onnx.cpp 63.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
58
        add_generic_op("Round", op::round{});
59
        add_generic_op("Sign", op::sign{});
Paul's avatar
Paul committed
60

Khalique's avatar
Khalique committed
61
62
63
64
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
65
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
66

Khalique's avatar
Khalique committed
67
68
69
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
70

71
72
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
73
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
74
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
75
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
76
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
77
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
78
        add_mem_op("Elu", &onnx_parser::parse_elu);
79
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
80
81
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
82
83
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
84
85
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
86
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
87
88
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
89
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
90
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
91
92
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
93
94
95
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
96
        add_mem_op("Concat", &onnx_parser::parse_concat);
97
98
99
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
100
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
101
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("RNN", &onnx_parser::parse_rnn);
103
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
104
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
105
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
106
107
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
108
109
110
111
112
113
114

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
115
116
117
118
119
120
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
121
122
123
124
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
125
126
127
128
129
130
131
132
133
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
134
135
136
137
138
139
140
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
141
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
142
143
144
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
145

146
    template <class T>
Khalique's avatar
Khalique committed
147
    void add_binary_op(std::string name, T x)
148
    {
Paul's avatar
Paul committed
149
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
150
            if(args.size() != 2)
Paul's avatar
Paul committed
151
                MIGRAPHX_THROW("binary operators should have 2 operands");
152
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
153
154
155
156
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
157
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
158
159
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
160
161
                    return prog.add_instruction(x, args[0], l);
                }
162
                return prog.add_instruction(x, args);
163
            }
Paul's avatar
Paul committed
164
            else
165
            {
Khalique's avatar
Khalique committed
166
                return add_broadcastable_binary_op(args[0], args[1], x);
167
168
169
170
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
171
172
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
173
174
175
176
177
178
179
180
181
182
183
184
185
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
186
        if(s0.size() > s1.size())
187
188
189
190
191
192
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
193
194
195
196
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
197
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
198
                           if(a != b and a != 1 and b != 1)
199
                           {
Shucai Xiao's avatar
Shucai Xiao committed
200
201
202
203
204
205
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
206
207
208
209

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
210
211
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
212
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
213
214
215
216
217
218
219
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
220
221
222
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
223
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
224
225
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
226
227
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
228
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
229
230
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
231
232
233
234
235
236
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
237
238
    }

Paul's avatar
Paul committed
239
    template <class T>
Paul's avatar
Paul committed
240
241
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
242
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
243
244
245
246
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
247
    template <class T>
Khalique's avatar
Khalique committed
248
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
249
    {
Paul's avatar
Paul committed
250
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
251
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
252
253
254
255
256
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
257
        });
Khalique's avatar
Khalique committed
258
259
    }

Khalique's avatar
Khalique committed
260
261
262
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
263
264
265
266
267
268
269
270
271
272
273
274
275
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
276
    template <class Op>
277
    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
278
279
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
280
    {
281
282
283
284
285
286
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

287
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
288
289
    }

Shucai Xiao's avatar
Shucai Xiao committed
290
    template <class Op>
291
    instruction_ref parse_arg_op(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
292
293
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
294
    {
295
        int64_t axis = 0;
296
297
        if(contains(attributes, "axis"))
        {
298
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
299
300
        }

Shucai Xiao's avatar
Shucai Xiao committed
301
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
302
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
303
304
305
306
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
307
        if(keep_dims == 0)
308
        {
309
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
310
            return prog.add_instruction(op::squeeze{{axis}}, ins);
311
312
313
        }
        else
        {
314
            return prog.add_instruction(Op{axis}, std::move(args));
315
        }
316
317
    }

