onnx.cpp 103 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
14
#include <migraphx/make_op.hpp>
Paul's avatar
Paul committed
15
16
17
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
Paul's avatar
Paul committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gru.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/lstm.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn_last_cell_output.hpp>
#include <migraphx/op/rnn_last_hs_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/undefined.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/op/unsqueeze.hpp>

Paul's avatar
Paul committed
48
namespace migraphx {
Paul's avatar
Paul committed
49
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
50

51
52
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
53
54
55
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
56
57
58
59
60
61
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
62
    using op_func =
63
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
64
65
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
66
67
68
69
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
70
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
71
72

    std::unordered_map<std::string, op_func> ops;
73
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
74
75
76

    onnx_parser()
    {
77
        // sort onnx operator alphabetically through name
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        add_generic_op("Abs", "abs");
        add_generic_op("Acos", "acos");
        add_generic_op("Acosh", "acosh");
        add_generic_op("Asin", "asin");
        add_generic_op("Asinh", "asinh");
        add_generic_op("Atan", "atan");
        add_generic_op("Atanh", "atanh");
        add_generic_op("Ceil", "ceil");
        add_generic_op("Concat", "concat");
        add_generic_op("Cos", "cos");
        add_generic_op("Cosh", "cosh");
        add_generic_op("Erf", "erf");
        add_generic_op("Exp", "exp");
        add_generic_op("Flatten", "flatten");
        add_generic_op("Floor", "floor");
        add_generic_op("Gather", "gather", true);
        add_generic_op("Identity", "identity");
        add_generic_op("Log", "log");
        add_generic_op("LogSoftmax", "logsoftmax");
        add_generic_op("Neg", "neg");
        add_generic_op("Reciprocal", "recip");
        add_generic_op("Relu", "relu");
        add_generic_op("Round", "round");
        add_generic_op("Sigmoid", "sigmoid");
        add_generic_op("Sign", "sign");
        add_generic_op("Sin", "sin");
        add_generic_op("Sinh", "sinh");
        add_generic_op("Softmax", "softmax");
        add_generic_op("Sqrt", "sqrt");
        add_generic_op("Squeeze", "squeeze", true);
        add_generic_op("Tan", "tan");
        add_generic_op("Tanh", "tanh");
        add_generic_op("Unsqueeze", "unsqueeze", true);

        add_binary_op("Add", "add");
        add_binary_op("Div", "div");
        add_binary_op("Mul", "mul");
        add_binary_op("Pow", "pow");
        add_binary_op("PRelu", "prelu");
        add_binary_op("Sub", "sub");

        add_variadic_op("Sum", "add");
        add_variadic_op("Max", "max");
        add_variadic_op("Min", "min");
Paul's avatar
Paul committed
122

123
        add_mem_op("ATen", &onnx_parser::parse_aten);
124
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
125
126
        add_mem_op("ArgMax", "argmax", &onnx_parser::parse_arg_op);
        add_mem_op("ArgMin", "argmin", &onnx_parser::parse_arg_op);
127
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
128
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
129
        add_mem_op("Clip", &onnx_parser::parse_clip);
Paul's avatar
Paul committed
130
        add_mem_op("Constant", &onnx_parser::parse_constant);
131
132
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
133
134
        add_mem_op("Conv", "convolution", &onnx_parser::parse_conv);
        add_mem_op("ConvInteger", "quant_convolution", &onnx_parser::parse_conv);
kahmed10's avatar
kahmed10 committed
135
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
136
        add_mem_op("Dropout", &onnx_parser::parse_dropout);
137
        add_mem_op("Elu", &onnx_parser::parse_elu);
138
        add_mem_op("Equal", &onnx_parser::parse_equal);
139
        add_mem_op("Expand", &onnx_parser::parse_expand);
Shucai Xiao's avatar
Shucai Xiao committed
140
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
141
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
142
143
144
145
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
146
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
147
148
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
        add_mem_op("LRN", &onnx_parser::parse_lrn);
149
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
150
151
        add_mem_op("MatMul", "dot", &onnx_parser::parse_matmul);
        add_mem_op("MatMulInteger", "quant_dot", &onnx_parser::parse_matmul);
152
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
153
        add_mem_op("NonZero", &onnx_parser::parse_nonzero);
kahmed10's avatar
kahmed10 committed
154
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
155
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
156
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
161
162
163
164
165
        add_mem_op("ReduceMax", "reduce_max", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMean", "reduce_mean", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMin", "reduce_min", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceProd", "reduce_prod", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceSum", "reduce_sum", &onnx_parser::parse_reduce_oper);
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
167
168
169
170
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
171
        add_mem_op("Split", &onnx_parser::parse_split);
kahmed10's avatar
kahmed10 committed
172
        add_mem_op("Tile", &onnx_parser::parse_tile);
173
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
174
175
176
177
178
179
180

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
181
        // Support name format of all lower case or the first letter capital
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        map_actv_funcs.insert(std::make_pair("tanh", make_op("tanh")));
        map_actv_funcs.insert(std::make_pair("relu", make_op("relu")));
        map_actv_funcs.insert(std::make_pair("sigmoid", make_op("sigmoid")));
        map_actv_funcs.insert(std::make_pair("leakyrelu", make_op("leaky_relu")));
        map_actv_funcs.insert(std::make_pair("elu", make_op("elu")));
    }

    static operation load(const std::string& name, const node_info& info)
    {
        auto op = make_op(name);
        auto v  = op.to_value();
        for(auto&& x : v)
        {
            if(info.attributes.count(x.get_key()) == 0)
                continue;
            literal s = parse_value(info.attributes.at(x.get_key()));
            if(x.is_array())
            {
                std::vector<value> values;
                s.visit([&](auto y) {
                    std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                        return value(z);
                    });
                });
                x = values;
            }
            else
            {
                s.visit([&](auto y) { x = y.front(); });
            }
        }
        op.from_value(v);
        return op;
Paul's avatar
Paul committed
215
216
217
218
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
219
220
221
222
223
224
225
226
227
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
228
229
230
231
232
    {
        ops.emplace(name, f);
    }

    template <class F>
233
    void add_mem_op(const std::string& name, F f)
Paul's avatar
Paul committed
234
    {
Paul's avatar
Paul committed
235
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
236
237
238
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
239

