onnx.cpp 104 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
14
#include <migraphx/make_op.hpp>
Paul's avatar
Paul committed
15
16
17
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
Paul's avatar
Paul committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gru.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/lstm.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn_last_cell_output.hpp>
#include <migraphx/op/rnn_last_hs_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/undefined.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/op/unsqueeze.hpp>

Paul's avatar
Paul committed
48
namespace migraphx {
Paul's avatar
Paul committed
49
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
50

51
52
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
53
54
55
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
56
57
58
59
60
61
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
62
    using op_func =
63
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
64
65
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
66
67
68
69
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
70
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
71
72

    std::unordered_map<std::string, op_func> ops;
73
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
74
75
76

    onnx_parser()
    {
77
        // sort onnx operator alphabetically through name
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        add_generic_op("Abs", "abs");
        add_generic_op("Acos", "acos");
        add_generic_op("Acosh", "acosh");
        add_generic_op("Asin", "asin");
        add_generic_op("Asinh", "asinh");
        add_generic_op("Atan", "atan");
        add_generic_op("Atanh", "atanh");
        add_generic_op("Ceil", "ceil");
        add_generic_op("Concat", "concat");
        add_generic_op("Cos", "cos");
        add_generic_op("Cosh", "cosh");
        add_generic_op("Erf", "erf");
        add_generic_op("Exp", "exp");
        add_generic_op("Flatten", "flatten");
        add_generic_op("Floor", "floor");
        add_generic_op("Gather", "gather", true);
        add_generic_op("Identity", "identity");
        add_generic_op("Log", "log");
        add_generic_op("LogSoftmax", "logsoftmax");
        add_generic_op("Neg", "neg");
        add_generic_op("Reciprocal", "recip");
        add_generic_op("Relu", "relu");
        add_generic_op("Round", "round");
        add_generic_op("Sigmoid", "sigmoid");
        add_generic_op("Sign", "sign");
        add_generic_op("Sin", "sin");
        add_generic_op("Sinh", "sinh");
        add_generic_op("Softmax", "softmax");
        add_generic_op("Sqrt", "sqrt");
        add_generic_op("Squeeze", "squeeze", true);
        add_generic_op("Tan", "tan");
        add_generic_op("Tanh", "tanh");
        add_generic_op("Unsqueeze", "unsqueeze", true);

        add_binary_op("Add", "add");
        add_binary_op("Div", "div");
        add_binary_op("Mul", "mul");
        add_binary_op("Pow", "pow");
        add_binary_op("PRelu", "prelu");
        add_binary_op("Sub", "sub");

        add_variadic_op("Sum", "add");
        add_variadic_op("Max", "max");
        add_variadic_op("Min", "min");
Paul's avatar
Paul committed
122

123
        add_mem_op("ATen", &onnx_parser::parse_aten);
124
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
125
126
        add_mem_op("ArgMax", "argmax", &onnx_parser::parse_arg_op);
        add_mem_op("ArgMin", "argmin", &onnx_parser::parse_arg_op);
127
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
128
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
129
        add_mem_op("Clip", &onnx_parser::parse_clip);
Paul's avatar
Paul committed
130
        add_mem_op("Constant", &onnx_parser::parse_constant);
131
132
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
133
134
        add_mem_op("Conv", "convolution", &onnx_parser::parse_conv);
        add_mem_op("ConvInteger", "quant_convolution", &onnx_parser::parse_conv);
kahmed10's avatar
kahmed10 committed
135
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
136
        add_mem_op("Dropout", &onnx_parser::parse_dropout);
137
        add_mem_op("Elu", &onnx_parser::parse_elu);
138
        add_mem_op("Equal", &onnx_parser::parse_equal);
139
        add_mem_op("Expand", &onnx_parser::parse_expand);
Shucai Xiao's avatar
Shucai Xiao committed
140
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
141
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
142
143
144
145
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
146
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
147
148
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
        add_mem_op("LRN", &onnx_parser::parse_lrn);
149
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
150
151
        add_mem_op("MatMul", "dot", &onnx_parser::parse_matmul);
        add_mem_op("MatMulInteger", "quant_dot", &onnx_parser::parse_matmul);
152
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
153
        add_mem_op("NonZero", &onnx_parser::parse_nonzero);
kahmed10's avatar
kahmed10 committed
154
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
155
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
156
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
161
162
163
164
165
        add_mem_op("ReduceMax", "reduce_max", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMean", "reduce_mean", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMin", "reduce_min", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceProd", "reduce_prod", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceSum", "reduce_sum", &onnx_parser::parse_reduce_oper);
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
167
168
169
170
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
171
        add_mem_op("Split", &onnx_parser::parse_split);
kahmed10's avatar
kahmed10 committed
172
        add_mem_op("Tile", &onnx_parser::parse_tile);
173
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
174
        add_mem_op("Where", &onnx_parser::parse_where);
175
176
177
178
179
180
181