Paul's avatar
Paul committed
318
    instruction_ref
Paul's avatar
Paul committed
319
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
320
    {
321
        op::convolution op;
322
        auto l0 = args[0];
Paul's avatar
Paul committed
323
324
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
325
            if(contains(attributes, "auto_pad"))
326
            {
327
328
329
330
331
                auto s = attributes["auto_pad"].s();
                if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
                {
                    MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
                }
332
            }
333
334
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
335
            if(padding.size() != 4)
336
            {
Paul's avatar
Paul committed
337
                MIGRAPHX_THROW("padding should have 4 values");
338
            }
Scott Thornton's avatar
Scott Thornton committed
339
            if(padding[0] != padding[2] || padding[1] != padding[3])
340
            {
341
342
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
343
                l0      = prog.add_instruction(op::pad{padding}, l0);
344
            }
345
346
347
348
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
349
            }
Paul's avatar
Paul committed
350
        }
Paul's avatar
Paul committed
351
352
353
354
355
356
357
358
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
359
        if(contains(attributes, "auto_pad"))
360
361
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
362
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
363
            {
Paul's avatar
Paul committed
364
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
365
366
            }

wsttiger's avatar
fixes  
wsttiger committed
367
            if(s.find("SAME") != std::string::npos)
368
            {
369
                op.padding_mode = op::padding_mode_t::same;
370
371
            }
        }
Khalique's avatar
Khalique committed
372
373
374
375
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
376
377
378
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Khalique's avatar
Khalique committed
379
            auto l1       = prog.add_instruction(op, l0, args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
380
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
381
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
382
        }
383
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
384
    }
Paul's avatar
Paul committed
385

Paul's avatar
Paul committed
386
387
388
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
389
    {
Khalique's avatar
Khalique committed
390
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
391
        auto l0 = args[0];
Khalique's avatar
Khalique committed
392
        if(starts_with(name, "Global"))
393
        {
Khalique's avatar
Khalique committed
394
395
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
396
        }
Paul's avatar
Paul committed
397
398
        if(contains(attributes, "pads"))
        {
399
400
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
401
            if(padding.size() != 4)
402
            {
Paul's avatar
Paul committed
403
                MIGRAPHX_THROW("padding should have 4 values");
404
            }
Scott Thornton's avatar
Scott Thornton committed
405
            if(padding[0] != padding[2] || padding[1] != padding[3])
406
            {
407
408
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
409
410
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
411
412
413
414
415
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
416
            }
Paul's avatar
Paul committed
417
418
419
420
421
422
423
424
425
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
426
        if(contains(attributes, "auto_pad"))
427
428
        {
            auto s = attributes["auto_pad"].s();
429
            if(s.find("SAME_UPPER") == std::string::npos)
430
            {
431
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
432
            }
433
            op.padding_mode = op::padding_mode_t::same;
434
435
        }

436
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
437
438
    }

Paul's avatar
Paul committed
439
    instruction_ref
Paul's avatar
Paul committed
440
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
441
    {
442
        op::reshape op;
Paul's avatar
Paul committed
443
444
        if(args.size() == 1)
        {
445
446
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
447
448
449
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
450
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
451
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
452
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
453
        }
454

Shucai Xiao's avatar
Shucai Xiao committed
455
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
456
457
    }

Paul's avatar
Paul committed
458
    instruction_ref
Paul's avatar
Paul committed
459
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
460
    {
461
        uint64_t axis = 1;
Paul's avatar
Paul committed
462
463
464
465
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
466
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
467
468
    }

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
487
488
489
490
491
492
493
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
494

495
496
497
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
498
        int axis = 0;
499
500
501
502
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
503

504
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
505
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
506
507
    }

508
509
510
511
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
Khalique's avatar
Khalique committed
512
        std::vector<size_t> dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
513
        size_t num_dims          = dims.size();
514
515
516
517
518
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Khalique's avatar
Khalique committed
519
520
521
522
523
        else
        {
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
        }
Khalique's avatar
Khalique committed
524

Khalique's avatar
Khalique committed
525
        if(contains(attributes, "ends"))
526
        {
Paul's avatar
Paul committed
527
            op.ends = get_indices(attributes.at("ends"));
528
        }
Khalique's avatar
Khalique committed
529
        if(contains(attributes, "starts"))
530
531
532
533
534
535
536
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
537
538
539
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
540
    {
Shucai Xiao's avatar
Shucai Xiao committed
541
        literal v = parse_value(attributes.at("value"));
542
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
543
        if(v.get_shape().elements() == 0)
544
545
546
547
        {
            return prog.add_literal(literal{});
        }