240
241
242
243
244
245
246
247
248
    template <class F>
    void add_mem_op(const std::string& onnx_name, const std::string& op_name, F f)
    {
        add_op(onnx_name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, onnx_name, op_name, std::forward<decltype(xs)>(xs)...);
        });
    }

    void add_binary_op(const std::string& onnx_name, const std::string& op_name)
249
    {
250
        add_op(onnx_name, [this, op_name](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
251
            if(args.size() != 2)
Paul's avatar
Paul committed
252
                MIGRAPHX_THROW("binary operators should have 2 operands");
253
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
254
            {
255
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
256
257
                if(broadcasted != 0)
                {
258
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
259
260
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
261
                    return prog.add_instruction(make_op(op_name), args[0], l);
262
                }
263
                return prog.add_instruction(make_op(op_name), args);
264
            }
Paul's avatar
Paul committed
265
            else
266
            {
267
                return add_broadcastable_binary_op(args[0], args[1], op_name);
268
269
270
271
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
272
273
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
274
275
276
277
278
279
280
281
282
283
284
285
286
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
287
        if(s0.size() > s1.size())
288
289
290
291
292
293
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
294
295
296
297
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
298
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
299
                           if(a != b and a != 1 and b != 1)
300
                           {
Shucai Xiao's avatar
Shucai Xiao committed
301
302
303
304
305
306
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
307
308
309
310

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
311
312
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
313
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
314
315
316
317
        {
            return ins;
        }

318
        return prog.add_instruction(make_op("contiguous"), ins);
Shucai Xiao's avatar
Shucai Xiao committed
319
320
    }

321
322
    instruction_ref
    add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, const std::string& name)
Khalique's avatar
Khalique committed
323
    {
Khalique's avatar
Khalique committed
324
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
325
326
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
327
328
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
329
            auto out_lens = compute_broadcasted_lens(s0, s1);
330
331
332
333
334
335
336
337
338

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

339
            return prog.add_instruction(make_op(name), l0, l1);
Khalique's avatar
Khalique committed
340
341
342
        }
        else
        {
343
            return prog.add_instruction(make_op(name), {arg0, arg1});
Khalique's avatar
Khalique committed
344
        }
345
346
    }

347
348
349
    void add_generic_op(const std::string& onnx_name,
                        const std::string& op_name,
                        bool contiguous = false)
Paul's avatar
Paul committed
350
    {
351
352
353
354
355
356
357
358
359
360
361
362
        add_op(
            onnx_name,
            [this, op_name, contiguous](const node_info& info, std::vector<instruction_ref> args) {
                auto op = load(op_name, info);
                if(contiguous)
                {
                    std::transform(args.begin(), args.end(), args.begin(), [&](auto arg) {
                        return this->make_contiguous(arg);
                    });
                }
                return prog.add_instruction(op, args);
            });
Paul's avatar
Paul committed
363
364
    }

365
    void add_variadic_op(const std::string& onnx_name, const std::string& op_name)
Khalique's avatar
Khalique committed
366
    {
367
        add_op(onnx_name, [this, op_name](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
368
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
369
370
                                   args.end(),
                                   args.front(),
371
372
                                   [this, op_name](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, op_name);
Khalique's avatar
Khalique committed
373
                                   });
Khalique's avatar
Khalique committed
374
        });
Khalique's avatar
Khalique committed
375
376
    }

kahmed10's avatar
kahmed10 committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
391
            return prog.add_instruction(make_op("add"), curr_ins, bias_bcast);
kahmed10's avatar
kahmed10 committed
392
393
394
395
        }
        return curr_ins;
    }

396
    static bool is_asym_padding(const std::vector<int64_t>& padding)
397
    {
398
399
400
401
402
403
404
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
405
                return true;
406
407
            }
        }
kahmed10's avatar
kahmed10 committed
408
409
        return false;
    }
410

kahmed10's avatar
kahmed10 committed
411
412
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
413
                            value& v,
414
415
                            int count_include_pad = 0,
                            float pad_val         = 0)
kahmed10's avatar
kahmed10 committed
416
417
418
419
420
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

421
        if(is_asym_padding(padding) or count_include_pad == 1)
422
        {
423
424
425
426
427
428
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
429
430
431
        }
        else
        {
432
            v["padding"] = std::vector<size_t>(left_pad_it, right_pad_it);
433
434
435
        }
    }

436
437
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
438
    {
kahmed10's avatar
kahmed10 committed
439
440
441
442
443
444
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

Shucai Xiao's avatar
Shucai Xiao committed
445
        if(args.size() == 3 and args[2]->name() != "undefined")
Khalique's avatar
Khalique committed
446
        {
kahmed10's avatar
kahmed10 committed
447
448
            max_arg  = args[2];
            max_used = true;
Khalique's avatar
Khalique committed
449
        }
Shucai Xiao's avatar
Shucai Xiao committed
450
451

        if(args.size() >= 2 and args[1]->name() != "undefined")
Khalique's avatar
Khalique committed
452
        {
kahmed10's avatar
kahmed10 committed
453
454
455
456
457
458
459
460
461
462
463
464
465
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
466
        }
kahmed10's avatar
kahmed10 committed
467
468

        if(min_used)
Shucai Xiao's avatar
Shucai Xiao committed
469
        {
kahmed10's avatar
kahmed10 committed
470
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
471
        }
kahmed10's avatar
kahmed10 committed
472
473

        if(max_used)
Shucai Xiao's avatar
Shucai Xiao committed
474
        {
kahmed10's avatar
kahmed10 committed
475
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
476
        }
kahmed10's avatar
kahmed10 committed
477
478

        if(min_used and max_used)
Shucai Xiao's avatar
Shucai Xiao committed
479
        {
480
            return prog.add_instruction(make_op("clip"), args[0], min_arg, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
481
482
483
484
485
486
487
        }
        else if(max_used)
        {
            return prog.add_instruction(make_op("min"), args[0], max_arg);
        }
        else if(min_used)
        {
488
            return prog.add_instruction(make_op("max"), args[0], min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
489
490
491
492
493
        }
        else
        {
            return prog.add_instruction(make_op("identity"), args[0]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
494
495
    }

