onnx.cpp 15.9 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
9
#include <vector>
Paul's avatar
Paul committed
10

Paul's avatar
Paul committed
11
12
13
14
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
15
#include <migraph/instruction.hpp>
Paul's avatar
Paul committed
16

Paul's avatar
Paul committed
17
namespace migraph {
Paul's avatar
Paul committed
18
19
20
21
22
23
24
25
26
27
28
29

struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
Paul's avatar
Paul committed
30
31
32
33
    argument compute(context&, shape, std::vector<argument>) const
    {
        MIGRAPH_THROW("not computable");
    }
Paul's avatar
Paul committed
34
35
36
37
38
39
40
41
42
43
44
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
45
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
46
47
48
49
50
51
52
53
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Paul's avatar
Paul committed
54
55
56
57
58
59
60
        add_generic_op("Add", add{});
        add_generic_op("Div", div{});
        add_generic_op("MatMul", gemm{});
        add_generic_op("Mul", mul{});
        add_generic_op("Relu", activation{"relu"});
        add_generic_op("Sub", sub{});

Paul's avatar
Paul committed
61
62
63
64
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
65
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

Paul's avatar
Paul committed
82
    template <class T>
Paul's avatar
Paul committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    void add_generic_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
            if(args.size() == 2 and contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(x, args[0], l);
                }
            }
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
102
103
104
105
106
107
108
    instruction_ref
    parse_conv(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        convolution op;
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
109
        }
Paul's avatar
Paul committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
            auto l2       = prog.add_instruction(broadcast{axis}, l1, args[2]);
            return prog.add_instruction(add{}, l1, l2);
Paul's avatar
Paul committed
124
        }
Paul's avatar
Paul committed
125
126
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
127

Paul's avatar
Paul committed
128
129
130
131
132
133
134
    instruction_ref
    parse_pooling(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        pooling op{"max"};
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
135
        }
Paul's avatar
Paul committed
136
137
138
139
140
141
142
143
144
145
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
146

Paul's avatar
Paul committed
147
148
149
150
151
152
153
154
155
156
157
158
159
    instruction_ref
    parse_reshape(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        reshape op;
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
            literal s = args[1]->lit;
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
160
        }
Paul's avatar
Paul committed
161
162
163
164
165
166
167
168
169
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_constant(std::string, attribute_map attributes, std::vector<instruction_ref>)
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    instruction_ref
    parse_batchnorm(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        float epsilon  = 1e-5f;
        float momentum = 0.9f;
        bool spatial   = true;
        bool is_test   = false;
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
            epsilon = parse_value(attributes.at("momentum")).at<float>();
        }
        if(contains(attributes, "is_test"))
        {
            is_test = (parse_value(attributes.at("is_test")).at<uint64_t>() > 0) ? true : false;
        }
        if(contains(attributes, "spatial"))
        {
            spatial = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0) ? true : false;
        }
        batch_norm_inference op{epsilon, momentum, spatial, is_test};
        return prog.add_instruction(op, args);
    }

Paul's avatar
Paul committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
            // TODO: Get shape of input parameter
Paul's avatar
Paul committed
221
            shape s            = parse_type(input.type());
Paul's avatar
Paul committed
222
223
224
225
            instructions[name] = prog.add_parameter(name, s);
        }
        for(auto&& p : nodes)
        {
226
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
227
228
229
230
231
        }
    }

    void parse_node(std::string name)
    {
Paul's avatar
Paul committed
232
        if(name.empty())
Paul's avatar
Paul committed
233
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
234
235
236
237
238
239
240
241
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
242
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
243
                    assert(name != iname);
Paul's avatar
Paul committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

273
274
275
276
277
278
279
280
281
282
283
284
285
286
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
            for(auto&& output : node.output())
            {
                generated += "_" + output;
            }
            return generated;
        }
        return node.name();
    }

Paul's avatar
Paul committed
287
288
289
290
291
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
292
            result[get_name(node)] = node;
Paul's avatar
Paul committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
318
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
319
320
321
322
323
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
324
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
325
326
327
328
329
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
330
331
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
332
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
353
        }
Paul's avatar
Paul committed
354
355
356
357
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
358
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
359
360
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
361
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
362
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
363
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
364
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
365
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
366
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
367
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
368
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
369
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
370
371
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
372
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
373
374
375
376
377
378
379
380
381
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
382
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
        for(auto&& d : t.tensor_type().shape().dim())
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
445
} // namespace migraph