nodes.py 73.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
10
import random
11
import logging
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps, ImageSequence
comfyanonymous's avatar
comfyanonymous committed
14
15
from PIL.PngImagePlugin import PngInfo
import numpy as np
16
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
17

18
19
20
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))


21
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.samplers
23
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
24
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
25
import comfy.utils
26
import comfy.controlnet
comfyanonymous's avatar
comfyanonymous committed
27

28
import comfy.clip_vision
29

30
import comfy.model_management
31
32
from comfy.cli_args import args

33
import importlib
comfyanonymous's avatar
comfyanonymous committed
34

35
import folder_paths
36
import latent_preview
space-nuko's avatar
space-nuko committed
37

38
def before_node_execution():
39
    comfy.model_management.throw_exception_if_processing_interrupted()
40

41
def interrupt_processing(value=True):
42
    comfy.model_management.interrupt_current_processing(value)
43

comfyanonymous's avatar
comfyanonymous committed
44
MAX_RESOLUTION=16384
45

comfyanonymous's avatar
comfyanonymous committed
46
47
48
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
49
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
50
51
52
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

53
54
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
55
    def encode(self, clip, text):
56
57
58
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65
66

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

67
68
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
69
70
71
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
72
73
74
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
75
76
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
77
78
79
80
81
82
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
83
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
84
        out = []
comfyanonymous's avatar
comfyanonymous committed
85
86

        if len(conditioning_from) > 1:
87
            logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
comfyanonymous's avatar
comfyanonymous committed
88
89

        cond_from = conditioning_from[0][0]
90
        pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
comfyanonymous's avatar
comfyanonymous committed
91
92
93

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
94
            pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
comfyanonymous's avatar
comfyanonymous committed
95
96
97
98
99
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
100
101
102
103
104
105
106
            t_to = conditioning_to[i][1].copy()
            if pooled_output_from is not None and pooled_output_to is not None:
                t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
            elif pooled_output_from is not None:
                t_to["pooled_output"] = pooled_output_from

            n = [tw, t_to]
FizzleDorf's avatar
FizzleDorf committed
107
108
109
            out.append(n)
        return (out, )

110
111
112
113
114
115
116
117
118
119
class ConditioningConcat:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "conditioning_to": ("CONDITIONING",),
            "conditioning_from": ("CONDITIONING",),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "concat"

120
    CATEGORY = "conditioning"
121
122
123
124
125

    def concat(self, conditioning_to, conditioning_from):
        out = []

        if len(conditioning_from) > 1:
126
            logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
127
128
129
130
131
132
133
134
135
136
137

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            tw = torch.cat((t1, cond_from),1)
            n = [tw, conditioning_to[i][1].copy()]
            out.append(n)

        return (out, )

comfyanonymous's avatar
comfyanonymous committed
138
139
140
141
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
142
143
144
145
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
146
147
148
149
150
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

151
152
    CATEGORY = "conditioning"

153
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
154
155
156
157
158
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
159
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
160
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
161
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
class ConditioningSetAreaPercentage:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
                              "x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, width, height, x, y, strength):
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = ("percentage", height, width, y, x)
            n[1]['strength'] = strength
            n[1]['set_area_to_bounds'] = False
            c.append(n)
        return (c, )

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
class ConditioningSetAreaStrength:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, conditioning, strength):
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['strength'] = strength
            c.append(n)
        return (c, )


Jacob Segal's avatar
Jacob Segal committed
208
209
210
211
212
213
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
214
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
215
216
217
218
219
220
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

221
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
222
        c = []
223
224
225
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
226
227
228
229
230
231
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
232
            n[1]['set_area_to_bounds'] = set_area_to_bounds
233
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
234
235
236
            c.append(n)
        return (c, )

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
class ConditioningZeroOut:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "zero_out"

    CATEGORY = "advanced/conditioning"

    def zero_out(self, conditioning):
        c = []
        for t in conditioning:
            d = t[1].copy()
            if "pooled_output" in d:
                d["pooled_output"] = torch.zeros_like(d["pooled_output"])
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c, )

256
257
258
259
class ConditioningSetTimestepRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
260
261
                             "start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
262
263
264
265
266
267
268
269
270
271
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "set_range"

    CATEGORY = "advanced/conditioning"

    def set_range(self, conditioning, start, end):
        c = []
        for t in conditioning:
            d = t[1].copy()
272
273
            d['start_percent'] = start
            d['end_percent'] = end
274
275
276
277
            n = [t[0], d]
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
278
279
280
281
282
283
284
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