496
497
498
499
    instruction_ref parse_arg_op(const std::string&,
                                 const std::string& op_name,
                                 node_info info,
                                 std::vector<instruction_ref> args)
500
    {
501
        int64_t axis = 0;
502
        if(contains(info.attributes, "axis"))
503
        {
504
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
505
506
        }

Shucai Xiao's avatar
Shucai Xiao committed
507
        int keep_dims = 1;
508
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
509
        {
510
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
511
512
        }

Shucai Xiao's avatar
Shucai Xiao committed
513
        if(keep_dims == 0)
514
        {
515
            auto ins = prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
516
            return prog.add_instruction(op::squeeze{{axis}}, ins);
517
518
519
        }
        else
        {
520
            return prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
521
        }
522
523
    }

kahmed10's avatar
kahmed10 committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

600
601
602
603
604
605
606
607
608
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

609
    void recalc_conv_attributes(value& v, size_t kdims)
610
    {
611
        if(v["padding"].size() != kdims)
612
        {
613
614
            v["padding"].resize(kdims);
            std::fill_n(v["padding"].begin(), kdims, 0);
615
        }
616
        if(v["stride"].size() != kdims)
617
        {
618
619
            v["stride"].resize(kdims);
            std::fill_n(v["stride"].begin(), kdims, 1);
620
        }
621
        if(v["dilation"].size() != kdims)
622
        {
623
624
            v["dilation"].resize(kdims);
            std::fill_n(v["dilation"].begin(), kdims, 1);
625
626
627
        }
    }

628
    static void cal_auto_padding_size(node_info info,
629
                                      value& v,
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
                                      const std::vector<std::size_t>& k_lens,
                                      const std::vector<std::size_t>& dilation,
                                      const std::vector<std::size_t>& in_lens,
                                      std::vector<int64_t>& paddings)
    {
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

        if(!contains(info.attributes, "auto_pad"))
        {
            return;
        }

        auto auto_pad = info.attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            paddings.resize(2 * kdims);

            for(size_t i = 0; i < paddings.size() / 2; i++)
            {
                calculate_padding(i,
                                  paddings,
                                  in_lens[i + 2],
654
                                  v["stride"][i].to<int64_t>(),
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
        }
    }

    static void check_padding_mode(node_info info, const std::string& op_name)
    {
        // ensure pads availabe only when auto_pad is "NOT_SET"
        if(contains(info.attributes, "pads") and contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_" + op_name +
                               ": auto_pad and padding cannot be specified simultaneously");
            }
        }
    }

676
677
678
679
    instruction_ref parse_conv(const std::string&,
                               const std::string& op_name,
                               node_info info,
                               std::vector<instruction_ref> args)
Paul's avatar
Paul committed
680
    {
681
682
        auto op      = make_op(op_name);
        auto values  = op.to_value();
683
684
        auto l0      = args[0];
        auto weights = args[1];
685
686
687
688
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

689
690
691
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV");

692
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
693
        {
694
695
696
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
697
        }
698
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
699
        {
700
701
702
703
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
            check_attr_sizes(
                kdims, values["dilation"].size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
704
        }
705
706
707
708

        std::vector<int64_t> padding;
        if(contains(info.attributes, "pads"))
        {
709
            values["padding"].clear();
710
711
712
713
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
        }

714
        if(contains(info.attributes, "auto_pad"))
715
        {
716
717
            auto weight_lens = weights->get_shape().lens();
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
718
719
720
721
722
723
            cal_auto_padding_size(info,
                                  values,
                                  k_lens,
                                  values["dilation"].to_vector<std::size_t>(),
                                  in_lens,
                                  padding);
Shucai Xiao's avatar
Shucai Xiao committed
724
725
726
727
728
            auto auto_pad = info.attributes["auto_pad"].s();
            if(auto_pad.find("SAME") != std::string::npos)
            {
                values["padding_mode"] = to_value(op::padding_mode_t::same);
            }
729
        }
730
        check_asym_padding(l0, padding, values);
731

732
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
733
        {
734
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
735
        }
kahmed10's avatar
kahmed10 committed
736

737
        recalc_conv_attributes(values, kdims);
738

739
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
740
741
742
743
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

744
745
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
746
    {
747
748
749
        operation op = make_op("deconvolution");
        value values = op.to_value();
        // op::deconvolution op;
kahmed10's avatar
kahmed10 committed
750
751
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
752
753
754
755
756
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

757
758
759
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

760
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
761
        {
762
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
763
764
765
766

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
767
            {
kahmed10's avatar
kahmed10 committed
768
769
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
770
                values["padding"].clear();
kahmed10's avatar
kahmed10 committed
771
772
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
773
                               std::back_inserter(values["padding"]),
kahmed10's avatar
kahmed10 committed
774
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
775
776
            }
        }
777
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
778
        {
779
780
781
782
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(
                kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
783
        }
784
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
785
        {
786
787
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
kahmed10's avatar
kahmed10 committed
788
            check_attr_sizes(
789
                kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
790
        }
791
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
792
        {
793
794
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
795
            {
kahmed10's avatar
kahmed10 committed
796
797
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
798
799
800
801
            }

            if(s.find("SAME") != std::string::npos)
            {
802
                values["padding_mode"] = to_value(op::padding_mode_t::same);
kahmed10's avatar
kahmed10 committed
803
804
805
            }
        }

806
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
807
        {
808
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
809
810
        }

811
        recalc_conv_attributes(values, kdims);
kahmed10's avatar
kahmed10 committed
812

813
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
814
815
        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
816
817
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
818
        {
kahmed10's avatar
kahmed10 committed
819
820
821
822
823
824
825
826
827
828
829
830
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
831

kahmed10's avatar
kahmed10 committed
832
            l1 = prog.add_instruction(op::slice{axes, starts, ends}, l1);
kahmed10's avatar
kahmed10 committed
833
834
        }

835
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
836
        {
kahmed10's avatar
kahmed10 committed
837
838
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
839
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
840
841
842
843
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = prog.add_instruction(op::pad{output_padding}, l1);
kahmed10's avatar
kahmed10 committed
844
845
        }

846
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
847
848
        {
            std::vector<int64_t> output_shape;
849
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
850
851
852
853
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
854
855
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
856
857
858
859
860
861
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
kahmed10's avatar
kahmed10 committed
862
863
864
865
866
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
867
    }
Paul's avatar
Paul committed
868

