onnx.cpp 65.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
62
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
63

Khalique's avatar
Khalique committed
64
65
66
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
67

68
69
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
70
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
71
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
72
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
73
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
74
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
75
        add_mem_op("Elu", &onnx_parser::parse_elu);
76
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
77
78
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
79
80
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
81
82
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
83
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
84
85
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
86
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
87
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
88
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
89
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
90
91
92
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
93
        add_mem_op("Concat", &onnx_parser::parse_concat);
94
95
96
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
97
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
98
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
99
        add_mem_op("RNN", &onnx_parser::parse_rnn);
100
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
101
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
102
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
103
104
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
105
106
107
108
109
110
111

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
112
113
114
115
116
117
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
118
119
120
121
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
122
123
124
125
126
127
128
129
130
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
131
132
133
134
135
136
137
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
138
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
139
140
141
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
142

143
    template <class T>
Khalique's avatar
Khalique committed
144
    void add_binary_op(std::string name, T x)
145
    {
Paul's avatar
Paul committed
146
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
147
            if(args.size() != 2)
Paul's avatar
Paul committed
148
                MIGRAPHX_THROW("binary operators should have 2 operands");
149
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
150
151
152
153
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
154
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
155
156
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
157
158
                    return prog.add_instruction(x, args[0], l);
                }
159
                return prog.add_instruction(x, args);
160
            }
Paul's avatar
Paul committed
161
            else
162
            {
Khalique's avatar
Khalique committed
163
                return add_broadcastable_binary_op(args[0], args[1], x);
164
165
166
167
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
168
169
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
170
171
172
173
174
175
176
177
178
179
180
181
182
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
183
        if(s0.size() > s1.size())
184
185
186
187
188
189
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
190
191
192
193
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
194
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
195
                           if(a != b and a != 1 and b != 1)
196
                           {
Shucai Xiao's avatar
Shucai Xiao committed
197
198
199
200
201
202
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
203
204
205
206

        return out_lens;
    }

Khalique's avatar
Khalique committed
207
208
209
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
210
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
211
212
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
213
214
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
215
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
216
217
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
218
219
220
221
222
223
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
224
225
    }

Paul's avatar
Paul committed
226
    template <class T>
Paul's avatar
Paul committed
227
228
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
229
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
230
231
232
233
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
234
    template <class T>
Khalique's avatar
Khalique committed
235
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
236
    {
Paul's avatar
Paul committed
237
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
238
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
239
240
241
242
243
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
244
        });
Khalique's avatar
Khalique committed
245
246
    }

Khalique's avatar
Khalique committed
247
248
249
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
250
251
252
253
254
255
256
257
258
259
260
261
262
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

263
264
265
266
267
268
269
270
271
272
273
274
275
//    instruction_ref
//    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
//    {
//        auto dims = args.front()->get_shape().lens();
//        auto r =
//            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
//        auto s = prog.add_instruction(op::softmax{}, r);
//        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
//    }

    instruction_ref parse_softmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Paul's avatar
Paul committed
276
    {
277
278
279
280
281
282
283
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::softmax{axis}, std::move(args));
Paul's avatar
Paul committed
284
285
    }

Shucai Xiao's avatar
Shucai Xiao committed
286
287
288
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
289
290
291
292
293
294
295
296
297
298
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

299
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
300
301
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
302
    {
303
        int64_t axis = 0;
304
305
        if(contains(attributes, "axis"))
        {
306
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
307
308
        }

Shucai Xiao's avatar
Shucai Xiao committed
309
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
310
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
311
312
313
314
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
315
        if(keep_dims == 0)
316
317
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
318
            return prog.add_instruction(op::squeeze{{axis}}, ins);
319
320
321
322
323
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
324
325
326
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
327
328
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
329
    {
330
        int64_t axis = 0;
331
332
        if(contains(attributes, "axis"))
        {
333
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
334
335
        }

