nodes.py 54.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10

11
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
12
13
from PIL.PngImagePlugin import PngInfo
import numpy as np
14
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


19
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31
import latent_preview
space-nuko's avatar
space-nuko committed
32

33
def before_node_execution():
34
    comfy.model_management.throw_exception_if_processing_interrupted()
35

36
def interrupt_processing(value=True):
37
    comfy.model_management.interrupt_current_processing(value)
38

39
40
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
41
42
43
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
44
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
45
46
47
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

48
49
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
50
    def encode(self, clip, text):
51
52
53
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
54
55
56
57
58
59
60
61

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

62
63
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
64
65
66
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
67
68
69
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
70
71
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
72
73
74
75
76
77
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
78
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
79
        out = []
comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
94
95
96
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
101
102
103
104
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
105
106
107
108
109
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

110
111
    CATEGORY = "conditioning"

112
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
117
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
118
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
119
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
120
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
121

Jacob Segal's avatar
Jacob Segal committed
122
123
124
125
126
127
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
128
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
129
130
131
132
133
134
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

135
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
136
        c = []
137
138
139
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
140
141
142
143
144
145
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
146
            n[1]['set_area_to_bounds'] = set_area_to_bounds
147
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
148
149
150
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
151
152
153
154
155
156
157
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

158
159
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
160
    def decode(self, vae, samples):
161
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
162

163
164
165
166
167
168
169
170
171
172
173
174
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
175
176
177
178
179
180
181
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

182
183
    CATEGORY = "latent"

184
185
186
187
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
188
        if pixels.shape[1] != x or pixels.shape[2] != y:
189
190
191
192
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
193

194
195
196
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
197
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
198

comfyanonymous's avatar
comfyanonymous committed
199
200
201
202
203
204
205
206
207
208
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
209
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
210
211
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
212

213
214
215
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
216
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
217
218
219
220
221
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

222
    def encode(self, vae, pixels, mask, grow_mask_by=6):
223
224
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
225
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
226

227
        pixels = pixels.clone()
228
        if pixels.shape[1] != x or pixels.shape[2] != y:
229
230
231
232
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
233

234
        #grow mask by a few pixels to keep things seamless in latent space
235
236
237
238
239
240
241
242
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

243
        m = (1.0 - mask.round()).squeeze(1)
244
245
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
246
            pixels[:,:,:,i] *= m
247
248
249
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

250
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
251

Dr.Lt.Data's avatar
Dr.Lt.Data committed
252
253
class SaveLatent:
    def __init__(self):
254
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
255
256
257
258

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
259
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
260
261
262
263
264
265
266
267
268
269
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
270
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
271
272
273
274
275
276

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

277
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
278
279
280
281
282
283
284
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

285
286
        output = {}
        output["latent_tensor"] = samples["samples"]
287
        output["latent_format_version_0"] = torch.tensor([])
288
289

        safetensors.torch.save_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
290
291
292
293
294
295
296

        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
297
298
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
299
300
301
302
303
304
305
306
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
307
308
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
309
310
311
312
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
313
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
329

comfyanonymous's avatar
comfyanonymous committed
330
331
332
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
333
334
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
335
336
337
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

338
    CATEGORY = "advanced/loaders"
339

comfyanonymous's avatar
comfyanonymous committed
340
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
341
342
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
343
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
344

345
346
347
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
348
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
349
350
351
352
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

353
    CATEGORY = "loaders"
354

355
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
356
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
357
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
358
359
        return out

sALTaccount's avatar
sALTaccount committed
360
361
362
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
363
        paths = []
sALTaccount's avatar
sALTaccount committed
364
        for search_path in folder_paths.get_folder_paths("diffusers"):
365
            if os.path.exists(search_path):
366
367
368
369
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

370
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
371
372
373
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

374
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
375
376

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
377
378
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
379
380
381
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
382
                    break
383

384
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
385
386


387
388
389
390
391
392
393
394
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

395
    CATEGORY = "loaders"
396
397
398
399
400
401

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

418
419
420
421
422
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
423
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
424
425
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
426
427
428
429
430
431
432
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
433
434
435
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

436
        lora_path = folder_paths.get_full_path("loras", lora_name)
437
438
439
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
440
441
442
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
443
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
444
445
446
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

447
448
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
449
450
    #TODO: scale factor?
    def load_vae(self, vae_name):
451
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
452
453
454
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
455
456
457
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
458
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
459
460
461
462
463
464
465

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
466
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
467
468
469
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

470
471
472
473
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
474
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
475
476
477
478
479
480
481

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
482
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
483
484
485
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
486
487
488
489

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
490
491
492
493
494
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
495
496
497
498
499
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

500
    def apply_controlnet(self, conditioning, control_net, image, strength):
501
502
503
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
504
505
506
507
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
508
509
510
511
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
512
513
514
            c.append(n)
        return (c, )

515
516
517
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
518
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
519
520
521
522
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

523
    CATEGORY = "advanced/loaders"
524

525
    def load_clip(self, clip_name):
526
        clip_path = folder_paths.get_full_path("clip", clip_name)
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
544
545
        return (clip,)