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
    static void
    tune_padding_to_symmetric(int64_t& left, int64_t& right, const int stride, int64_t& s_start)
    {
        s_start = 0;
        if(left > right)
        {
            right = left;
        }
        else if(left < right)
        {
            auto diff = right - left;
            s_start   = (diff + stride - 1) / stride;
            left      = left + s_start * stride;
            right     = left;
        }
    }

886
    static void tune_padding_size(const value& v,
887
888
889
890
891
                                  std::vector<int64_t>& padding,
                                  int count_include_pad,
                                  std::vector<int64_t>& s_start)
    {
        // maxpooling or count_include_pad is 1, no change is required.
892
        if(v.at("mode").to<std::string>() == "max" or count_include_pad == 1)
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
        {
            return;
        }

        // if padding is symmetric, return directly
        if(!is_asym_padding(padding))
        {
            return;
        }

        // asymmetric padding, make it symmetric
        std::size_t n_dims = padding.size() / 2;
        s_start.resize(n_dims);
        for(std::size_t i = 0; i < n_dims; ++i)
        {
908
909
            tune_padding_to_symmetric(
                padding[i], padding[i + n_dims], v.at("stride")[i].to<int64_t>(), s_start[i]);
910
911
912
        }
    }

913
914
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
915
    {
916
917
918
919
920
        std::string mode = ends_with(name, "MaxPool") ? "max" : "average";
        operation op     = make_op("pooling", {{"mode", mode}});
        value values     = op.to_value();
        auto l0          = args[0];
        auto in_lens     = l0->get_shape().lens();
921
922
923
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
924
        if(starts_with(name, "Global"))
925
        {
926
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
927
        }
928

929
930
        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
Paul's avatar
Paul committed
931
        {
Shucai Xiao's avatar
Shucai Xiao committed
932
            values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
933
        }
934

935
936
937
938
939
940
        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
Paul's avatar
Paul committed
941
        }
942

943
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
944
        {
945
946
947
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
948
        }
949
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
950
        {
951
952
953
954
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
955
        }
956

957
958
959
960
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
961
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
962
963
        if(contains(info.attributes, "pads"))
        {
964
            values["padding"].clear();
965
966
967
968
969
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

970
        if(contains(info.attributes, "auto_pad"))
971
        {
972
            values["padding"].clear();
973
            // return paddings could be empty, then setting to 0 for no padding
974
975
976
977
978
979
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
980
        }
981

982
983
984
985
        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
986
987
        }

988
        if(values["padding"].size() != kdims)
989
        {
990
991
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
992
        }
993

994
        if(values["stride"].size() != kdims)
995
        {
996
997
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
998
        }
999
1000
1001
1002
1003
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
1004
        tune_padding_size(values, paddings, count_include_pad, slice_start);
1005
1006
1007
1008
1009
1010
1011
1012

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
1013
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();
1014

1015
1016
1017
1018
1019
1020
1021
1022
1023
            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }

1024
        check_asym_padding(l0, paddings, values, count_include_pad, pad_val);
1025
        in_lens = l0->get_shape().lens();
1026
1027
        for(size_t i = 0; i < kdims; i++)
        {
1028
1029
            if(values["lengths"][i].to<int64_t>() >
               in_lens[i + 2] + 2 * values["padding"][i].to<int64_t>())
1030
            {
1031
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
1032
1033
            }
        }
1034
        op.from_value(values);
1035
1036
1037
1038
1039
1040
        auto l1 = prog.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = prog.add_instruction(op::slice{axes, slice_start, slice_end}, l1);
1041
1042
        }

1043
        return l1;
Paul's avatar
Paul committed
1044
1045
    }

Paul's avatar
Paul committed
1046
    instruction_ref
1047
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1048
    {
1049
        op::reshape op;
Paul's avatar
Paul committed
1050
1051
        if(args.size() == 1)
        {
1052
            literal s = parse_value(info.attributes.at("shape"));
1053
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1054
1055
1056
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
1057
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1058
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
1059
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1060
        }
1061

Shucai Xiao's avatar
Shucai Xiao committed
1062
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
1063
1064
    }

Shucai Xiao's avatar
Shucai Xiao committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
1115
1116
1117
        auto dim_diff  = prog.add_instruction(make_op("sub"), arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(make_op("mul"), dim_diff, l_stride);
        auto ind       = prog.add_instruction(make_op("add"), l_shape_idx, delta);
Shucai Xiao's avatar
Shucai Xiao committed
1118
1119
1120
1121
1122

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

1123
    instruction_ref
1124
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1125
1126
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1149
        {
1150
            literal s = parse_value(info.attributes.at("axes"));
1151
1152
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1153
1154

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1155
        {
Shucai Xiao's avatar
Shucai Xiao committed
1156
1157
1158
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1159
        }
Shucai Xiao's avatar
Shucai Xiao committed
1160
        else if(contains(info.attributes, "ends"))
1161
        {
1162
1163
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1164
        }
Shucai Xiao's avatar
Shucai Xiao committed
1165
1166
1167
1168
1169
1170
1171
1172

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1173
        {
1174
            literal s = parse_value(info.attributes.at("starts"));
1175
1176
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1177

kahmed10's avatar
kahmed10 committed
1178
1179
1180
1181
1182
1183
1184
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1185
1186
1187
        return prog.add_instruction(op, args[0]);
    }

1188
1189
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1190
    {
1191
        literal v = parse_value(info.attributes.at("value"));
1192
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1193
        if(v.get_shape().elements() == 0)
1194
1195
1196
1197
        {
            return prog.add_literal(literal{});
        }

1198
        auto dim_size = info.attributes.at("value").t().dims_size();
1199
1200
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1201
        {
1202
            migraphx::shape scalar_shape{v.get_shape().type()};
1203
1204
1205
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1206
1207
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1208

Paul's avatar
Paul committed
1209
    instruction_ref
1210
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1211
1212
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1213
        float beta  = 1.0f;
Paul's avatar
Paul committed
1214
1215
        bool transa = false;
        bool transb = false;
1216
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1217
        {
1218
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1219
        }
1220
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1221
        {
1222
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1223
        }
1224
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1225
        {
1226
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1227
        }
1228
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1229
        {
1230
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1231
        }
1232
1233
1234
1235
1236
1237