Shucai Xiao's avatar
Shucai Xiao committed
336
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
337
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
338
339
340
341
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
342
        if(keep_dims == 0)
343
344
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
345
            return prog.add_instruction(op::squeeze{{axis}}, ins);
346
347
348
349
350
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
351
352
    }

Paul's avatar
Paul committed
353
    instruction_ref
Paul's avatar
Paul committed
354
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
355
    {
356
        op::convolution op;
357
        auto l0 = args[0];
Paul's avatar
Paul committed
358
359
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
360
            if(contains(attributes, "auto_pad"))
361
            {
Paul's avatar
Paul committed
362
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
363
            }
364
365
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
366
            if(padding.size() != 4)
367
            {
Paul's avatar
Paul committed
368
                MIGRAPHX_THROW("padding should have 4 values");
369
            }
Scott Thornton's avatar
Scott Thornton committed
370
            if(padding[0] != padding[2] || padding[1] != padding[3])
371
            {
372
373
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
374
                l0      = prog.add_instruction(op::pad{padding}, l0);
375
            }
376
377
378
379
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
380
            }
Paul's avatar
Paul committed
381
        }
Paul's avatar
Paul committed
382
383
384
385
386
387
388
389
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
390
        if(contains(attributes, "auto_pad"))
391
392
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
393
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
394
            {
Paul's avatar
Paul committed
395
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
396
397
            }

wsttiger's avatar
fixes  
wsttiger committed
398
            if(s.find("SAME") != std::string::npos)
399
            {
400
                op.padding_mode = op::padding_mode_t::same;
401
402
            }
        }
Khalique's avatar
Khalique committed
403
404
405
406
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
407
408
409
410
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
411
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
412
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
413
        }
414
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
415
    }
Paul's avatar
Paul committed
416

Paul's avatar
Paul committed
417
418
419
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
420
    {
Khalique's avatar
Khalique committed
421
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
422
        auto l0 = args[0];
Khalique's avatar
Khalique committed
423
        if(starts_with(name, "Global"))
424
        {
Khalique's avatar
Khalique committed
425
426
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
427
        }
Paul's avatar
Paul committed
428
429
        if(contains(attributes, "pads"))
        {
430
431
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
432
            if(padding.size() != 4)
433
            {
Paul's avatar
Paul committed
434
                MIGRAPHX_THROW("padding should have 4 values");
435
            }
Scott Thornton's avatar
Scott Thornton committed
436
            if(padding[0] != padding[2] || padding[1] != padding[3])
437
            {
438
439
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
440
441
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
442
443
444
445
446
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
447
            }
Paul's avatar
Paul committed
448
449
450
451
452
453
454
455
456
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
457
        if(contains(attributes, "auto_pad"))
458
459
        {
            auto s = attributes["auto_pad"].s();
460
            if(s.find("SAME_UPPER") == std::string::npos)
461
            {
462
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
463
            }
464
            op.padding_mode = op::padding_mode_t::same;
465
466
        }

467
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
468
469
    }

Paul's avatar
Paul committed
470
    instruction_ref
Paul's avatar
Paul committed
471
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
472
    {
473
        op::reshape op;
Paul's avatar
Paul committed
474
475
        if(args.size() == 1)
        {
476
477
478
479
480
481
482
483
484
            if (contains(attributes, "shape"))
            {
                literal s = parse_value(attributes.at("shape"));
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            else
            {
                MIGRAPHX_THROW("Parse_reshape: shape attribute is needed when only one argument is provided!");
            }            
Paul's avatar
Paul committed
485
486
487
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
488
            auto s = args[1]->eval();
Paul's avatar
Paul committed
489
            if(s.empty())
Paul's avatar
Paul committed
490
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
491
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
492
        }
493
494
495
496
497
498

        if (!args[0]->get_shape().standard())
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }

Paul's avatar
Paul committed
499
500
501
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
502
    instruction_ref
Paul's avatar
Paul committed
503
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
504
    {
505
        uint64_t axis = 1;
Paul's avatar
Paul committed
506
507
508
509
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
510
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
511
512
    }

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
531
532
533
534
535
536
537
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
538

539
540
541
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
542
        int axis = 0;
543
544
545
546
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
547
        op::gather op{axis};
548
549
550
        return prog.add_instruction(op, std::move(args));
    }

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
571
572
573
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
574
    {
Shucai Xiao's avatar
Shucai Xiao committed
575
        literal v = parse_value(attributes.at("value"));
576
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
577
        if(v.get_shape().elements() == 0)
578
579
580
581
        {
            return prog.add_literal(literal{});
        }

582
583
584
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
585
        {
586
            migraphx::shape scalar_shape{v.get_shape().type()};
587
588
589
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
590
591
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
592

Paul's avatar
Paul committed
593
    instruction_ref
Paul's avatar
Paul committed
594
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
595
596
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
597
        float beta  = 1.0f;
Paul's avatar
Paul committed
598
599
600
601
602
603
604
605
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
606
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
607
608
609
610
611
612
613
614
615
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
616
617
618
619
620
621

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

622
623
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
624
625
        if(args.size() == 3)
        {
626
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
627
            {
Shucai Xiao's avatar
Shucai Xiao committed
628
                auto out_lens   = l1->get_shape().lens();
629
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
630
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
631
632
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
633
                {
634
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
635
                }
636
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
637
            }
Paul's avatar
Paul committed
638
        }
639
640

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
641
642
    }

643
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
644
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
645
    {
Shucai Xiao's avatar
Shucai Xiao committed
646
647
        auto l0      = args[0];
        auto l1      = args[1];
648
649
650
651
652
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
653
        if(l0_lens.size() == 1)
654
655
656
657
658
659
660
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
661
        if(l1_lens.size() == 1)
662
663
664
665
666
667
668
669
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
670
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
671
672
673
674
675
676
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
677
            l0_broadcasted_lens = output_lens;
678
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
679
            l1_broadcasted_lens = output_lens;
680
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
681
            if(l0_lens != l0_broadcasted_lens)
682
683
684
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
685
            if(l1_lens != l1_broadcasted_lens)
686
687
688
689
690
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
691
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
692
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
693
        if(is_a_prepended)
694
695
696
697
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
698
        if(is_b_appended)
699
700
701
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
702

703
704
705
        return dot_res;
    }

706
    instruction_ref
Paul's avatar
Paul committed
707
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
708
    {
Scott Thornton's avatar
Scott Thornton committed
709
710
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
711
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
712
        bool is_test                                      = false;
713
714
715
716
717
718
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
719
            momentum = parse_value(attributes.at("momentum")).at<float>();
720
721
722
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
723
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
724
725
726
        }
        if(contains(attributes, "spatial"))
        {
727
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
728
729
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
730
        }
Paul's avatar
Paul committed
731
        (void)is_test;
Paul's avatar
Paul committed
732
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
733
        return prog.add_instruction(op, std::move(args));
734
735
    }

736
737
738
739
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
740
        float alpha = 0.01; // default alpha val for leaky relu
741
742
743
744
745
746
747
748
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
749
750
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
751
752
753
754
755
756
757
758
759
760
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
761
762
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
763
764
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
765
766
767
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
768
769
770
771
772
773
774
775
776
777
778
779
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
796
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
797

Khalique's avatar
Khalique committed
798
799
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
800
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
801

802
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
803
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
804
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
805
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
806
    }
Khalique's avatar
Khalique committed
807

Khalique's avatar
Khalique committed
808
809
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
810
811
812
813
814
815
816
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
817
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
818
819
    }

Khalique's avatar
Khalique committed
820
821
822
823
824
825
826
827
828
829
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
830
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
831
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
832
833
834
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
835
836
837
838
839
840
841
842
843
844
845
846
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
847
848
849
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
850
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
851
852
    {
        if(args.size() != 1)
853
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
890
891
        if(contains(attributes, "extra_shape"))
        {
892
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
893
894
        }