285
286
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
287
    def decode(self, vae, samples):
288
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
289

290
291
292
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
293
        return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
comfyanonymous's avatar
comfyanonymous committed
294
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
295
                            }}
296
297
298
299
300
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

301
    def decode(self, vae, samples, tile_size):
302
        return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
303

comfyanonymous's avatar
comfyanonymous committed
304
305
306
307
308
309
310
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

311
312
    CATEGORY = "latent"

313
314
    def encode(self, vae, pixels):
        t = vae.encode(pixels[:,:,:,:3])
315
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
316

comfyanonymous's avatar
comfyanonymous committed
317
318
319
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
320
        return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
321
                             "tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
322
                            }}
comfyanonymous's avatar
comfyanonymous committed
323
324
325
326
327
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

328
329
    def encode(self, vae, pixels, tile_size):
        t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
comfyanonymous's avatar
comfyanonymous committed
330
        return ({"samples":t}, )
331

332
333
334
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
335
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
336
337
338
339
340
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

341
    def encode(self, vae, pixels, mask, grow_mask_by=6):
342
343
        x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
        y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
344
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
345

346
        pixels = pixels.clone()
347
        if pixels.shape[1] != x or pixels.shape[2] != y:
348
349
            x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
            y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
350
351
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
352

353
        #grow mask by a few pixels to keep things seamless in latent space
354
355
356
357
358
359
360
361
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

362
        m = (1.0 - mask.round()).squeeze(1)
363
364
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
365
            pixels[:,:,:,i] *= m
366
367
368
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

369
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

class InpaintModelConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "vae": ("VAE", ),
                             "pixels": ("IMAGE", ),
                             "mask": ("MASK", ),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
    RETURN_NAMES = ("positive", "negative", "latent")
    FUNCTION = "encode"

    CATEGORY = "conditioning/inpaint"

    def encode(self, positive, negative, pixels, vae, mask):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")

        orig_pixels = pixels
        pixels = orig_pixels.clone()
        if pixels.shape[1] != x or pixels.shape[2] != y:
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]

        m = (1.0 - mask.round()).squeeze(1)
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
            pixels[:,:,:,i] *= m
            pixels[:,:,:,i] += 0.5
        concat_latent = vae.encode(pixels)
        orig_latent = vae.encode(orig_pixels)

        out_latent = {}

        out_latent["samples"] = orig_latent
        out_latent["noise_mask"] = mask

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()
                d["concat_latent_image"] = concat_latent
                d["concat_mask"] = mask
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1], out_latent)


Dr.Lt.Data's avatar
Dr.Lt.Data committed
427
428
class SaveLatent:
    def __init__(self):
429
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
430
431
432
433

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
434
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
435
436
437
438
439
440
441
442
443
444
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
445
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
446
447
448
449
450
451

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

452
453
454
455
456
457
        metadata = None
        if not args.disable_metadata:
            metadata = {"prompt": prompt_info}
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])
Dr.Lt.Data's avatar
Dr.Lt.Data committed
458
459

        file = f"{filename}_{counter:05}_.latent"
460
461
462
463
464
465
466
467

        results = list()
        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": "output"
        })

Dr.Lt.Data's avatar
Dr.Lt.Data committed
468
469
        file = os.path.join(full_output_folder, file)

470
471
        output = {}
        output["latent_tensor"] = samples["samples"]
472
        output["latent_format_version_0"] = torch.tensor([])
473

474
        comfy.utils.save_torch_file(output, file, metadata=metadata)
475
        return { "ui": { "latents": results } }
Dr.Lt.Data's avatar
Dr.Lt.Data committed
476
477
478
479
480


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
481
482
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
483
484
485
486
487
488
489
490
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
491
492
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
493
494
495
496
        multiplier = 1.0
        if "latent_format_version_0" not in latent:
            multiplier = 1.0 / 0.18215
        samples = {"samples": latent["latent_tensor"].float() * multiplier}
497
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
498

499
500
501
502
503
504
505
506
507
508
509
510
511
512
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
513

comfyanonymous's avatar
comfyanonymous committed
514
515
516
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
517
518
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
519
520
521
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

522
    CATEGORY = "advanced/loaders"
523

comfyanonymous's avatar
comfyanonymous committed
524
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
525
526
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
527
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
528