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1238
1239
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1240
1241
        if(args.size() == 3)
        {
1242
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1243
            {
Shucai Xiao's avatar
Shucai Xiao committed
1244
                auto out_lens   = l1->get_shape().lens();
1245
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1246
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1247
1248
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1249
                {
1250
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1251
                }
1252
1253
                return prog.add_instruction(
                    make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2, l3);
1254
            }
Paul's avatar
Paul committed
1255
        }
1256

1257
        return prog.add_instruction(make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2);
Paul's avatar
Paul committed
1258
1259
    }

1260
1261
1262
1263
    instruction_ref parse_matmul(const std::string&,
                                 const std::string& op_name,
                                 const node_info&,
                                 std::vector<instruction_ref> args)
1264
    {
Shucai Xiao's avatar
Shucai Xiao committed
1265
1266
        auto l0      = args[0];
        auto l1      = args[1];
1267
1268
1269
1270
1271
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1272
        if(l0_lens.size() == 1)
1273
1274
1275
1276
1277
1278
1279
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1280
        if(l1_lens.size() == 1)
1281
1282
1283
1284
1285
1286
1287
1288
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1289
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1290
1291
1292
1293
1294
1295
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1296
            l0_broadcasted_lens = output_lens;
1297
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1298
            l1_broadcasted_lens = output_lens;
1299
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1300
            if(l0_lens != l0_broadcasted_lens)
1301
1302
1303
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1304
            if(l1_lens != l1_broadcasted_lens)
1305
1306
1307
1308
1309
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1310
1311
        auto dot_res =
            prog.add_instruction(make_op(op_name, {{"alpha", 1}, {"beta", 0}}), bl0, bl1);
1312
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1313
        if(is_a_prepended)
1314
1315
1316
1317
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1318
        if(is_b_appended)
1319
1320
1321
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1322

1323
1324
1325
        return dot_res;
    }

1326
    instruction_ref
1327
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1328
    {
Scott Thornton's avatar
Scott Thornton committed
1329
1330
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1331
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1332
        if(contains(info.attributes, "epsilon"))
1333
        {
1334
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1335
        }
1336
        if(contains(info.attributes, "momentum"))
1337
        {
1338
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1339
        }
1340
        if(contains(info.attributes, "spatial"))
1341
        {
1342
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1343
1344
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1345
        }
Paul's avatar
Paul committed
1346
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1347
        return prog.add_instruction(op, std::move(args));
1348
1349
    }

1350
1351
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1352
1353
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
kahmed10's avatar
kahmed10 committed
1354
1355
        // mean = reduce_mean({D1, D2, ... Dk}, x)
        // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2)
kahmed10's avatar
kahmed10 committed
1356
1357

        float epsilon = 1e-5f;
1358
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1359
        {
1360
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1361
1362
1363
1364
1365
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();
kahmed10's avatar
kahmed10 committed
1366
1367
1368
        auto ndims = dims.size();
        assert(ndims >= 2);
        auto kdims = ndims - 2;
kahmed10's avatar
kahmed10 committed
1369

kahmed10's avatar
kahmed10 committed
1370
1371
1372
1373
        std::vector<int64_t> axes(kdims);
        std::iota(axes.begin(), axes.end(), 2);

        auto mean            = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x);
kahmed10's avatar
kahmed10 committed
1374
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
1375
        auto l0              = prog.add_instruction(make_op("sqdiff"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1376
        auto variance        = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), l0);
1377
        auto l1              = prog.add_instruction(make_op("sub"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1378
1379
1380
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
1381
1382
1383
        auto l2              = prog.add_instruction(make_op("add"), variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(make_op("rsqrt"), l2);
        auto l4              = prog.add_instruction(make_op("mul"), l1, l3);
kahmed10's avatar
kahmed10 committed
1384
1385
1386
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
1387
1388
        auto l5         = prog.add_instruction(make_op("mul"), l4, scale_bcast);
        return prog.add_instruction(make_op("add"), l5, bias_bcast);
kahmed10's avatar
kahmed10 committed
1389
1390
    }

1391
1392
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1393
    {
Khalique's avatar
Khalique committed
1394
        float alpha = 0.01; // default alpha val for leaky relu
1395
        if(contains(info.attributes, "alpha"))
1396
        {
1397
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1398
        }
1399
        auto op = make_op("leaky_relu", {{"alpha", alpha}});
1400
1401
1402
        return prog.add_instruction(op, args.front());
    }

1403
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1404
1405
    {
        float alpha = 1.0; // default alpha val for elu
1406
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1407
        {
1408
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1409
        }
1410
        auto op = make_op("elu", {{"alpha", alpha}});
Khalique's avatar
Khalique committed
1411
1412
1413
        return prog.add_instruction(op, args.front());
    }

1414
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1415
1416
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1417
1418
1419
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1420
1421
1422
1423
1424
1425
1426
1427
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1428
1429
1430
1431
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1432
1433
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1434
1435
1436
    {
        float scale = 1.0;
        std::vector<float> bias{};
1437
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1438
        {
1439
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1440
1441
        }

1442
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1443
        {
1444
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1445
1446
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1447
1448
1449
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1450

Shucai Xiao's avatar
Shucai Xiao committed
1451
1452
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1453

1454
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
1455
1456
1457
1458
        auto img_scaled =
            prog.add_instruction(migraphx::make_op("mul"), args.front(), scale_tensor);
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
        return prog.add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1459
    }
Khalique's avatar
Khalique committed
1460

Khalique's avatar
Khalique committed
1461
    instruction_ref
1462
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1463
1464
    {
        std::vector<int64_t> perm{};
1465
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1466
        {
1467
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1468
1469
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1470
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1471
1472
    }

1473
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1474
1475
    {
        std::vector<int64_t> pads{};
1476
1477
1478
1479
1480
1481
1482
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1483
        {
1484
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1485
1486
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1487
1488
1489
1490
1491
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1492
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1493
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1494
        {
1495
            return prog.add_instruction(make_op("identity"), args.front());
1496
        }
1497

kahmed10's avatar
kahmed10 committed
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1527
        {
1528
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1529
        }
1530