895
896
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
897
            if(args.size() != 1)
898
            {
899
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
900
901
            }

Shucai Xiao's avatar
Shucai Xiao committed
902
903
            if(contains(attributes, "shape"))
            {
904
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
905
                               "at the same time");
906
907
            }

908
909
910
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
911
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
912
            }
913

914
915
916
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
917
918
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
919
920
921
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
922
923
            if(!contains(attributes, "shape"))
            {
924
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
925
926
927
            }

            literal ls = parse_value(attributes.at("shape"));
928
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
929
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
930
            migraphx::shape s{type, dims};
931
932
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
933
934
935
        }
        else
        {
936
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
937
938
939
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
940
941
942
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
943
944
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
945
        if(contains(attributes, "value"))
946
947
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
948
            if(l_val.get_shape().elements() != 1)
949
950
951
952
953
954
955
956
957
958
959
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
960

Shucai Xiao's avatar
Shucai Xiao committed
961
        if(args.empty())
962
        {
963
            MIGRAPHX_THROW("Parse ConstantOfShape : must have 1 input!");
964
965
966
        }
        else
        {
967
968
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
969
            if(args[0]->get_shape().elements() == 0)
970
            {
971
                s = migraphx::shape{type, {1}, {0}};
972
            }
973
974
975
976
977
978
979
            else
            {
                migraphx::argument in = args[0]->eval();
                if(in.empty())
                {
                    MIGRAPHX_THROW("Parse ConstantOfShape: cannot handle dynamic shape as input");
                }
980

981
982
983
984
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
985
986
987
988
989
990
991
992
993
994
995
996
997

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
998
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
999
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1000
    {
Shucai Xiao's avatar
Shucai Xiao committed
1001
        auto in_lens             = args[0]->get_shape().lens();
1002
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1003
        if(arg_s.empty())
1004
1005
1006
1007
1008
1009
        {
            MIGRAPHX_THROW("Parse Expand: cannot handle dynamic shape as input");
        }
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
1010

Shucai Xiao's avatar
Shucai Xiao committed
1011
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1012
1013
    }

Shucai Xiao's avatar
Shucai Xiao committed
1014
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1015
1016
1017
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1018
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1019
1020
1021

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1022
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1023
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1024
1025
1026
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1027
1028
1029
1030
1031
1032
1033
1034
1035
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1036
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1037
1038
        if(direction == "bidirectional")
        {
1039
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1040
1041
1042
        }
        else if(direction == "reverse")
        {
1043
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1044
1045
        }

1046
        std::vector<std::string> vec_names{"tanh"};
1047
1048
1049
1050
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1051
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1052
1053
1054
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1055
1056
        }

1057
1058
1059
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1060
        if(name_it != vec_names.end())
1061
1062
1063
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1064

Shucai Xiao's avatar
Shucai Xiao committed
1065
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1066
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1067
        // if only one actv function is provided, we use it in both
1068
        // forward and reverse direction
1069
        if(dirct == op::rnn_direction::bidirectional)
1070
        {
Shucai Xiao's avatar
Shucai Xiao committed
1071
            if(vec_names.size() == 1)
1072
1073
1074
1075
1076
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1077
1078
1079
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1080
        });
Shucai Xiao's avatar
Shucai Xiao committed
1081

Shucai Xiao's avatar
Shucai Xiao committed
1082
1083
1084
1085
1086
1087
1088
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1089
1090
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1091
        if(args.size() < 6)
1092
1093
1094
1095
1096
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1097
1098
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1099
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1100

1101
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1102
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1103

Shucai Xiao's avatar
Shucai Xiao committed
1104
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
    }