548
549
550
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
551
        {
552
            migraphx::shape scalar_shape{v.get_shape().type()};
553
554
555
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
556
557
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
558

Paul's avatar
Paul committed
559
    instruction_ref
Paul's avatar
Paul committed
560
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
561
562
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
563
        float beta  = 1.0f;
Paul's avatar
Paul committed
564
565
566
567
568
569
570
571
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
572
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
573
574
575
576
577
578
579
580
581
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
582
583
584
585
586
587

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

588
589
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
590
591
        if(args.size() == 3)
        {
592
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
593
            {
Shucai Xiao's avatar
Shucai Xiao committed
594
                auto out_lens   = l1->get_shape().lens();
595
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
596
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
597
598
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
599
                {
600
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
601
                }
602
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
603
            }
Paul's avatar
Paul committed
604
        }
605
606

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
607
608
    }

609
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
610
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
611
    {
Shucai Xiao's avatar
Shucai Xiao committed
612
613
        auto l0      = args[0];
        auto l1      = args[1];
614
615
616
617
618
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
619
        if(l0_lens.size() == 1)
620
621
622
623
624
625
626
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
627
        if(l1_lens.size() == 1)
628
629
630
631
632
633
634
635
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
636
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
637
638
639
640
641
642
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
643
            l0_broadcasted_lens = output_lens;
644
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
645
            l1_broadcasted_lens = output_lens;
646
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
647
            if(l0_lens != l0_broadcasted_lens)
648
649
650
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
651
            if(l1_lens != l1_broadcasted_lens)
652
653
654
655
656
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
657
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
658
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
659
        if(is_a_prepended)
660
661
662
663
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
664
        if(is_b_appended)
665
666
667
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
668

669
670
671
        return dot_res;
    }

672
    instruction_ref
Paul's avatar
Paul committed
673
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
674
    {
Scott Thornton's avatar
Scott Thornton committed
675
676
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
677
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
678
        bool is_test                                      = false;
679
680
681
682
683
684
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
685
            momentum = parse_value(attributes.at("momentum")).at<float>();
686
687
688
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
689
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
690
691
692
        }
        if(contains(attributes, "spatial"))
        {
693
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
694
695
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
696
        }
Paul's avatar
Paul committed
697
        (void)is_test;
Paul's avatar
Paul committed
698
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
699
        return prog.add_instruction(op, std::move(args));
700
701
    }

702
703
704
705
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
706
        float alpha = 0.01; // default alpha val for leaky relu
707
708
709
710
711
712
713
714
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
715
716
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
717
718
719
720
721
722
723
724
725
726
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
727
728
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
729
730
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
731
732
733
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
734
735
736
737
738
739
740
741
742
743
744
745
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
762
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
763

Khalique's avatar
Khalique committed
764
765
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
766
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
767

768
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
769
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
770
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
771
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
772
    }
Khalique's avatar
Khalique committed
773

Khalique's avatar
Khalique committed
774
775
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
776
777
778
779
780
781
782
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
783
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
784
785
    }

Khalique's avatar
Khalique committed
786
787
788
789
790
791
792
793
794
795
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
796
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
797
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
798
799
800
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
801
802
803
804
805
806
807
808
809
810
811
812
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
813
814
815
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
816
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
817
818
    {
        if(args.size() != 1)
819
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
Shucai Xiao's avatar
Shucai Xiao committed
844
        shape::type_t type = get_type(dtype);
845
846
847
848
849
850
851
852
853
854
855

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
856
857
        if(contains(attributes, "extra_shape"))
        {
858
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
859
860
        }

861
862
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
863
            if(args.size() != 1)
864
            {
865
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
866
867
            }