Khalique's avatar
Khalique committed
1531
1532
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1533
1534
1535
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1536
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1537
1538
    {
        if(args.size() != 1)
1539
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1552
1553
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1554
1555
1556
1557
1558
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1559
        if(contains(info.attributes, "dtype"))
1560
        {
1561
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1562
        }
Shucai Xiao's avatar
Shucai Xiao committed
1563
        shape::type_t type = get_type(dtype);
1564

1565
        if(contains(info.attributes, "input_as_shape"))
1566
        {
1567
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1568
1569
        }

1570
        if(contains(info.attributes, "value"))
1571
        {
1572
            value = parse_value(info.attributes.at("value")).at<float>();
1573
1574
        }

1575
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1576
        {
1577
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1578
1579
        }

1580
1581
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1582
            if(args.size() != 1)
1583
            {
1584
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1585
1586
            }

1587
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1588
            {
1589
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1590
                               "at the same time");
1591
1592
            }

1593
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1594
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1595

1596
1597
1598
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1599
1600
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1601
1602
1603
        }
        else if(input_as_shape == 0)
        {
1604
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1605
            {
1606
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1607
1608
            }

1609
            literal ls = parse_value(info.attributes.at("shape"));
1610
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1611
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1612
            migraphx::shape s{type, dims};
1613
1614
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1615
1616
1617
        }
        else
        {
1618
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1619
1620
1621
        }
    }

1622
1623
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1624
1625
    {
        literal l_val{};
1626
        if(contains(info.attributes, "value"))
1627
        {
1628
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1629
            if(l_val.get_shape().elements() != 1)
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1641

Shucai Xiao's avatar
Shucai Xiao committed
1642
        if(args.empty())
1643
        {
Shucai Xiao's avatar
Shucai Xiao committed
1644
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1645
1646
1647
        }
        else
        {
1648
1649
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1650
            if(args[0]->get_shape().elements() == 0)
1651
            {
1652
                s = migraphx::shape{type, {1}, {0}};
1653
            }
1654
1655
1656
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1657
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1658

1659
1660
1661
1662
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1663

Shucai Xiao's avatar
Shucai Xiao committed
1664
            literal l_out{};
1665
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1666
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1667
                // l_val contains only one element
1668
                std::vector<val_type> out_vec(s.elements(), val.front());
1669
1670
1671
1672
1673
1674
1675
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1676
    instruction_ref
1677
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1678
    {
Shucai Xiao's avatar
Shucai Xiao committed
1679
        auto in_lens             = args[0]->get_shape().lens();
1680
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1681
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1682
1683
1684
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1685
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1686
1687
    }

Shucai Xiao's avatar
Shucai Xiao committed
1688
    std::vector<instruction_ref>
1689
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1690
1691
    {
        migraphx::shape input_shape = args[0]->get_shape();
1692
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1693

1694
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1695
        {
1696
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1697
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1698
1699
1700
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1701
1702
1703
1704
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1705
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1706
        {
1707
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1708
1709
        }

1710
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1711
1712
        if(direction == "bidirectional")
        {
1713
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1714
1715
1716
        }
        else if(direction == "reverse")
        {
1717
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1718
1719
        }

1720
        std::vector<std::string> vec_names{"tanh"};
1721
        if(contains(info.attributes, "activations"))
1722
        {
1723
            auto names = info.attributes.at("activations").strings();
1724
            vec_names.clear();
1725
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1726
1727
1728
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1729
1730
        }

1731
1732
1733
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1734
        if(name_it != vec_names.end())
1735
1736
1737
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1738

Shucai Xiao's avatar
Shucai Xiao committed
1739
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1740
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1741
        // if only one actv function is provided, we use it in both
1742
        // forward and reverse direction
1743
        if(dirct == op::rnn_direction::bidirectional)
1744
        {
Shucai Xiao's avatar
Shucai Xiao committed
1745
            if(vec_names.size() == 1)
1746
1747
1748
1749
1750
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1751
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1752
1753
1754
1755
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1756

Shucai Xiao's avatar
Shucai Xiao committed
1757
1758
        // To be added later
        float clip = 0.0;
1759
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1760
        {
1761
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1762
1763
        }

1764
1765
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1766
        if(args.size() < 6)
1767
1768
1769
1770
1771
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1772
1773
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1774
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1775

1776
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1777
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1778

Shucai Xiao's avatar
Shucai Xiao committed
1779
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1780
1781
    }

1782
    std::vector<instruction_ref>
1783
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1784
1785
1786
1787
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1788
        if(contains(info.attributes, "hidden_size"))
1789
        {
1790
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1791
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1792
1793
1794
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1795
1796
1797
1798
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1799
        if(contains(info.attributes, "direction"))
1800
        {
1801
            direction = info.attributes.at("direction").s();
1802
1803
        }

1804
        op::rnn_direction dirct = op::rnn_direction::forward;
1805
1806
        if(direction == "bidirectional")
        {
1807
            dirct = op::rnn_direction::bidirectional;
1808
1809
1810
        }
        else if(direction == "reverse")
        {
1811
            dirct = op::rnn_direction::reverse;
1812
1813
        }

1814
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1815
        if(contains(info.attributes, "activations"))
1816
        {
1817
            auto names = info.attributes.at("activations").strings();
1818
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1819
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1820
1821
1822
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1823
1824
        }

1825
        // need 4 activation functions
1826
        if(dirct == op::rnn_direction::bidirectional)
1827
        {
Shucai Xiao's avatar
Shucai Xiao committed
1828
            // 4 activation functions are used in the bidirectional
1829
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1830
1831
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1832
1833
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1834
1835
1836
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1837
            if(vec_names.size() == 1)
1838
            {
1839
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1840
            }
1841
            else if(vec_names.size() == 2)
1842
            {
1843
1844
1845
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1846
            }
1847
            else if(vec_names.size() == 3)
1848
            {
1849
                vec_names.push_back(vec_names.at(2));
1850
1851
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1852
        else
1853
        {
1854
            if(vec_names.size() == 1)
1855
            {
1856
                vec_names.push_back(vec_names.at(0));
1857
1858
1859
            }
        }

1860
1861
1862
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1863
        if(name_it != vec_names.end())
1864
1865
1866
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1867