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
182
        // Support name format of all lower case or the first letter capital
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        map_actv_funcs.insert(std::make_pair("tanh", make_op("tanh")));
        map_actv_funcs.insert(std::make_pair("relu", make_op("relu")));
        map_actv_funcs.insert(std::make_pair("sigmoid", make_op("sigmoid")));
        map_actv_funcs.insert(std::make_pair("leakyrelu", make_op("leaky_relu")));
        map_actv_funcs.insert(std::make_pair("elu", make_op("elu")));
    }

    static operation load(const std::string& name, const node_info& info)
    {
        auto op = make_op(name);
        auto v  = op.to_value();
        for(auto&& x : v)
        {
            if(info.attributes.count(x.get_key()) == 0)
                continue;
            literal s = parse_value(info.attributes.at(x.get_key()));
            if(x.is_array())
            {
                std::vector<value> values;
                s.visit([&](auto y) {
                    std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                        return value(z);
                    });
                });
                x = values;
            }
            else
            {
                s.visit([&](auto y) { x = y.front(); });
            }
        }
        op.from_value(v);
        return op;
Paul's avatar
Paul committed
216
217
218
219
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
220
221
222
223
224
225
226
227
228
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
229
230
231
232
233
    {
        ops.emplace(name, f);
    }

    template <class F>
234
    void add_mem_op(const std::string& name, F f)
Paul's avatar
Paul committed
235
    {
Paul's avatar
Paul committed
236
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
237
238
239
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
240

241
242
243
244
245
246
247
248
249
    template <class F>
    void add_mem_op(const std::string& onnx_name, const std::string& op_name, F f)
    {
        add_op(onnx_name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, onnx_name, op_name, std::forward<decltype(xs)>(xs)...);
        });
    }

    void add_binary_op(const std::string& onnx_name, const std::string& op_name)
250
    {
251
        add_op(onnx_name, [this, op_name](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
252
            if(args.size() != 2)
Paul's avatar
Paul committed
253
                MIGRAPHX_THROW("binary operators should have 2 operands");
254
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
255
            {
256
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
257
258
                if(broadcasted != 0)
                {
259
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
260
261
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
262
                    return prog.add_instruction(make_op(op_name), args[0], l);
263
                }
264
                return prog.add_instruction(make_op(op_name), args);
265
            }
Paul's avatar
Paul committed
266
            else
267
            {
268
                return add_broadcastable_binary_op(args[0], args[1], op_name);
269
270
271
272
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
273
274
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
275
276
277
278
279
280
281
282
283
284
285
286
287
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
288
        if(s0.size() > s1.size())
289
290
291
292
293
294
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
295
296
297
298
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
299
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
300
                           if(a != b and a != 1 and b != 1)
301
                           {
Shucai Xiao's avatar
Shucai Xiao committed
302
303
304
305
306
307
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
308
309
310
311