Shucai Xiao's avatar
Shucai Xiao committed
868
869
            if(contains(attributes, "shape"))
            {
870
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
871
                               "at the same time");
872
873
            }

874
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
875
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
876

877
878
879
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
880
881
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
882
883
884
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
885
886
            if(!contains(attributes, "shape"))
            {
887
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
888
889
890
            }

            literal ls = parse_value(attributes.at("shape"));
891
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
892
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
893
            migraphx::shape s{type, dims};
894
895
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
896
897
898
        }
        else
        {
899
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
900
901
902
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
903
904
905
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
906
907
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
908
        if(contains(attributes, "value"))
909
910
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
911
            if(l_val.get_shape().elements() != 1)
912
913
914
915
916
917
918
919
920
921
922
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
923

Shucai Xiao's avatar
Shucai Xiao committed
924
        if(args.empty())
925
        {
Shucai Xiao's avatar
Shucai Xiao committed
926
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
927
928
929
        }
        else
        {
930
931
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
932
            if(args[0]->get_shape().elements() == 0)
933
            {
934
                s = migraphx::shape{type, {1}, {0}};
935
            }
936
937
938
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
939
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
940

941
942
943
944
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
945

Shucai Xiao's avatar
Shucai Xiao committed
946
            literal l_out{};
947
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
948
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
949
                // l_val contains only one element
Shucai Xiao's avatar
Shucai Xiao committed
950
                std::vector<val_type> out_vec(s.elements(), *val.begin());
951
952
953
954
955
956
957
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
958
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
959
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
960
    {
Shucai Xiao's avatar
Shucai Xiao committed
961
        auto in_lens             = args[0]->get_shape().lens();
962
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
963
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
964
965
966
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
967
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
968
969
    }

Shucai Xiao's avatar
Shucai Xiao committed
970
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
971
972
973
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
974
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
975
976
977

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
978
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
979
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
980
981
982
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
983
984
985
986
987
988
989
990
991
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

992
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
993
994
        if(direction == "bidirectional")
        {
995
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
996
997
998
        }
        else if(direction == "reverse")
        {
999
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1000
1001
        }

1002
        std::vector<std::string> vec_names{"tanh"};
1003
1004
1005
1006
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1007
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1008
1009
1010
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1011
1012
        }

1013
1014
1015
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1016
        if(name_it != vec_names.end())
1017
1018
1019
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1020

Shucai Xiao's avatar
Shucai Xiao committed
1021
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1022
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1023
        // if only one actv function is provided, we use it in both
1024
        // forward and reverse direction
1025
        if(dirct == op::rnn_direction::bidirectional)
1026
        {
Shucai Xiao's avatar
Shucai Xiao committed
1027
            if(vec_names.size() == 1)
1028
1029
1030
1031
1032
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1033
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1034
1035
1036
1037
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1038

Shucai Xiao's avatar
Shucai Xiao committed
1039
1040
1041
1042
1043
1044
1045
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1046
1047
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1048
        if(args.size() < 6)
1049
1050
1051
1052
1053
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1054
1055
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1056
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1057

1058
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1059
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1060

Shucai Xiao's avatar
Shucai Xiao committed
1061
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1062
1063
    }

1064
    std::vector<instruction_ref>
1065
1066
1067
1068
1069
1070
1071
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1072
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1073
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1074
1075
1076
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1077
1078
1079
1080
1081
1082
1083
1084
1085
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1086
        op::rnn_direction dirct = op::rnn_direction::forward;
1087
1088
        if(direction == "bidirectional")
        {
1089
            dirct = op::rnn_direction::bidirectional;
1090
1091
1092
        }
        else if(direction == "reverse")
        {
1093
            dirct = op::rnn_direction::reverse;
1094
1095
        }

1096
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1097
1098
        if(contains(attributes, "activations"))
        {
1099
            auto names = attributes.at("activations").strings();
1100
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1101
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1102
1103
1104
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1105
1106
        }