529
530
531
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
532
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
533
534
535
536
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

537
    CATEGORY = "loaders"
538

539
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
540
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
541
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
542
        return out[:3]
543

sALTaccount's avatar
sALTaccount committed
544
545
546
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
547
        paths = []
sALTaccount's avatar
sALTaccount committed
548
        for search_path in folder_paths.get_folder_paths("diffusers"):
549
            if os.path.exists(search_path):
550
551
552
553
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

554
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
555
556
557
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

558
    CATEGORY = "advanced/loaders/deprecated"
sALTaccount's avatar
sALTaccount committed
559
560

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
561
562
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
563
564
565
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
566
                    break
567

568
        return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
569
570


571
572
573
574
575
576
577
578
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

579
    CATEGORY = "loaders"
580
581
582
583
584
585

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

602
class LoraLoader:
603
604
605
    def __init__(self):
        self.loaded_lora = None

606
607
608
609
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
610
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
611
612
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
613
614
615
616
617
618
619
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
620
621
622
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

623
        lora_path = folder_paths.get_full_path("loras", lora_name)
624
625
626
627
628
        lora = None
        if self.loaded_lora is not None:
            if self.loaded_lora[0] == lora_path:
                lora = self.loaded_lora[1]
            else:
629
630
631
                temp = self.loaded_lora
                self.loaded_lora = None
                del temp
632
633
634
635
636
637

        if lora is None:
            lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
            self.loaded_lora = (lora_path, lora)

        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
638
639
        return (model_lora, clip_lora)

640
641
642
643
644
645
646
647
648
649
650
651
652
class LoraLoaderModelOnly(LoraLoader):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_lora_model_only"

    def load_lora_model_only(self, model, lora_name, strength_model):
        return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)

comfyanonymous's avatar
comfyanonymous committed
653
class VAELoader:
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
    @staticmethod
    def vae_list():
        vaes = folder_paths.get_filename_list("vae")
        approx_vaes = folder_paths.get_filename_list("vae_approx")
        sdxl_taesd_enc = False
        sdxl_taesd_dec = False
        sd1_taesd_enc = False
        sd1_taesd_dec = False

        for v in approx_vaes:
            if v.startswith("taesd_decoder."):
                sd1_taesd_dec = True
            elif v.startswith("taesd_encoder."):
                sd1_taesd_enc = True
            elif v.startswith("taesdxl_decoder."):
                sdxl_taesd_dec = True
            elif v.startswith("taesdxl_encoder."):
                sdxl_taesd_enc = True
        if sd1_taesd_dec and sd1_taesd_enc:
            vaes.append("taesd")
        if sdxl_taesd_dec and sdxl_taesd_enc:
            vaes.append("taesdxl")
        return vaes

    @staticmethod
    def load_taesd(name):
        sd = {}
        approx_vaes = folder_paths.get_filename_list("vae_approx")

        encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
        decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))

        enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
        for k in enc:
            sd["taesd_encoder.{}".format(k)] = enc[k]

        dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
        for k in dec:
            sd["taesd_decoder.{}".format(k)] = dec[k]

        if name == "taesd":
            sd["vae_scale"] = torch.tensor(0.18215)
        elif name == "taesdxl":
            sd["vae_scale"] = torch.tensor(0.13025)
        return sd

comfyanonymous's avatar
comfyanonymous committed
700
701
    @classmethod
    def INPUT_TYPES(s):
702
        return {"required": { "vae_name": (s.vae_list(), )}}
comfyanonymous's avatar
comfyanonymous committed
703
704
705
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

706
707
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
708
709
    #TODO: scale factor?
    def load_vae(self, vae_name):
710
711
712
713
714
        if vae_name in ["taesd", "taesdxl"]:
            sd = self.load_taesd(vae_name)
        else:
            vae_path = folder_paths.get_full_path("vae", vae_name)
            sd = comfy.utils.load_torch_file(vae_path)
comfyanonymous's avatar
comfyanonymous committed
715
        vae = comfy.sd.VAE(sd=sd)
comfyanonymous's avatar
comfyanonymous committed
716
717
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
718
719
720
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
721
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
722
723
724
725
726
727
728

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
729
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
730
        controlnet = comfy.controlnet.load_controlnet(controlnet_path)
comfyanonymous's avatar
comfyanonymous committed
731
732
        return (controlnet,)

733
734
735
736
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
737
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
738
739
740
741
742
743
744