Shucai Xiao's avatar
Shucai Xiao committed
1868
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1869
1870
1871
1872
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1873
1874

        float clip = 0.0;
1875
        if(contains(info.attributes, "clip"))
1876
        {
1877
            clip = parse_value(info.attributes.at("clip")).at<float>();
1878
1879
1880
        }

        int linear_before_reset = 0;
1881
        if(contains(info.attributes, "linear_before_reset"))
1882
        {
1883
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1884
1885
        }

Shucai Xiao's avatar
Shucai Xiao committed
1886
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1887
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1888
1889
1890
1891
1892
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1893
1894
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1895
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1896
            std::move(args));
1897
1898

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1899
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1900

Shucai Xiao's avatar
Shucai Xiao committed
1901
        return {hidden_states, last_output};
1902
1903
    }

Shucai Xiao's avatar
Shucai Xiao committed
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1989
    std::vector<instruction_ref>
1990
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1991
1992
1993
1994
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1995
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1996
        {
1997
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1998
1999
2000
2001
2002
2003
2004
2005
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
2006
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
2007
        {
2008
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
2009
2010
        }

Shucai Xiao's avatar
Shucai Xiao committed
2011
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2012
2013
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2014
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
2015
2016
2017
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2018
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
2019
        }
Shucai Xiao's avatar
Shucai Xiao committed
2020
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
2021
        {
Shucai Xiao's avatar
Shucai Xiao committed
2022
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2023
2024
2025
2026
2027
2028
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

2029
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
2030
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
2031
        {
2032
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
2033
2034
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
2035
2036
2037
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
2038
2039
        }

Shucai Xiao's avatar
Shucai Xiao committed
2040
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
2041

2042
2043
2044
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2045
        if(name_it != vec_names.end())
2046
2047
2048
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2049
2050

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2051
2052
2053
2054
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
2055
2056

        float clip = 0.0;
2057
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2058
        {
2059
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2060
2061
2062
        }

        int input_forget = 0;
2063
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
2064
        {
2065
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2066
2067
2068
2069
2070
2071
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
2072
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
2073
2074
2075
2076
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
2077
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2078

Shucai Xiao's avatar
Shucai Xiao committed
2079
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2080
2081

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
2082
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2083
2084
2085

        return {hidden_states, last_output, last_cell_output};
    }
2086

2087
2088
2089
2090
    instruction_ref parse_reduce_oper(const std::string&,
                                      const std::string& op_name,
                                      node_info info,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2091
2092
2093
2094
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
2095
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
2096
        std::iota(axes.begin(), axes.end(), 0);
2097
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
2098
2099
        {
            axes.clear();
2100
            auto&& attr_axes = info.attributes["axes"].ints();
2101
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
2102
2103
2104
        }

        int keep_dims = 1;
2105
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
2106
        {
2107
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2108
2109
2110
2111
        }

        if(keep_dims == 1)
        {
2112
            return prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2113
2114
2115
        }
        else
        {
2116
            auto ins = prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
2117
            return prog.add_instruction(op::squeeze{axes}, ins);
2118
2119
        }
    }
2120

Shucai Xiao's avatar
Shucai Xiao committed
2121
    instruction_ref
2122
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2123
    {
2124
2125
        auto abs_ins = prog.add_instruction(make_op("abs"), args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2126
2127
2128
    }

    instruction_ref
2129
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2130
    {
2131
2132
2133
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        auto sum_ins    = parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
        return prog.add_instruction(make_op("sqrt"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2134
2135
    }

2136
2137
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2138
    {
2139
2140
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), std::move(args));
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2141
2142
    }

2143
2144
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2145
    {
2146
2147
2148
        auto exp_ins = prog.add_instruction(make_op("exp"), args[0]);
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), {exp_ins});
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2149
2150
    }

2151
2152
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2153
    {
2154
2155
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2156
2157
    }

Shucai Xiao's avatar
Shucai Xiao committed
2158
    instruction_ref
2159
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
2160
    {
2161
        if(!contains(info.attributes, "to"))
2162
2163
2164
2165
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2166
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2167
2168
2169
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
2170

2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2224
2225
2226
2227
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2228
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2229
2230
2231
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2232
2233
2234
2235
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2236

Shucai Xiao's avatar
Shucai Xiao committed
2237
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2238
2239
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2240
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2241
2242
        }

Shucai Xiao's avatar
Shucai Xiao committed
2243
2244
2245
2246
2247
2248
2249
2250
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2251
        {
Shucai Xiao's avatar
Shucai Xiao committed
2252
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2253
        }
Shucai Xiao's avatar
Shucai Xiao committed
2254
2255
2256
2257
2258
2259
2260
2261
2262
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
2263
        auto diff          = prog.add_instruction(make_op("sub"), on_val, off_val);
Shucai Xiao's avatar
Shucai Xiao committed
2264
2265
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
2266
2267
        auto l_mul         = prog.add_instruction(make_op("mul"), tr_out, unsq_diff_val);
        return prog.add_instruction(make_op("add"), l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2268
2269
    }

kahmed10's avatar
kahmed10 committed
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
2351
2352
2353
2354
2355
2356
2357
2358
2359
        case reduce_mode_t::sum:
            l0 = prog.add_instruction(make_op("reduce_sum", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::mean:
            l0 = prog.add_instruction(make_op("reduce_mean", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::max:
            l0 = prog.add_instruction(make_op("reduce_max", {{"axes", {0}}}), l0);
            break;
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
    std::vector<instruction_ref>
    parse_dropout(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto out = prog.add_instruction(make_op("identity"), args[0]);
        auto s   = args[0]->get_shape();
        std::vector<int8_t> vec(s.elements(), 1);
        shape mask_s{shape::bool_type, s.lens()};
        auto mask = prog.add_literal(literal(mask_s, vec));

        return {out, mask};
    }

Shucai Xiao's avatar
Shucai Xiao committed
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
    template <class T>
    std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
    {
        std::vector<std::size_t> indices;
        for(std::size_t i = 0; i < data.size(); ++i)
        {
            if(!float_equal(data[i], 0))
                indices.push_back(i);
        }

        return indices;
    }

    instruction_ref
    parse_nonzero(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument data_arg = args.back()->eval();
        check_arg_empty(data_arg, "PARSE_NONZERO: cannot support non-constant input!");

