onnx.cpp 29.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
28
29
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
30
    program prog    = program();
31
    bool is_pytorch = false;
Paul's avatar
Paul committed
32
33
34
35
36

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
37
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
38
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
39
40
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Khalique's avatar
Khalique committed
41
42
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
43
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
44
45
46
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
47
48
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
49
        add_generic_op("Tanh", op::tanh{});
50
51
52
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
53

Khalique's avatar
Khalique committed
54
55
56
57
58
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
59
60
61
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
62

Khalique's avatar
Khalique committed
63
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
64
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
65
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
66
67
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
68
69
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
70
71
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
72
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
73
74
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
75
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
76
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
77
78
79
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
80
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
81
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
97

98
    template <class T>
Khalique's avatar
Khalique committed
99
    void add_binary_op(std::string name, T x)
100
101
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
102
            if(args.size() != 2)
Paul's avatar
Paul committed
103
                MIGRAPHX_THROW("binary operators should have 2 operands");
104
105
106
107
108
109
110
111
112
113
114
115
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
116
                return prog.add_instruction(x, args);
117
            }
Khalique's avatar
Khalique committed
118
            else
119
            {
Khalique's avatar
Khalique committed
120
121
122
123
124
125
126
127
128
129
                return add_broadcastable_binary_op(args[0], args[1], x);
            }
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
130
131
132
133
134
135
136
137
138
139
140
141
142
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
143
144
145
146
147
148
149
150
151
152
153
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

            std::vector<std::size_t> output_lens(s1->size());
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
154
155
156
157
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
158
159
160
161
162
163
164
165
166

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
167
168
    }

Paul's avatar
Paul committed
169
    template <class T>
Paul's avatar
Paul committed
170
171
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
172
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
173
174
175
176
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
177
    template <class T>
Khalique's avatar
Khalique committed
178
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
179
    {
Khalique's avatar
Khalique committed
180
181
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
182
183
184
185
186
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
187
        });
Khalique's avatar
Khalique committed
188
189
    }

Paul's avatar
Paul committed
190
    instruction_ref
Paul's avatar
Paul committed
191
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
192
193
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
194
195
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
196
197
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
198
199
    }

Paul's avatar
Paul committed
200
    instruction_ref
Paul's avatar
Paul committed
201
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
202
    {
203
        op::convolution op;
Paul's avatar
Paul committed
204
205
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
206
            if(contains(attributes, "auto_pad"))
207
            {
Paul's avatar
Paul committed
208
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
209
210
211
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
212
            if(padding.size() != 4)
213
            {
Paul's avatar
Paul committed
214
                MIGRAPHX_THROW("padding should have 4 values");
215
            }
Scott Thornton's avatar
Scott Thornton committed
216
            if(padding[0] != padding[2] || padding[1] != padding[3])
217
            {
Paul's avatar
Paul committed
218
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
219
220
221
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
222
        }
Paul's avatar
Paul committed
223
224
225
226
227
228
229
230
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
231
        if(contains(attributes, "auto_pad"))
232
233
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
234
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
235
            {
Paul's avatar
Paul committed
236
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
237
238
            }

wsttiger's avatar
fixes  
wsttiger committed
239
            if(s.find("SAME") != std::string::npos)
240
241
242
243
            {
                op.padding_mode = op::convolution::same;
            }
        }
Paul's avatar
Paul committed
244
245
246
247
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
248
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
249
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
250
        }
Paul's avatar
Paul committed
251
252
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
253

Paul's avatar
Paul committed
254
255
256
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
257
    {
Khalique's avatar
Khalique committed
258
259
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
260
        {
Khalique's avatar
Khalique committed
261
262
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
263
        }
Paul's avatar
Paul committed
264
265
        if(contains(attributes, "pads"))
        {
266
267
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
268
            if(padding.size() != 4)
269
            {
Paul's avatar
Paul committed
270
                MIGRAPHX_THROW("padding should have 4 values");
271
            }
Scott Thornton's avatar
Scott Thornton committed
272
            if(padding[0] != padding[2] || padding[1] != padding[3])
273
            {
Paul's avatar
Paul committed
274
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
275
276
277
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
278
279
280
281
282
283
284
285
286
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
287
        if(contains(attributes, "auto_pad"))
288
289
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
290
            if(to_upper(s) != "NOTSET")
291
            {
Paul's avatar
Paul committed
292
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
293
294
295
            }
        }