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
312
313
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
314
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
315
316
317
318
        {
            return ins;
        }

319
        return prog.add_instruction(make_op("contiguous"), ins);
Shucai Xiao's avatar
Shucai Xiao committed
320
321
    }

322
323
    instruction_ref
    add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, const std::string& name)
Khalique's avatar
Khalique committed
324
    {
Khalique's avatar
Khalique committed
325
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
326
327
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
328
329
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
330
            auto out_lens = compute_broadcasted_lens(s0, s1);
331
332
333
334
335
336
337
338
339

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

340
            return prog.add_instruction(make_op(name), l0, l1);
Khalique's avatar
Khalique committed
341
342
343
        }
        else
        {
344
            return prog.add_instruction(make_op(name), {arg0, arg1});
Khalique's avatar
Khalique committed
345
        }
346
347
    }

348
349
350
    void add_generic_op(const std::string& onnx_name,
                        const std::string& op_name,
                        bool contiguous = false)
Paul's avatar
Paul committed
351
    {
352
353
354
355
356
357
358
359
360
361
362
363
        add_op(
            onnx_name,
            [this, op_name, contiguous](const node_info& info, std::vector<instruction_ref> args) {
                auto op = load(op_name, info);
                if(contiguous)
                {
                    std::transform(args.begin(), args.end(), args.begin(), [&](auto arg) {
                        return this->make_contiguous(arg);
                    });
                }
                return prog.add_instruction(op, args);
            });
Paul's avatar
Paul committed
364
365
    }

366
    void add_variadic_op(const std::string& onnx_name, const std::string& op_name)
Khalique's avatar
Khalique committed
367
    {
368
        add_op(onnx_name, [this, op_name](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
369
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
370
371
                                   args.end(),
                                   args.front(),
372
373
                                   [this, op_name](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, op_name);
Khalique's avatar
Khalique committed
374
                                   });
Khalique's avatar
Khalique committed
375
        });
Khalique's avatar
Khalique committed
376
377
    }

kahmed10's avatar
kahmed10 committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
392
            return prog.add_instruction(make_op("add"), curr_ins, bias_bcast);
kahmed10's avatar
kahmed10 committed
393
394
395
396
        }
        return curr_ins;
    }

397
    static bool is_asym_padding(const std::vector<int64_t>& padding)
398
    {
399
400
401
402
403
404
405
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
406
                return true;
407
408
            }
        }
kahmed10's avatar
kahmed10 committed
409
410
        return false;
    }
411

kahmed10's avatar
kahmed10 committed
412
413
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
414
                            value& v,
415
416
                            int count_include_pad = 0,
                            float pad_val         = 0)
kahmed10's avatar
kahmed10 committed
417
418
419
420
421
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

422
        if(is_asym_padding(padding) or count_include_pad == 1)
423
        {
424
425
426
427
428
429
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
430
431
432
        }
        else
        {
433
            v["padding"] = std::vector<size_t>(left_pad_it, right_pad_it);
434
435
436
        }
    }

437
438
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
439
    {
kahmed10's avatar
kahmed10 committed
440
441
442
443
444
445
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

Shucai Xiao's avatar
Shucai Xiao committed
446
        if(args.size() == 3 and args[2]->name() != "undefined")
Khalique's avatar
Khalique committed
447
        {
kahmed10's avatar
kahmed10 committed
448
449
            max_arg  = args[2];
            max_used = true;
Khalique's avatar
Khalique committed
450
        }
Shucai Xiao's avatar
Shucai Xiao committed
451
452

        if(args.size() >= 2 and args[1]->name() != "undefined")
Khalique's avatar
Khalique committed
453
        {
kahmed10's avatar
kahmed10 committed
454
455
456
457
458
459
460
461
462
463
464
465
466
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
467
        }
kahmed10's avatar
kahmed10 committed
468
469