        std::vector<std::size_t> indices;
        data_arg.visit([&](auto val) {
            using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
            std::vector<val_type> vec_data;
            vec_data.assign(val.begin(), val.end());
            indices = this->nonzero_indices(vec_data);
        });

        shape in_s = args[0]->get_shape();
        shape out_s{shape::int64_type, {in_s.lens().size(), indices.size()}};

        std::vector<int64_t> out_data(out_s.elements());
        for(std::size_t i = 0; i < indices.size(); ++i)
        {
            auto idx = in_s.multi(indices[i]);
            for(std::size_t j = 0; j < in_s.lens().size(); ++j)
            {
                out_data[out_s.index({j, i})] = idx[j];
            }
        }

        return prog.add_literal(literal(out_s, out_data));
    }

2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
    instruction_ref
    parse_equal(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto l = add_broadcastable_binary_op(args[0], args[1], "equal");
        if(l->get_shape().type() != shape::bool_type)
        {
            l = prog.add_instruction(op::convert{shape::bool_type}, l);
        }
        return l;
    }

Paul's avatar
Paul committed
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2456
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2457
2458
2459
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2476
2477
    void parse_graph(const onnx::GraphProto& graph)
    {
2478
        for(auto&& f : graph.initializer())
2479
2480
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2481
2482
2483
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2484
2485
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2486
            {
2487
2488
2489
2490
2491
2492
2493
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2494
2495
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2496
        }
2497
2498

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2499
        {
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2519
2520
2521
2522
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2535
        }
Shucai Xiao's avatar
Shucai Xiao committed
2536

2537
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2538
        auto prog_output = graph.output();
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2559
2560
    }

Shucai Xiao's avatar
Shucai Xiao committed
2561
    void parse_undefined(const std::string& name)
2562
    {
Shucai Xiao's avatar
Shucai Xiao committed
2563
2564
2565
2566
2567
        if(!contains(instructions, name))
        {
            auto ins           = prog.add_instruction(op::undefined{});
            instructions[name] = ins;
        }
2568
2569
    }

Paul's avatar
Paul committed
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
    static shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 9: return shape::bool_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }

Paul's avatar
Paul committed
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2617
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2618
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2619
2620
2621
2622
2623
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2624
2625
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2626
2627
        case onnx::AttributeProto::GRAPHS: return {};
        }
Shucai Xiao's avatar
Shucai Xiao committed
2628
        MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
Paul's avatar
Paul committed
2629
2630
2631
2632
2633
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2634
2635
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2636
            const std::string& s = t.raw_data();
Shucai Xiao's avatar
Shucai Xiao committed
2637
2638
            auto type            = get_type(t.data_type());
            return create_literal(type, dims, s.data());
2639
        }
Shucai Xiao's avatar
Shucai Xiao committed
2640

Paul's avatar
Paul committed
2641
2642
        switch(t.data_type())
        {
Shucai Xiao's avatar
Shucai Xiao committed
2643
2644
2645
2646
        case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
        case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
        case onnx::TensorProto::UINT8:
            return create_literal(shape::uint8_type, dims, t.int32_data());
Paul's avatar
Paul committed
2647
        case onnx::TensorProto::INT16:
Shucai Xiao's avatar
Shucai Xiao committed
2648
2649
2650
            return create_literal(shape::int16_type, dims, t.int32_data());
        case onnx::TensorProto::UINT16:
            return create_literal(shape::uint16_type, dims, t.int32_data());
Paul's avatar
Paul committed
2651
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
2652
            return create_literal(shape::int32_type, dims, t.int32_data());
Shucai Xiao's avatar
Shucai Xiao committed
2653
2654
        case onnx::TensorProto::UINT32:
            return create_literal(shape::uint32_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2655
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2656
            return create_literal(shape::int64_type, dims, t.int64_data());
Shucai Xiao's avatar
Shucai Xiao committed
2657
2658
        case onnx::TensorProto::UINT64:
            return create_literal(shape::uint64_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2659
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2660
        {
Khalique's avatar
Khalique committed
2661
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2662
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2663
2664
2665
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2666
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2667
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2668
        }
Shucai Xiao's avatar
Shucai Xiao committed
2669
2670
2671
2672
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2673
2674
2675
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2676
2677
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2678
        MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
Paul's avatar
Paul committed
2679
2680
    }

Khalique's avatar
Khalique committed
2681
    static literal
2682
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2683
    {
Khalique's avatar
Khalique committed
2684
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2685
        if(dims.empty())
2686
            return literal{{shape_type}, data};
2687
2688
2689
        return literal{{shape_type, dims}, data};
    }

2690
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2691
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2692
2693
    {
        if(dims.empty())
2694
            return literal{{shape_type}, data.begin(), data.end()};
2695
        return literal{{shape_type, dims}, data.begin(), data.end()};
2696
2697
    }

2698
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2699
    {
Shucai Xiao's avatar
Shucai Xiao committed
2700
        shape::type_t shape_type = get_type(t.tensor_type().elem_type());
2701
2702
2703
2704
2705
        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2706
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2707
        auto&& tensor_dims = t.tensor_type().shape().dim();
2708
2709
2710
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2711
2712
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2713
                           {
2714
                               if(static_cast<int>(d.dim_value()) <= 0)
2715
2716
2717
                               {
                                   return default_dim_value;
                               }
2718
                               return d.dim_value();
2719
                           }
2720
2721
2722
2723
                           else
                           {
                               return default_dim_value;
                           }
2724
                       });
2725

2726
2727
2728
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2729
2730
        return {shape_type, dims};
    }
2731

Shucai Xiao's avatar
Shucai Xiao committed
2732
2733
    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2734
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2735
2736
2737
2738
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2739
2740
};

Paul Fultz II's avatar
Paul Fultz II committed
2741
template <class... Ts>
2742
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2743
2744
{
    onnx_parser parser;
2745
2746
2747
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2748

2749
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2750
    {
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2761
    }
2762
    else
Paul's avatar
Paul committed
2763
    {
2764
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2765
2766
2767
2768
    }
    return std::move(parser.prog);
}

2769
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2770
2771
2772
2773
2774
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2775
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2776
2777
2778
2779
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2780
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2781
2782
2783
2784
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2785
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2786
} // namespace migraphx