546
547
548
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
549
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
550
551
552
553
554
555
556
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
557
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
558
        clip_vision = comfy.clip_vision.load(clip_path)
559
560
561
562
563
564
565
566
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
567
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
568
569
    FUNCTION = "encode"

570
    CATEGORY = "conditioning"
571
572
573
574
575
576
577
578

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
579
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
580
581
582
583
584
585
586

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
587
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
588
589
590
591
592
593
594
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
595
596
597
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
598
599
600
601
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
602
    CATEGORY = "conditioning/style_model"
603

604
605
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
606
        c = []
607
608
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
609
610
611
            c.append(n)
        return (c, )

612
613
614
615
616
617
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
618
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
619
620
621
622
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

623
    CATEGORY = "conditioning"
624

625
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
626
627
628
        if strength == 0:
            return (conditioning, )

629
630
631
        c = []
        for t in conditioning:
            o = t[1].copy()
632
633
634
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
635
            else:
636
                o["unclip_conditioning"] = [x]
637
638
639
640
            n = [t[0], o]
            c.append(n)
        return (c, )

641
642
643
644
645
646
647
648
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
649
    CATEGORY = "loaders"
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
671
    CATEGORY = "conditioning/gligen"
672
673
674
675
676
677
678
679
680
681
682
683
684
685

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
686

comfyanonymous's avatar
comfyanonymous committed
687
688
689
690
691
692
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
693
694
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
695
696
697
698
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

699
700
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
701
702
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
703
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
704

comfyanonymous's avatar
comfyanonymous committed
705

706
707
708
709
710
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
711
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
712
713
                              }}
    RETURN_TYPES = ("LATENT",)
714
    FUNCTION = "frombatch"
715

716
    CATEGORY = "latent/batch"
717

718
    def frombatch(self, samples, batch_index, length):
719
720
721
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
762
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
763

comfyanonymous's avatar
comfyanonymous committed
764
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
765
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
766
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
767
768
769
770

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
771
772
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
773
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
774
775
776
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

777
778
    CATEGORY = "latent"

779
    def upscale(self, samples, upscale_method, width, height, crop):
780
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
781
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
782
783
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
784
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
785
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
803
804
805
806
807
808
809
810
811
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
812
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
813
814

    def rotate(self, samples, rotation):
815
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
816
817
818
819
820
821
822
823
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

824
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
825
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
826
827
828
829
830
831
832
833
834
835

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
836
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
837
838

    def flip(self, samples, flip_method):
839
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
840
        if flip_method.startswith("x"):
841
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
842
        elif flip_method.startswith("y"):
843
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
844
845

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
846
847
848
849

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
850
851
852
853
854
855
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
856
857
858
859
860
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
861
862
863
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
864
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
888

comfyanonymous's avatar
comfyanonymous committed
889
890
891
892
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
893
894
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
895
896
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
897
898
899
900
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
901
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
902
903

    def crop(self, samples, width, height, x, y):
904
905
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
906
907
908
909
910
911
912
913
914
915
916
917
918
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
919
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
920
921
        return (s,)

922
923
924
925
926
927
928
929
930
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

931
    CATEGORY = "latent/inpaint"
932
933
934

    def set_mask(self, samples, mask):
        s = samples.copy()
935
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
936
937
        return (s,)

space-nuko's avatar
space-nuko committed
938

space-nuko's avatar
space-nuko committed
939
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
940
    device = comfy.model_management.get_torch_device()
941
    latent_image = latent["samples"]
942

comfyanonymous's avatar
comfyanonymous committed
943
944
945
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
946
947
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
948

949
    noise_mask = None
950
    if "noise_mask" in latent:
951
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
952

space-nuko's avatar
space-nuko committed
953
954
955
956
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

957
    previewer = latent_preview.get_previewer(device, model.model.latent_format)
space-nuko's avatar
space-nuko committed
958

959
    pbar = comfy.utils.ProgressBar(steps)
960
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
961
        preview_bytes = None
962
        if previewer:
963
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
964
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
965

966
967
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
968
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
969
970
971
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
972

comfyanonymous's avatar
comfyanonymous committed
973
974
975
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
976
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
977
978
979
980
981
982
983
984
985
986
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
987
988
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
989
990
991
992

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

993
994
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
995
996
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
997

comfyanonymous's avatar
comfyanonymous committed
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1015
1016
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1017
1018
1019
1020
1021

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1022

space-nuko's avatar
space-nuko committed
1023
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1024
1025
1026
1027
1028
1029
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1030
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1031
1032
1033

class SaveImage:
    def __init__(self):
1034
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1035
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1036
1037
1038
1039

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1040
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1041
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1042
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1043
1044
1045
1046
1047
1048
1049
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1050
1051
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1052
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1053
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1054
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1055
1056
        for image in images:
            i = 255. * image.cpu().numpy()
1057
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1058
1059
1060
1061
1062
1063
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1064