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
745
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
746
        controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
747
748
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
749
750
751
752

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
753
754
755
756
757
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
758
759
760
761
762
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

763
    def apply_controlnet(self, conditioning, control_net, image, strength):
764
765
766
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
767
768
769
770
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
771
772
773
774
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
775
            n[1]['control_apply_to_uncond'] = True
comfyanonymous's avatar
comfyanonymous committed
776
777
778
            c.append(n)
        return (c, )

779
780
781
782
783
784
785
786
787

class ControlNetApplyAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
788
789
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
790
791
792
793
794
795
796
797
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

798
    def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        if strength == 0:
            return (positive, negative)

        control_hint = image.movedim(-1,1)
        cnets = {}

        out = []
        for conditioning in [positive, negative]:
            c = []
            for t in conditioning:
                d = t[1].copy()

                prev_cnet = d.get('control', None)
                if prev_cnet in cnets:
                    c_net = cnets[prev_cnet]
                else:
815
                    c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
816
817
818
819
820
821
822
823
824
825
826
                    c_net.set_previous_controlnet(prev_cnet)
                    cnets[prev_cnet] = c_net

                d['control'] = c_net
                d['control_apply_to_uncond'] = False
                n = [t[0], d]
                c.append(n)
            out.append(c)
        return (out[0], out[1])


827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
class UNETLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "unet_name": (folder_paths.get_filename_list("unet"), ),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_unet"

    CATEGORY = "advanced/loaders"

    def load_unet(self, unet_name):
        unet_path = folder_paths.get_full_path("unet", unet_name)
        model = comfy.sd.load_unet(unet_path)
        return (model,)

842
843
844
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
845
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
846
                              "type": (["stable_diffusion", "stable_cascade"], ),
847
848
849
850
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

851
    CATEGORY = "advanced/loaders"
852

853
854
855
856
857
    def load_clip(self, clip_name, type="stable_diffusion"):
        clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
        if type == "stable_cascade":
            clip_type = comfy.sd.CLIPType.STABLE_CASCADE

858
        clip_path = folder_paths.get_full_path("clip", clip_name)
859
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
        return (clip,)

class DualCLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "advanced/loaders"

    def load_clip(self, clip_name1, clip_name2):
        clip_path1 = folder_paths.get_full_path("clip", clip_name1)
        clip_path2 = folder_paths.get_full_path("clip", clip_name2)
        clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"))
876
877
        return (clip,)

878
879
880
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
881
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
882
883
884
885
886
887
888
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
889
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
890
        clip_vision = comfy.clip_vision.load(clip_path)
891
892
893
894
895
896
897
898
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
899
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
900
901
    FUNCTION = "encode"

902
    CATEGORY = "conditioning"
903
904
905
906
907
908
909
910

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
911
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
912
913
914
915
916
917
918

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
919
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
920
921
922
923
924
925
926
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
927
928
929
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
930
931
932
933
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
934
    CATEGORY = "conditioning/style_model"
935

936
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
937
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
938
        c = []
939
940
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
941
942
943
            c.append(n)
        return (c, )

944
945
946
947
948
949
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
950
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
951
952
953
954
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

955
    CATEGORY = "conditioning"
956

957
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
958
959
960
        if strength == 0:
            return (conditioning, )

961
962
963
        c = []
        for t in conditioning:
            o = t[1].copy()
964
965
966
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
967
            else:
968
                o["unclip_conditioning"] = [x]
969
970
971
972
            n = [t[0], o]
            c.append(n)
        return (c, )

973
974
975
976
977
978
979
980
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
981
    CATEGORY = "loaders"
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
1003
    CATEGORY = "conditioning/gligen"
1004
1005
1006

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
1007
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
1018

comfyanonymous's avatar
comfyanonymous committed
1019
class EmptyLatentImage:
1020
1021
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
1022
1023
1024

    @classmethod
    def INPUT_TYPES(s):
1025
1026
        return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1027
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
comfyanonymous's avatar
comfyanonymous committed
1028
1029
1030
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

1031
1032
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1033
    def generate(self, width, height, batch_size=1):
1034
        latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
1035
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
1036

comfyanonymous's avatar
comfyanonymous committed
1037

1038
1039
1040
1041
1042
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
1043
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
1044
1045
                              }}
    RETURN_TYPES = ("LATENT",)
1046
    FUNCTION = "frombatch"
1047