1107
    std::vector<instruction_ref>
1108
1109
1110
1111
1112
1113
1114
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1115
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1116
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1117
1118
1119
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1120
1121
1122
1123
1124
1125
1126
1127
1128
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1129
        op::rnn_direction dirct = op::rnn_direction::forward;
1130
1131
        if(direction == "bidirectional")
        {
1132
            dirct = op::rnn_direction::bidirectional;
1133
1134
1135
        }
        else if(direction == "reverse")
        {
1136
            dirct = op::rnn_direction::reverse;
1137
1138
        }

1139
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1140
1141
        if(contains(attributes, "activations"))
        {
1142
            auto names = attributes.at("activations").strings();
1143
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1144
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1145
1146
1147
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1148
1149
        }

1150
        // need 4 activation functions
1151
        if(dirct == op::rnn_direction::bidirectional)
1152
        {
Shucai Xiao's avatar
Shucai Xiao committed
1153
            // 4 activation functions are used in the bidirectional
1154
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1155
1156
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1157
1158
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1159
1160
1161
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1162
            if(vec_names.size() == 1)
1163
            {
1164
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1165
            }
1166
            else if(vec_names.size() == 2)
1167
            {
1168
1169
1170
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1171
            }
1172
            else if(vec_names.size() == 3)
1173
            {
1174
                vec_names.push_back(vec_names.at(2));
1175
1176
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1177
        else
1178
        {
1179
            if(vec_names.size() == 1)
1180
            {
1181
                vec_names.push_back(vec_names.at(0));
1182
1183
1184
            }
        }

1185
1186
1187
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1188
        if(name_it != vec_names.end())
1189
1190
1191
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1192

Shucai Xiao's avatar
Shucai Xiao committed
1193
1194
1195
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1196
        });
1197
1198
1199
1200
1201
1202
1203
1204

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1205
        if(contains(attributes, "linear_before_reset"))
1206
1207
1208
1209
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1210
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1211
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1212
1213
1214
1215
1216
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1217
1218
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1219
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1220
            std::move(args));
1221
1222

        // second output for last gru output
1223
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1224

Shucai Xiao's avatar
Shucai Xiao committed
1225
        return {hidden_states, last_output};
1226
1227
    }

Shucai Xiao's avatar
Shucai Xiao committed
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1250
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1251
1252
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1253
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1254
1255
1256
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1257
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1258
        }
Shucai Xiao's avatar
Shucai Xiao committed
1259
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1260
        {
Shucai Xiao's avatar
Shucai Xiao committed
1261
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1262
1263
1264
1265
1266
1267
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1268
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1269
1270
1271
1272
1273
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1274
1275
1276
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1277
1278
1279
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1280
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1281
1282
1283
1284
1285
1286
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1287
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1288
1289
1290
1291
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1292
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1293
1294
1295
1296
1297
1298
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1299
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1300
1301
1302

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1303
1304
1305
1306
1307
1308
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1309
1310
1311
1312
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1313
1314
1315
1316
1317
1318
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1319
1320
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1321
1322
1323
1324
1325
1326
1327
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1328
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1329

Shucai Xiao's avatar
Shucai Xiao committed
1330
1331
1332
1333
1334
1335
1336
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1337
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1338

Shucai Xiao's avatar
Shucai Xiao committed
1339
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1340
1341
1342
1343
1344
1345
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1346
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1347
1348
1349

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1350
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1351
1352
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1353
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1354
1355
1356
            }
        }

1357
1358
1359
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1360
        if(name_it != vec_names.end())
1361
1362
1363
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1386
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1387
1388
1389
1390
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1391
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1392
1393

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1394
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1395
1396
1397
1398
1399
1400

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1401

Shucai Xiao's avatar
Shucai Xiao committed
1402
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1403
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1404
1405
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1406
1407
1408
1409
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1410
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1411
1412
1413
1414
1415
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1416
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1427
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1428
1429
1430
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1431
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1432
            return prog.add_instruction(op::squeeze{axes}, ins);
1433
1434
        }
    }
1435