1065
            file = f"{filename}_{counter:05}_.png"
1066
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1067
1068
1069
1070
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1071
            })
1072
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1073

m957ymj75urz's avatar
m957ymj75urz committed
1074
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1075

pythongosssss's avatar
pythongosssss committed
1076
1077
class PreviewImage(SaveImage):
    def __init__(self):
1078
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1079
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1080
1081
1082

    @classmethod
    def INPUT_TYPES(s):
1083
        return {"required":
pythongosssss's avatar
pythongosssss committed
1084
1085
1086
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1087

1088
1089
1090
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1091
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1092
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1093
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1094
                    {"image": (sorted(files), )},
1095
                }
1096
1097

    CATEGORY = "image"
1098

1099
    RETURN_TYPES = ("IMAGE", "MASK")
1100
1101
    FUNCTION = "load_image"
    def load_image(self, image):
1102
        image_path = folder_paths.get_annotated_filepath(image)
1103
        i = Image.open(image_path)
1104
        i = ImageOps.exif_transpose(i)
1105
        image = i.convert("RGB")
1106
        image = np.array(image).astype(np.float32) / 255.0
1107
        image = torch.from_numpy(image)[None,]
1108
1109
1110
1111
1112
1113
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1114

1115
1116
    @classmethod
    def IS_CHANGED(s, image):
1117
        image_path = folder_paths.get_annotated_filepath(image)
1118
1119
1120
1121
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1122

1123
1124
1125
1126
1127
1128
1129
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1130
class LoadImageMask:
1131
    _color_channels = ["alpha", "red", "green", "blue"]
1132
1133
    @classmethod
    def INPUT_TYPES(s):
1134
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1135
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1136
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1137
                    {"image": (sorted(files), ),
1138
                     "channel": (s._color_channels, ), }
1139
1140
                }

1141
    CATEGORY = "mask"
1142
1143
1144
1145

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1146
        image_path = folder_paths.get_annotated_filepath(image)
1147
        i = Image.open(image_path)
1148
        i = ImageOps.exif_transpose(i)
1149
1150
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1164
        image_path = folder_paths.get_annotated_filepath(image)
1165
1166
1167
1168
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1180
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1181
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1182
1183
1184
1185
1186
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1187
1188
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1189
1190
1191
1192
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1193
    CATEGORY = "image/upscaling"
1194

comfyanonymous's avatar
comfyanonymous committed
1195
1196
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1197
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1198
1199
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1200

comfyanonymous's avatar
comfyanonymous committed
1201
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1202
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1237
1238
1239
1240
1241
1242
1243
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1244
1245
1246
1247
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1248
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1249
1250
1251
1252
1253
1254
1255
1256
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1257
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1270

1271
1272
1273
1274
1275
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1276
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1296

Guo Y.K's avatar
Guo Y.K committed
1297
1298
1299
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1300
1301
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1302
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1303
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1304
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1305
1306
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1307
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1308
1309
1310
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1311
    "LatentUpscaleBy": LatentUpscaleBy,
1312
    "LatentFromBatch": LatentFromBatch,
1313
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1314
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1315
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1316
    "LoadImage": LoadImage,
1317
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1318
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1319
    "ImageScaleBy": ImageScaleBy,
1320
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1321
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1322
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1323
1324
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1325
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1326
    "KSamplerAdvanced": KSamplerAdvanced,
1327
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1328
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1329
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1330
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1331
    "LatentCrop": LatentCrop,
1332
    "LoraLoader": LoraLoader,
1333
    "CLIPLoader": CLIPLoader,
1334
    "DualCLIPLoader": DualCLIPLoader,
1335
    "CLIPVisionEncode": CLIPVisionEncode,
1336
    "StyleModelApply": StyleModelApply,
1337
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1338
1339
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1340
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1341
1342
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1343
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1344
    "VAEEncodeTiled": VAEEncodeTiled,
1345
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1346
1347
1348
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1349
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1350
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1351
1352

    "LoadLatent": LoadLatent,
1353
    "SaveLatent": SaveLatent,
comfyanonymous's avatar
comfyanonymous committed
1354
1355
}

City's avatar
City committed
1356
1357
1358
1359
1360
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1361
1362
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1377
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1378
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1379
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1391
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1392
    "LatentComposite": "Latent Composite",
1393
1394
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1395
1396
1397
1398
1399
1400
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1401
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1402
1403
1404
1405
1406
1407
1408
1409
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1425
1426
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1427
            return True
1428
1429
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1430
            return False
1431
1432
1433
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1434
        return False
1435

Hacker 17082006's avatar
Hacker 17082006 committed
1436
def load_custom_nodes():
1437
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1438
    node_import_times = []
1439
1440
1441
1442
1443
1444
1445
1446
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1447
            if module_path.endswith(".disabled"): continue
1448
            time_before = time.perf_counter()
1449
            success = load_custom_node(module_path)
1450
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1451

1452
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1453
        print("\nImport times for custom nodes:")
1454
        for n in sorted(node_import_times):
1455
1456
1457
1458
1459
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1460
        print()
1461

1462
def init_custom_nodes():
1463
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1464
1465
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1466
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1467
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1468
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1469
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
1470
    load_custom_nodes()