1048
    CATEGORY = "latent/batch"
1049

1050
    def frombatch(self, samples, batch_index, length):
1051
1052
1053
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
1094
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1095

comfyanonymous's avatar
comfyanonymous committed
1096
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
1097
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
1098
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
1099
1100
1101
1102

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
1103
1104
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1105
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
1106
1107
1108
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

1109
1110
    CATEGORY = "latent"

1111
    def upscale(self, samples, upscale_method, width, height, crop):
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        if width == 0 and height == 0:
            s = samples
        else:
            s = samples.copy()

            if width == 0:
                height = max(64, height)
                width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
            elif height == 0:
                width = max(64, width)
                height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
            else:
                width = max(64, width)
                height = max(64, height)

            s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1128
1129
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1130
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
1131
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
1158
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1159
1160

    def rotate(self, samples, rotation):
1161
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1162
1163
1164
1165
1166
1167
1168
1169
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

1170
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
1171
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
1182
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1183
1184

    def flip(self, samples, flip_method):
1185
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
1186
        if flip_method.startswith("x"):
1187
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
1188
        elif flip_method.startswith("y"):
1189
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
1190
1191

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1192
1193
1194
1195

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1196
1197
1198
1199
1200
1201
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
1202
1203
1204
1205
1206
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
1207
1208
1209
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
1210
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
1234

1235
1236
1237
1238
class LatentBlend:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
1239
1240
            "samples1": ("LATENT",),
            "samples2": ("LATENT",),
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
            "blend_factor": ("FLOAT", {
                "default": 0.5,
                "min": 0,
                "max": 1,
                "step": 0.01
            }),
        }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "blend"

    CATEGORY = "_for_testing"

1254
    def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
1255

1256
1257
1258
        samples_out = samples1.copy()
        samples1 = samples1["samples"]
        samples2 = samples2["samples"]
1259

1260
1261
1262
1263
        if samples1.shape != samples2.shape:
            samples2.permute(0, 3, 1, 2)
            samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
            samples2.permute(0, 2, 3, 1)
1264

1265
1266
        samples_blended = self.blend_mode(samples1, samples2, blend_mode)
        samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
1267
1268
1269
1270
1271
1272
1273
1274
1275
        samples_out["samples"] = samples_blended
        return (samples_out,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

comfyanonymous's avatar
comfyanonymous committed
1276
1277
1278
1279
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
1280
1281
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
1282
1283
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
1284
1285
1286
1287
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
1288
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
1289
1290

    def crop(self, samples, width, height, x, y):
1291
1292
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
1306
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
1307
1308
        return (s,)

1309
1310
1311
1312
1313
1314
1315
1316
1317
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

1318
    CATEGORY = "latent/inpaint"
1319
1320
1321

    def set_mask(self, samples, mask):
        s = samples.copy()
1322
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
1323
1324
        return (s,)

space-nuko's avatar
space-nuko committed
1325
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1326
    latent_image = latent["samples"]
comfyanonymous's avatar
comfyanonymous committed
1327
1328
1329
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1330
1331
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1332

1333
    noise_mask = None
1334
    if "noise_mask" in latent:
1335
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1336

1337
    callback = latent_preview.prepare_callback(model, steps)
1338
    disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
1339
1340
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
comfyanonymous's avatar
comfyanonymous committed
1341
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
1342
1343
1344
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1345

comfyanonymous's avatar
comfyanonymous committed
1346
1347
1348
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1349
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1350
1351
1352
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1353
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1354
1355
1356
1357
1358
1359
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1360
1361
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1362
1363
1364
1365

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1366
1367
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1368
1369
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1370

comfyanonymous's avatar
comfyanonymous committed
1371
1372
1373
1374
1375
1376
1377
1378
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
1379
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
comfyanonymous's avatar
comfyanonymous committed
1380
1381
1382
1383
1384
1385
1386
1387
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1388
1389
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1390
1391
1392
1393
1394

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1395

space-nuko's avatar
space-nuko committed
1396
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1397
1398
1399
1400
1401
1402
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1403
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1404
1405
1406

class SaveImage:
    def __init__(self):
1407
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1408
        self.type = "output"
1409
        self.prefix_append = ""
1410
        self.compress_level = 4
comfyanonymous's avatar
comfyanonymous committed
1411
1412
1413
1414

