onnx.cpp 37 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34
35
36
37

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
38
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
67
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
68
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
69
70
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
71
72
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
73
74
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
75
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
76
77
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
78
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
79
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
80
81
82
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
83
        add_mem_op("Concat", &onnx_parser::parse_concat);
84
85
86
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
87
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Khalique's avatar
Khalique committed
88
        add_mem_op("Pad", &onnx_parser::parse_pad);
Paul's avatar
Paul committed
89
90
91
92
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
93
94
95
96
97
98
99
100
101
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
102
103
104
105
106
107
108
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
109
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
110
111
112
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
113

114
    template <class T>
Khalique's avatar
Khalique committed
115
    void add_binary_op(std::string name, T x)
116
    {
Paul's avatar
Paul committed
117
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
118
            if(args.size() != 2)
Paul's avatar
Paul committed
119
                MIGRAPHX_THROW("binary operators should have 2 operands");
120
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
121
122
123
124
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
125
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
126
127
128
129
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
130
                return prog.add_instruction(x, args);
131
            }
Paul's avatar
Paul committed
132
            else
133
            {
Khalique's avatar
Khalique committed
134
                return add_broadcastable_binary_op(args[0], args[1], x);
135
136
137
138
            }
        });
    }

Khalique's avatar
Khalique committed
139
140
141
142
143
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
144
145
146
147
148
149
150
151
152
153
154
155
156
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
157
158
159
160
161
162
163
164
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
165
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
166
167
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
168
169
170
171
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
172
173
174
175
176
177
178
179
180

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
181
182
    }

Paul's avatar
Paul committed
183
    template <class T>
Paul's avatar
Paul committed
184
185
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
186
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
187
188
189
190
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
191
    template <class T>
Khalique's avatar
Khalique committed
192
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
193
    {
Paul's avatar
Paul committed
194
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
195
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
196
197
198
199
200
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
201
        });
Khalique's avatar
Khalique committed
202
203
    }

Paul's avatar
Paul committed
204
    instruction_ref
Paul's avatar
Paul committed
205
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
206
207
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
208
209
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
210
211
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
212
213
    }

Paul's avatar
Paul committed
214
    instruction_ref
Paul's avatar
Paul committed
215
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
216
    {
217
        op::convolution op;
218
        auto l0 = args[0];
Paul's avatar
Paul committed
219
220
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
221
            if(contains(attributes, "auto_pad"))
222
            {
Paul's avatar
Paul committed
223
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
224
            }
225
226
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
227
            if(padding.size() != 4)
228
            {
Paul's avatar
Paul committed
229
                MIGRAPHX_THROW("padding should have 4 values");
230
            }
Scott Thornton's avatar
Scott Thornton committed
231
            if(padding[0] != padding[2] || padding[1] != padding[3])
232
            {
233
234
235
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
                l0 = prog.add_instruction(op::pad{padding}, l0);
236
            }
237
238
239
240
241
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }   
Paul's avatar
Paul committed
242
        }
Paul's avatar
Paul committed
243
244
245
246
247
248
249
250
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
251
        if(contains(attributes, "auto_pad"))
252
253
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
254
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
255
            {
Paul's avatar
Paul committed
256
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
257
258
            }

wsttiger's avatar
fixes  
wsttiger committed
259
            if(s.find("SAME") != std::string::npos)
260
            {
261
                op.padding_mode = op::padding_mode_t::same;
262
263
            }
        }
Khalique's avatar
Khalique committed
264
265
266
267
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
268
269
270
271
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
272
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
273
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
274
        }
275
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
276
    }
Paul's avatar
Paul committed
277

Paul's avatar
Paul committed
278
279
280
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
281
    {
Khalique's avatar
Khalique committed
282
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
283
        auto l0 = args[0];
Khalique's avatar
Khalique committed
284
        if(starts_with(name, "Global"))
285
        {
Khalique's avatar
Khalique committed
286
287
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
288
        }
Paul's avatar
Paul committed
289
290
        if(contains(attributes, "pads"))
        {
291
292
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
293
            if(padding.size() != 4)
294
            {
Paul's avatar
Paul committed
295
                MIGRAPHX_THROW("padding should have 4 values");
296
            }
Scott Thornton's avatar
Scott Thornton committed
297
            if(padding[0] != padding[2] || padding[1] != padding[3])
298
            {
299
300
301
302
303
304
305
306
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
                l0 = prog.add_instruction(op::pad{padding}, l0);
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
307
            }
Paul's avatar
Paul committed
308
309
310
311
312
313
314
315
316
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
317
        if(contains(attributes, "auto_pad"))
318
319
        {
            auto s = attributes["auto_pad"].s();
320
            if(s.find("SAME_UPPER") == std::string::npos)
321
            {
322
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
323
            }
324
            op.padding_mode = op::padding_mode_t::same;
325
326
        }

327
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
328
329
    }

Paul's avatar
Paul committed
330
    instruction_ref
Paul's avatar
Paul committed
331
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
332
    {
333
        op::reshape op;
Paul's avatar
Paul committed
334
335
336
337
338
339
340
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
341
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
342
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
343
        }
Paul's avatar
Paul committed
344
345
346
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
347
    instruction_ref
Paul's avatar
Paul committed
348
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
349
    {
350
        uint64_t axis = 1;
Paul's avatar
Paul committed
351
352
353
354
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
355
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
356
357
    }

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
376
377
378
379
380
381
382
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
383

384
385
386
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
387
        int axis = 0;
388
389
390
391
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
392
        op::gather op{axis};
393
394
395
        return prog.add_instruction(op, std::move(args));
    }

