioning (Average)",
1730
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1731
    "ConditioningSetArea": "Conditioning (Set Area)",
1732
    "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
Jacob Segal's avatar
Jacob Segal committed
1733
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1734
    "ControlNetApply": "Apply ControlNet",
1735
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1746
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1747
    "LatentComposite": "Latent Composite",
1748
    "LatentBlend": "Latent Blend",
1749
1750
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1751
1752
1753
1754
1755
1756
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1757
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1758
1759
1760
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1761
    "ImageBatch": "Batch Images",
City's avatar
City committed
1762
1763
1764
1765
1766
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1767
1768
EXTENSION_WEB_DIRS = {}

1769
def load_custom_node(module_path, ignore=set()):
1770
1771
1772
1773
1774
1775
1776
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1777
            module_dir = os.path.split(module_path)[0]
1778
1779
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1780
1781
            module_dir = module_path

1782
1783
1784
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1785
1786
1787
1788
1789
1790

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1791
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1792
1793
1794
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1795
1796
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1797
            return True
1798
1799
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1800
            return False
1801
1802
1803
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1804
        return False
1805

Hacker 17082006's avatar
Hacker 17082006 committed
1806
def load_custom_nodes():
1807
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1808
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1809
    node_import_times = []
1810
1811
1812
1813
1814
1815
1816
1817
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1818
            if module_path.endswith(".disabled"): continue
1819
            time_before = time.perf_counter()
1820
            success = load_custom_node(module_path, base_node_names)
1821
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1822

1823
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1824
        print("\nImport times for custom nodes:")
1825
        for n in sorted(node_import_times):
1826
1827
1828
1829
1830
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1831
        print()
1832

1833
def init_custom_nodes():
1834
1835
1836
1837
1838
1839
1840
    extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
    extras_files = [
        "nodes_latent.py",
        "nodes_hypernetwork.py",
        "nodes_upscale_model.py",
        "nodes_post_processing.py",
        "nodes_mask.py",
1841
        "nodes_compositing.py",
1842
1843
1844
1845
1846
1847
        "nodes_rebatch.py",
        "nodes_model_merging.py",
        "nodes_tomesd.py",
        "nodes_clip_sdxl.py",
        "nodes_canny.py",
        "nodes_freelunch.py",
1848
1849
        "nodes_custom_sampler.py",
        "nodes_hypertile.py",
1850
        "nodes_model_advanced.py",
1851
        "nodes_model_downscale.py",
comfyanonymous's avatar
comfyanonymous committed
1852
        "nodes_images.py",
1853
1854
1855
1856
1857
    ]

    for node_file in extras_files:
        load_custom_node(os.path.join(extras_dir, node_file))

1858
    load_custom_nodes()