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1415
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1416
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1417
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1418
1419
1420
1421
1422
1423
1424
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1425
1426
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1427
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1428
        filename_prefix += self.prefix_append
1429
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1430
        results = list()
1431
        for (batch_number, image) in enumerate(images):
comfyanonymous's avatar
comfyanonymous committed
1432
            i = 255. * image.cpu().numpy()
1433
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
1434
1435
1436
1437
1438
1439
1440
1441
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1442

1443
1444
            filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
            file = f"{filename_with_batch_num}_{counter:05}_.png"
1445
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
m957ymj75urz's avatar
m957ymj75urz committed
1446
1447
1448
1449
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1450
            })
1451
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1452

m957ymj75urz's avatar
m957ymj75urz committed
1453
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1454

pythongosssss's avatar
pythongosssss committed
1455
1456
class PreviewImage(SaveImage):
    def __init__(self):
1457
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1458
        self.type = "temp"
1459
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
1460
        self.compress_level = 1
pythongosssss's avatar
pythongosssss committed
1461
1462
1463

    @classmethod
    def INPUT_TYPES(s):
1464
        return {"required":
pythongosssss's avatar
pythongosssss committed
1465
1466
1467
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1468

1469
1470
1471
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1472
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1473
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1474
        return {"required":
1475
                    {"image": (sorted(files), {"image_upload": True})},
1476
                }
1477
1478

    CATEGORY = "image"
1479

1480
    RETURN_TYPES = ("IMAGE", "MASK")
1481
1482
    FUNCTION = "load_image"
    def load_image(self, image):
1483
        image_path = folder_paths.get_annotated_filepath(image)
1484
1485
1486
1487
1488
        img = Image.open(image_path)
        output_images = []
        output_masks = []
        for i in ImageSequence.Iterator(img):
            i = ImageOps.exif_transpose(i)
1489
1490
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            output_images.append(image)
            output_masks.append(mask.unsqueeze(0))

        if len(output_images) > 1:
            output_image = torch.cat(output_images, dim=0)
            output_mask = torch.cat(output_masks, dim=0)
1505
        else:
1506
1507
1508
1509
            output_image = output_images[0]
            output_mask = output_masks[0]

        return (output_image, output_mask)
1510

1511
1512
    @classmethod
    def IS_CHANGED(s, image):
1513
        image_path = folder_paths.get_annotated_filepath(image)
1514
1515
1516
1517
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1518

1519
1520
1521
1522
1523
1524
1525
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1526
class LoadImageMask:
1527
    _color_channels = ["alpha", "red", "green", "blue"]
1528
1529
    @classmethod
    def INPUT_TYPES(s):
1530
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1531
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1532
        return {"required":
1533
                    {"image": (sorted(files), {"image_upload": True}),
1534
                     "channel": (s._color_channels, ), }
1535
1536
                }

1537
    CATEGORY = "mask"
1538
1539
1540
1541

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1542
        image_path = folder_paths.get_annotated_filepath(image)
1543
        i = Image.open(image_path)
1544
        i = ImageOps.exif_transpose(i)
1545
        if i.getbands() != ("R", "G", "B", "A"):
1546
1547
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
1548
            i = i.convert("RGBA")
1549
1550
1551
1552
1553
1554
1555
1556
1557
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
1558
        return (mask.unsqueeze(0),)
1559
1560
1561

    @classmethod
    def IS_CHANGED(s, image, channel):
1562
        image_path = folder_paths.get_annotated_filepath(image)
1563
1564
1565
1566
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1567

1568
    @classmethod
1569
    def VALIDATE_INPUTS(s, image):
1570
1571
1572
1573
1574
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

comfyanonymous's avatar
comfyanonymous committed
1575
class ImageScale:
1576
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1577
1578
1579
1580
1581
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1582
1583
                              "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1584
1585
1586
1587
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1588
    CATEGORY = "image/upscaling"
1589

comfyanonymous's avatar
comfyanonymous committed
1590
    def upscale(self, image, upscale_method, width, height, crop):
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
        if width == 0 and height == 0:
            s = image
        else:
            samples = image.movedim(-1,1)

            if width == 0:
                width = max(1, round(samples.shape[3] * height / samples.shape[2]))
            elif height == 0:
                height = max(1, round(samples.shape[2] * width / samples.shape[3]))

            s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
            s = s.movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
1603
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1604

comfyanonymous's avatar
comfyanonymous committed
1605
class ImageScaleBy:
1606
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
comfyanonymous's avatar
comfyanonymous committed
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
class ImageBatch:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "batch"