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
416
417
418
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
419
420
421
422
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
423

Paul's avatar
Paul committed
424
    instruction_ref
Paul's avatar
Paul committed
425
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
426
427
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
428
        float beta  = 1.0f;
Paul's avatar
Paul committed
429
430
431
432
433
434
435
436
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
437
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
438
439
440
441
442
443
444
445
446
447
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
448
449
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
450
451
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
452
            if(beta != 0.f)
453
            {
Khalique's avatar
Khalique committed
454
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
455
                auto l4 = args[2];
Khalique's avatar
Khalique committed
456
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
457
                    return l3;
Khalique's avatar
Khalique committed
458
                if(beta != 1.f)
Khalique's avatar
Khalique committed
459
460
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
461
462
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
463
464
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
465
            }
Paul's avatar
Paul committed
466
        }
Shucai Xiao's avatar
Shucai Xiao committed
467
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
468
469
    }

470
    instruction_ref
Paul's avatar
Paul committed
471
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
472
    {
Scott Thornton's avatar
Scott Thornton committed
473
474
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
475
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
476
        bool is_test                                      = false;
477
478
479
480
481
482
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
483
            momentum = parse_value(attributes.at("momentum")).at<float>();
484
485
486
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
487
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
488
489
490
        }
        if(contains(attributes, "spatial"))
        {
491
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
492
493
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
494
        }
Paul's avatar
Paul committed
495
        (void)is_test;
Paul's avatar
Paul committed
496
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
497
        return prog.add_instruction(op, std::move(args));
498
499
    }

500
501
502
503
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
504
        float alpha = 0.01; // default alpha val for leaky relu
505
506
507
508
509
510
511
512
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
513
514
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
515
516
517
518
519
520
521
522
523
524
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
542

Khalique's avatar
Khalique committed
543
544
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
545
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
546

Paul's avatar
Paul committed
547
548
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
549
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
550
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
551
    }
Khalique's avatar
Khalique committed
552

Khalique's avatar
Khalique committed
553
554
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
555
556
557
558
559
560
561
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
562
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
563
564
    }

Khalique's avatar
Khalique committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
587
588
589
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
590
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
591
592
    {
        if(args.size() != 1)
593
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

Khalique's avatar
Khalique committed
625
626
627
628
629
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
630
631
        if(contains(attributes, "extra_shape"))
        {
632
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
633
634
        }

635
636
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
637
            if(args.size() != 1)
638
            {
639
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
640
641
            }

Shucai Xiao's avatar
Shucai Xiao committed
642
643
            if(contains(attributes, "shape"))
            {
644
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
645
                               "at the same time");
646
647
            }

648
649
650
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
651
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
652
            }
653

654
655
656
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
657
658
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
659
660
661
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
662
663
            if(!contains(attributes, "shape"))
            {
664
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
665
666
667
            }

            literal ls = parse_value(attributes.at("shape"));
668
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
669
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
670
            migraphx::shape s{type, dims};
671
672
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
673
674
675
        }
        else
        {
676
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
677
678
        }
    }
Khalique's avatar
Khalique committed
679

Paul's avatar
Paul committed
680
681
682
683
684
685
686
687
688
689
690
691
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
692
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
693
694
695
696
697
698
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
699
700
701
702
703
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
704
705
706
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
707
708
709
710
711
712
713
714
715
716
717
718
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
719
720
721
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
722
            this->parse_node(p.first);
Paul's avatar
Paul committed
723
724
725
        }
    }

Paul's avatar
Paul committed
726
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
727
    {
Paul's avatar
Paul committed
728
        if(name.empty())
Paul's avatar
Paul committed
729
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
730
731
732
733
734
735
736
737
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
738
739
740
                    assert(name != input);
                    this->parse_node(input);
                    args.push_back(instructions.at(input));
Paul's avatar
Paul committed
741
742
743
744
745
746
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
747
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
748
749
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
750
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
751
752
753
            }
            else
            {
Paul's avatar
Paul committed
754
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
755
            }
Paul's avatar
Paul committed
756
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
757
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
758
759
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
760
761
762
            }
            else
            {
Paul's avatar
Paul committed
763
764
765
766
767
768
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
786
        std::size_t n = 0;
Paul's avatar
Paul committed
787
788
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
789
            if(node.output().empty())
Paul's avatar
Paul committed
790
            {
Paul's avatar
Paul committed
791
                if(node.name().empty())
Paul's avatar
Paul committed
792
793
794
795
796
797
798
799
800
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
826
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
827
828
829
830
831
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
832
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
833
834
835
836
837
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
838
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
839
        if(dims.empty())
Khalique's avatar
Khalique committed
840
841
842
        {
            dims = {1};
        }
843
844
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
845
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
846
847
848
849
850
851
852
853
854
855
856
857
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
858
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
859
860
861
862
863
864
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
865
            MIGRAPHX_THROW("Invalid tensor type");
866
        }
Paul's avatar
Paul committed
867
868
869
870
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
871
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
872
873
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
874
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
875
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
876
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
877
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
878
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
879
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
880
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
881
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
882
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
883
884
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
885
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
886
887
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
888
889
890
891
892
893
894
895
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
896
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
918
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
919
920
921
922
923
924
925
926
927
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
928
        auto&& tensor_dims = t.tensor_type().shape().dim();
929
930
931
932
933
934
935
936
937
938
939
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
940
941
        return {shape_type, dims};
    }
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
987
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
988
} // namespace migraphx