Paul's avatar
Paul committed
296
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
297
298
    }

Paul's avatar
Paul committed
299
    instruction_ref
Paul's avatar
Paul committed
300
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
301
    {
302
        op::reshape op;
Paul's avatar
Paul committed
303
304
305
306
307
308
309
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
310
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
311
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
312
        }
Paul's avatar
Paul committed
313
314
315
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
316
    instruction_ref
Paul's avatar
Paul committed
317
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
318
    {
319
        uint64_t axis = 1;
Paul's avatar
Paul committed
320
321
322
323
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
324
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
325
326
    }

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
345
346
347
348
349
350
351
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
373
374
375
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
376
377
378
379
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
380

Paul's avatar
Paul committed
381
    instruction_ref
Paul's avatar
Paul committed
382
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
405
406
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
407
408
409
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
410
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
411
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
412
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
413
        }
Shucai Xiao's avatar
Shucai Xiao committed
414
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
415
416
    }

417
    instruction_ref
Paul's avatar
Paul committed
418
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
419
    {
Scott Thornton's avatar
Scott Thornton committed
420
421
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
422
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
423
        bool is_test                                      = false;
424
425
426
427
428
429
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
430
            momentum = parse_value(attributes.at("momentum")).at<float>();
431
432
433
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
434
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
435
436
437
        }
        if(contains(attributes, "spatial"))
        {
438
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
439
440
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
441
        }
Paul's avatar
Paul committed
442
        (void)is_test;
Paul's avatar
Paul committed
443
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
444
        return prog.add_instruction(op, std::move(args));
445
446
    }

447
448
449
450
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
451
        float alpha = 0.01; // default alpha val for leaky relu
452
453
454
455
456
457
458
459
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
460
461
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
462
463
464
465
466
467
468
469
470
471
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
489

Khalique's avatar
Khalique committed
490
491
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
492
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
493

Paul's avatar
Paul committed
494
495
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
496
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
497
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
498
    }
Khalique's avatar
Khalique committed
499

Khalique's avatar
Khalique committed
500
501
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
502
503
504
505
506
507
508
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
509
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
510
511
    }

Paul's avatar
Paul committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
531
532
533
534
535
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
536
537
538
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
539
540
541
542
543
544
545
546
547
548
549
550
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
551
552
553
        }
        for(auto&& p : nodes)
        {
554
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
555
556
557
        }
    }

Paul's avatar
Paul committed
558
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
559
    {
Paul's avatar
Paul committed
560
        if(name.empty())
Paul's avatar
Paul committed
561
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
562
563
564
565
566
567
568
569
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
570
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
571
                    assert(name != iname);
Paul's avatar
Paul committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

601
602
603
604
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
605
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
606
607
608
609
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
610
611
612
613
        }
        return node.name();
    }

Paul's avatar
Paul committed
614
615
616
617
618
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
619
            result[get_name(node)] = node;
Paul's avatar
Paul committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
645
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
646
647
648
649
650
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
651
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
652
653
654
655
656
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
657
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
658
        if(dims.empty())
Khalique's avatar
Khalique committed
659
660
661
        {
            dims = {1};
        }
662
663
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
664
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
665
666
667
668
669
670
671
672
673
674
675
676
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
677
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
678
679
680
681
682
683
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
684
            MIGRAPHX_THROW("Invalid tensor type");
685
        }
Paul's avatar
Paul committed
686
687
688
689
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
690
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
691
692
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
693
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
694
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
695
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
696
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
697
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
698
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
699
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
700
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
701
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
702
703
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
704
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
705
706
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
707
708
709
710
711
712
713
714
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
715
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
737
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
738
739
740
741
742
743
744
745
746
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
747
        auto&& tensor_dims = t.tensor_type().shape().dim();
748
749
750
751
752
753
754
755
756
757
758
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
784
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
785
} // namespace migraphx