    CATEGORY = "image"

    def batch(self, image1, image2):
        if image1.shape[1:] != image2.shape[1:]:
            image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
        s = torch.cat((image1, image2), dim=0)
        return (s,)
1656

comfyanonymous's avatar
comfyanonymous committed
1657
1658
1659
1660
1661
1662
1663
1664
class EmptyImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1665
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
comfyanonymous's avatar
comfyanonymous committed
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
                              "color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate"

    CATEGORY = "image"

    def generate(self, width, height, batch_size=1, color=0):
        r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
        g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
        b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
        return (torch.cat((r, g, b), dim=-1), )

Guo Y.K's avatar
Guo Y.K committed
1679
1680
1681
1682
1683
1684
1685
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1686
1687
1688
1689
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1690
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1691
1692
1693
1694
1695
1696
1697
1698
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1699
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1700
1701
        d1, d2, d3, d4 = image.size()

1702
        new_image = torch.ones(
Guo Y.K's avatar
Guo Y.K committed
1703
1704
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
1705
1706
        ) * 0.5

Guo Y.K's avatar
Guo Y.K committed
1707
1708
1709
1710
1711
1712
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1713

1714
1715
1716
1717
1718
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1719
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1739

Guo Y.K's avatar
Guo Y.K committed
1740
1741
1742
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1743
1744
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1745
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1746
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1747
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1748
1749
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1750
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1751
1752
1753
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1754
    "LatentUpscaleBy": LatentUpscaleBy,
1755
    "LatentFromBatch": LatentFromBatch,
1756
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1757
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1758
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1759
    "LoadImage": LoadImage,
1760
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1761
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1762
    "ImageScaleBy": ImageScaleBy,
1763
    "ImageInvert": ImageInvert,
1764
    "ImageBatch": ImageBatch,
Guo Y.K's avatar
Guo Y.K committed
1765
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1766
    "EmptyImage": EmptyImage,
comfyanonymous's avatar
comfyanonymous committed
1767
    "ConditioningAverage": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1768
    "ConditioningCombine": ConditioningCombine,
1769
    "ConditioningConcat": ConditioningConcat,
comfyanonymous's avatar
comfyanonymous committed
1770
    "ConditioningSetArea": ConditioningSetArea,
1771
    "ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
1772
    "ConditioningSetAreaStrength": ConditioningSetAreaStrength,
Jacob Segal's avatar
Jacob Segal committed
1773
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1774
    "KSamplerAdvanced": KSamplerAdvanced,
1775
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1776
    "LatentComposite": LatentComposite,
1777
    "LatentBlend": LatentBlend,
comfyanonymous's avatar
comfyanonymous committed
1778
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1779
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1780
    "LatentCrop": LatentCrop,
1781
    "LoraLoader": LoraLoader,
1782
    "CLIPLoader": CLIPLoader,
1783
    "UNETLoader": UNETLoader,
1784
    "DualCLIPLoader": DualCLIPLoader,
1785
    "CLIPVisionEncode": CLIPVisionEncode,
1786
    "StyleModelApply": StyleModelApply,
1787
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1788
    "ControlNetApply": ControlNetApply,
1789
    "ControlNetApplyAdvanced": ControlNetApplyAdvanced,
comfyanonymous's avatar
comfyanonymous committed
1790
    "ControlNetLoader": ControlNetLoader,
1791
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1792
1793
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1794
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1795
    "VAEEncodeTiled": VAEEncodeTiled,
1796
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1797
1798
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,
1799
    "InpaintModelConditioning": InpaintModelConditioning,
1800

1801
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1802
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1803
1804

    "LoadLatent": LoadLatent,
1805
    "SaveLatent": SaveLatent,
1806
1807

    "ConditioningZeroOut": ConditioningZeroOut,
1808
    "ConditioningSetTimestepRange": ConditioningSetTimestepRange,
1809
    "LoraLoaderModelOnly": LoraLoaderModelOnly,
comfyanonymous's avatar
comfyanonymous committed
1810
1811
}