1107
        // need 4 activation functions
1108
        if(dirct == op::rnn_direction::bidirectional)
1109
        {
Shucai Xiao's avatar
Shucai Xiao committed
1110
            // 4 activation functions are used in the bidirectional
1111
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1112
1113
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1114
1115
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1116
1117
1118
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1119
            if(vec_names.size() == 1)
1120
            {
1121
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1122
            }
1123
            else if(vec_names.size() == 2)
1124
            {
1125
1126
1127
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1128
            }
1129
            else if(vec_names.size() == 3)
1130
            {
1131
                vec_names.push_back(vec_names.at(2));
1132
1133
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1134
        else
1135
        {
1136
            if(vec_names.size() == 1)
1137
            {
1138
                vec_names.push_back(vec_names.at(0));
1139
1140
1141
            }
        }

1142
1143
1144
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1145
        if(name_it != vec_names.end())
1146
1147
1148
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1149

Shucai Xiao's avatar
Shucai Xiao committed
1150
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1151
1152
1153
1154
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1155
1156
1157
1158
1159
1160
1161
1162

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1163
        if(contains(attributes, "linear_before_reset"))
1164
1165
1166
1167
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1168
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1169
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1170
1171
1172
1173
1174
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1175
1176
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1177
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1178
            std::move(args));
1179
1180

        // second output for last gru output
1181
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1182

Shucai Xiao's avatar
Shucai Xiao committed
1183
        return {hidden_states, last_output};
1184
1185
    }

Shucai Xiao's avatar
Shucai Xiao committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1208
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1209
1210
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1211
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1212
1213
1214
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1215
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1216
        }
Shucai Xiao's avatar
Shucai Xiao committed
1217
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1218
        {
Shucai Xiao's avatar
Shucai Xiao committed
1219
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1220
1221
1222
1223
1224
1225
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1226
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1227
1228
1229
1230
1231
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1232
1233
1234
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1235
1236
1237
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1238
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1239
1240
1241
1242
1243
1244
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1245
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1246
1247
1248
1249
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1250
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1251
1252
1253
1254
1255
1256
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1257
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1258
1259
1260

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1261
1262
1263
1264
1265
1266
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1267
1268
1269
1270
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1271
1272
1273
1274
1275
1276
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1277
1278
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1279
1280
1281
1282
1283
1284
1285
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1286
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1287

Shucai Xiao's avatar
Shucai Xiao committed
1288
1289
1290
1291
1292
1293
1294
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1295
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1296

Shucai Xiao's avatar
Shucai Xiao committed
1297
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1298
1299
1300
1301
1302
1303
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1304
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1305
1306
1307

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1308
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1309
1310
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1311
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1312
1313
1314
            }
        }

1315
1316
1317
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1318
        if(name_it != vec_names.end())
1319
1320
1321
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1322
1323

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1324
1325
1326
1327
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1345
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1346
1347
1348
1349
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1350
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1351
1352

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1353
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1354
1355
1356
1357
1358
1359

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1360

Shucai Xiao's avatar
Shucai Xiao committed
1361
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1362
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1363
1364
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1365
1366
1367
1368
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1369
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1370
1371
1372
1373
1374
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1375
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1386
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1387
1388
1389
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1390
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1391
            return prog.add_instruction(op::squeeze{axes}, ins);
1392
1393
        }
    }
1394

Shucai Xiao's avatar
Shucai Xiao committed
1395
1396
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1397
    {
Shucai Xiao's avatar
Shucai Xiao committed
1398
        if(!contains(attributes, "to"))
1399
1400
1401
1402
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1403
        int to_type        = parse_value(attributes.at("to")).at<int>();
1404
1405
1406
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1407