Shucai Xiao's avatar
Shucai Xiao committed
1436
1437
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1438
    {
Shucai Xiao's avatar
Shucai Xiao committed
1439
        if(!contains(attributes, "to"))
1440
1441
1442
1443
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1444
        int to_type        = parse_value(attributes.at("to")).at<int>();
1445
1446
1447
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1448

Paul's avatar
Paul committed
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1461
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1462
1463
1464
1465
1466
1467
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1468
1469
1470
1471
1472
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1473
1474
1475
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1488
        }
Paul's avatar
Paul committed
1489
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1490
        {
Paul's avatar
Paul committed
1491
            this->parse_node(output.name());
Paul's avatar
Paul committed
1492
1493
1494
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1495
    void parse_undefined(const std::string& name)
1496
    {
Shucai Xiao's avatar
Shucai Xiao committed
1497
        auto ins           = prog.add_instruction(op::undefined{});
1498
1499
1500
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1501
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1502
    {
Paul's avatar
Paul committed
1503
        if(name.empty())
Paul's avatar
Paul committed
1504
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1505
1506
1507
1508
1509
1510
1511
1512
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1513
1514
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1515
                }
Shucai Xiao's avatar
Shucai Xiao committed
1516
                else if(input.empty())
Paul's avatar
Paul committed
1517
                {
1518
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1519
                }
1520
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1521
            }
Paul's avatar
Paul committed
1522
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1523
1524
            if(ops.count(node.op_type()) == 0)
            {
1525
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1526
1527
1528
            }
            else
            {
Paul's avatar
Paul committed
1529
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1530
            }
Paul's avatar
Paul committed
1531
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1532
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1533
1534
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1535
1536
1537
            }
            else
            {
Paul's avatar
Paul committed
1538
1539
1540
1541
1542
1543
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1561
        std::size_t n = 0;
Paul's avatar
Paul committed
1562
1563
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1564
            if(node.output().empty())
Paul's avatar
Paul committed
1565
            {
Paul's avatar
Paul committed
1566
                if(node.name().empty())
Paul's avatar
Paul committed
1567
1568
1569
1570
1571
1572
1573
1574
1575
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1601
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1602
1603
1604
1605
1606
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1607
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1608
1609
1610
1611
1612
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1613
1614
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1615
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1616
1617
1618
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1619
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1620
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1621
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1622
1623
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1624
1625
1626
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1627
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1628
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1629
1630
1631
1632
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1633
1634
1635
1636
1637
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1638
            MIGRAPHX_THROW("Invalid tensor type");
1639
        }
Paul's avatar
Paul committed
1640
1641
1642
1643
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1644
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1645
1646
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1647
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1648
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1649
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1650
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1651
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1652
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1653
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1654
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1655
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1656
1657
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1658
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1659
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1660
        {
Khalique's avatar
Khalique committed
1661
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1662
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1663
1664
1665
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1666
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1667
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1668
        }
Paul's avatar
Paul committed
1669
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1670
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1671
1672
1673
1674
1675
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1676
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1677
1678
    }

Khalique's avatar
Khalique committed
1679
    static literal
1680
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1681
    {
Khalique's avatar
Khalique committed
1682
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1683
        if(dims.empty())
1684
            return literal{{shape_type}, data};
1685
1686
1687
        return literal{{shape_type, dims}, data};
    }

1688
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1689
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1690
1691
    {
        if(dims.empty())
1692
            return literal{{shape_type}, data.begin(), data.end()};
1693
        return literal{{shape_type, dims}, data.begin(), data.end()};
1694
1695
    }

Paul's avatar
Paul committed
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1715
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1716
1717
1718
1719
1720
1721
1722
1723
1724
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1725
        auto&& tensor_dims = t.tensor_type().shape().dim();
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1737
1738
        return {shape_type, dims};
    }
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1784
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1785
} // namespace migraphx