City's avatar
City committed
1812
1813
1814
1815
1816
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
1817
    "CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1818
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1833
    "ConditioningAverage ": "Conditioning (Average)",
1834
    "ConditioningConcat": "Conditioning (Concat)",
City's avatar
City committed
1835
    "ConditioningSetArea": "Conditioning (Set Area)",
1836
    "ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
Jacob Segal's avatar
Jacob Segal committed
1837
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1838
    "ControlNetApply": "Apply ControlNet",
1839
    "ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
City's avatar
City committed
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1850
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1851
    "LatentComposite": "Latent Composite",
1852
    "LatentBlend": "Latent Blend",
1853
1854
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1855
1856
1857
1858
1859
1860
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1861
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1862
1863
1864
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
1865
    "ImageBatch": "Batch Images",
City's avatar
City committed
1866
1867
1868
1869
1870
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1871
1872
EXTENSION_WEB_DIRS = {}

1873
def load_custom_node(module_path, ignore=set()):
1874
1875
1876
1877
1878
1879
1880
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
1881
            module_dir = os.path.split(module_path)[0]
1882
1883
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
1884
1885
            module_dir = module_path

1886
1887
1888
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
1889
1890
1891
1892
1893
1894

        if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
            web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
            if os.path.isdir(web_dir):
                EXTENSION_WEB_DIRS[module_name] = web_dir

1895
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
1896
1897
1898
            for name in module.NODE_CLASS_MAPPINGS:
                if name not in ignore:
                    NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
1899
1900
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1901
            return True
1902
        else:
1903
            logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1904
            return False
1905
    except Exception as e:
1906
        logging.warning(traceback.format_exc())
1907
        logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
1908
        return False
1909

Hacker 17082006's avatar
Hacker 17082006 committed
1910
def load_custom_nodes():
1911
    base_node_names = set(NODE_CLASS_MAPPINGS.keys())
1912
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1913
    node_import_times = []
1914
    for custom_node_path in node_paths:
Enrico Fasoli's avatar
Enrico Fasoli committed
1915
        possible_modules = os.listdir(os.path.realpath(custom_node_path))
1916
1917
1918
1919
1920
1921
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1922
            if module_path.endswith(".disabled"): continue
1923
            time_before = time.perf_counter()
1924
            success = load_custom_node(module_path, base_node_names)
1925
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1926

1927
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1928
        logging.info("\nImport times for custom nodes:")
1929
        for n in sorted(node_import_times):
1930
1931
1932
1933
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
comfyanonymous's avatar
comfyanonymous committed
1934
1935
            logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
        logging.info("")
1936

1937
def init_custom_nodes():
1938
1939
1940
1941
1942
1943
1944
    extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
    extras_files = [
        "nodes_latent.py",
        "nodes_hypernetwork.py",
        "nodes_upscale_model.py",
        "nodes_post_processing.py",
        "nodes_mask.py",
1945
        "nodes_compositing.py",
1946
1947
1948
1949
1950
1951
        "nodes_rebatch.py",
        "nodes_model_merging.py",
        "nodes_tomesd.py",
        "nodes_clip_sdxl.py",
        "nodes_canny.py",
        "nodes_freelunch.py",
1952
1953
        "nodes_custom_sampler.py",
        "nodes_hypertile.py",
1954
        "nodes_model_advanced.py",
1955
        "nodes_model_downscale.py",
comfyanonymous's avatar
comfyanonymous committed
1956
        "nodes_images.py",
1957
        "nodes_video_model.py",
1958
        "nodes_sag.py",
Hari's avatar
Hari committed
1959
        "nodes_perpneg.py",
1960
        "nodes_stable3d.py",
1961
        "nodes_sdupscale.py",
1962
        "nodes_photomaker.py",
1963
        "nodes_cond.py",
1964
        "nodes_morphology.py",
comfyanonymous's avatar
comfyanonymous committed
1965
        "nodes_stable_cascade.py",
1966
        "nodes_differential_diffusion.py",
1967
1968
    ]

1969
    import_failed = []
1970
    for node_file in extras_files:
1971
1972
        if not load_custom_node(os.path.join(extras_dir, node_file)):
            import_failed.append(node_file)
1973

1974
    load_custom_nodes()
1975
1976

    if len(import_failed) > 0:
1977
        logging.warning("WARNING: some comfy_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
1978
        for node in import_failed:
1979
1980
            logging.warning("IMPORT FAILED: {}".format(node))
        logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
1981
        if args.windows_standalone_build:
1982
            logging.warning("Please run the update script: update/update_comfyui.bat")
1983
        else:
1984
1985
            logging.warning("Please do a: pip install -r requirements.txt")
        logging.warning("")