Paul's avatar
Paul committed
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1420
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1421
1422
1423
1424
1425
1426
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1427
1428
1429
1430
1431
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1432
1433
1434
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1447
        }
Paul's avatar
Paul committed
1448
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1449
        {
Paul's avatar
Paul committed
1450
            this->parse_node(output.name());
Paul's avatar
Paul committed
1451
1452
1453
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1454
    void parse_undefined(const std::string& name)
1455
    {
Shucai Xiao's avatar
Shucai Xiao committed
1456
        auto ins           = prog.add_instruction(op::undefined{});
1457
1458
1459
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1460
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1461
    {
Paul's avatar
Paul committed
1462
        if(name.empty())
Paul's avatar
Paul committed
1463
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1464
1465
1466
1467
1468
1469
1470
1471
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1472
1473
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1474
                }
Shucai Xiao's avatar
Shucai Xiao committed
1475
                else if(input.empty())
Paul's avatar
Paul committed
1476
                {
1477
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1478
                }
1479
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1480
            }
Paul's avatar
Paul committed
1481
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1482
1483
            if(ops.count(node.op_type()) == 0)
            {
1484
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1485
1486
1487
            }
            else
            {
Paul's avatar
Paul committed
1488
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1489
            }
Paul's avatar
Paul committed
1490
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1491
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1492
1493
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1494
1495
1496
            }
            else
            {
Paul's avatar
Paul committed
1497
1498
1499
1500
1501
1502
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1520
        std::size_t n = 0;
Paul's avatar
Paul committed
1521
1522
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1523
            if(node.output().empty())
Paul's avatar
Paul committed
1524
            {
Paul's avatar
Paul committed
1525
                if(node.name().empty())
Paul's avatar
Paul committed
1526
1527
1528
1529
1530
1531
1532
1533
1534
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1535
1536
1537
1538
1539
1540
1541
1542
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

Paul's avatar
Paul committed
1543
1544
1545
1546
1547
1548
    static std::vector<int64_t> get_indices(const onnx::AttributeProto& attr)
    {
        std::vector<int64_t> result;
        literal s = parse_value(attr);
        s.visit([&](auto v) { copy(v, std::back_inserter(result)); });
        // Clamp large indices to -1
Paul's avatar
Paul committed
1549
1550
1551
        std::replace_if(result.begin(), result.end(), [](auto x) {
            return x > int64_t{std::numeric_limits<std::int32_t>::max()} / 2;
        }, -1);
Paul's avatar
Paul committed
1552
1553
1554
        return result;
    }

Paul's avatar
Paul committed
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1569
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1570
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1571
1572
1573
1574
1575
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
Paul's avatar
Paul committed
1576
1577
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1578
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1579
1580
1581
1582
1583
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1584
1585
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1586
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1587
1588
            switch(t.data_type())
            {
1589
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
1590
1591
1592
1593
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1594
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1595
1596
1597
1598
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1599
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1600
1601
1602
1603
1604
1605
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1606
1607
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1608
            MIGRAPHX_THROW("Invalid tensor type");
1609
        }
Paul's avatar
Paul committed
1610
1611
1612
1613
1614
1615
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1616
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1617
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1618
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1619
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1620
1621
1622
1623
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1624
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1625
        {
Khalique's avatar
Khalique committed
1626
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1627
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1628
1629
1630
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1631
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1632
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1633
        }
Paul's avatar
Paul committed
1634
1635
1636
1637
1638
1639
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1640
1641
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1642
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1643
1644
    }

Khalique's avatar
Khalique committed
1645
    static literal
1646
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1647
    {
Khalique's avatar
Khalique committed
1648
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1649
        if(dims.empty())
1650
            return literal{{shape_type}, data};
1651
1652
1653
        return literal{{shape_type, dims}, data};
    }

1654
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1655
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1656
1657
    {
        if(dims.empty())
1658
            return literal{{shape_type}, data.begin(), data.end()};
1659
        return literal{{shape_type, dims}, data.begin(), data.end()};
1660
1661
    }

Paul's avatar
Paul committed
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
1673
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1674
1675
1676
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1677
1678
1679
1680
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
1681
1682
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
1683
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
1684
1685
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1686
        auto&& tensor_dims = t.tensor_type().shape().dim();
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1698
1699
        return {shape_type, dims};
    }
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1722
1723
1724

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
1725
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
1726
1727
1728
1729
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1753
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1754
} // namespace migraphx