        if(min_used)
Shucai Xiao's avatar
Shucai Xiao committed
470
        {
kahmed10's avatar
kahmed10 committed
471
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
472
        }
kahmed10's avatar
kahmed10 committed
473
474

        if(max_used)
Shucai Xiao's avatar
Shucai Xiao committed
475
        {
kahmed10's avatar
kahmed10 committed
476
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
477
        }
kahmed10's avatar
kahmed10 committed
478
479

        if(min_used and max_used)
Shucai Xiao's avatar
Shucai Xiao committed
480
        {
481
            return prog.add_instruction(make_op("clip"), args[0], min_arg, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
482
483
484
485
486
487
488
        }
        else if(max_used)
        {
            return prog.add_instruction(make_op("min"), args[0], max_arg);
        }
        else if(min_used)
        {
489
            return prog.add_instruction(make_op("max"), args[0], min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
490
491
492
493
494
        }
        else
        {
            return prog.add_instruction(make_op("identity"), args[0]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
495
496
    }

497
498
499
500
    instruction_ref parse_arg_op(const std::string&,
                                 const std::string& op_name,
                                 node_info info,
                                 std::vector<instruction_ref> args)
501
    {
502
        int64_t axis = 0;
503
        if(contains(info.attributes, "axis"))
504
        {
505
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
506
507
        }

Shucai Xiao's avatar
Shucai Xiao committed
508
        int keep_dims = 1;
509
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
510
        {
511
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
512
513
        }

Shucai Xiao's avatar
Shucai Xiao committed
514
        if(keep_dims == 0)
515
        {
516
            auto ins = prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
517
            return prog.add_instruction(op::squeeze{{axis}}, ins);
518
519
520
        }
        else
        {
521
            return prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
522
        }
523
524
    }

kahmed10's avatar
kahmed10 committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

601
602
603
604
605
606
607
608
609
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

610
    void recalc_conv_attributes(value& v, size_t kdims)
611
    {
612
        if(v["padding"].size() != kdims)
613
        {
614
615
            v["padding"].resize(kdims);
            std::fill_n(v["padding"].begin(), kdims, 0);
616
        }
617
        if(v["stride"].size() != kdims)
618
        {
619
620
            v["stride"].resize(kdims);
            std::fill_n(v["stride"].begin(), kdims, 1);
621
        }
622
        if(v["dilation"].size() != kdims)
623
        {
624
625
            v["dilation"].resize(kdims);
            std::fill_n(v["dilation"].begin(), kdims, 1);
626
627
628
        }
    }

629
    static void cal_auto_padding_size(node_info info,
630
                                      value& v,
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
                                      const std::vector<std::size_t>& k_lens,
                                      const std::vector<std::size_t>& dilation,
                                      const std::vector<std::size_t>& in_lens,
                                      std::vector<int64_t>& paddings)
    {
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

        if(!contains(info.attributes, "auto_pad"))
        {
            return;
        }

        auto auto_pad = info.attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            paddings.resize(2 * kdims);

            for(size_t i = 0; i < paddings.size() / 2; i++)
            {
                calculate_padding(i,
                                  paddings,
                                  in_lens[i + 2],
655
                                  v["stride"][i].to<int64_t>(),
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
        }
    }

    static void check_padding_mode(node_info info, const std::string& op_name)
    {
        // ensure pads availabe only when auto_pad is "NOT_SET"
        if(contains(info.attributes, "pads") and contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_" + op_name +
                               ": auto_pad and padding cannot be specified simultaneously");
            }
        }
    }

677
678
679
680
    instruction_ref parse_conv(const std::string&,
                               const std::string& op_name,
                               node_info info,
                               std::vector<instruction_ref> args)
Paul's avatar
Paul committed
681
    {
682
683
        auto op      = make_op(op_name);
        auto values  = op.to_value();
684
685
        auto l0      = args[0];
        auto weights = args[1];
686
687
688
689
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

690
691
692
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV");

693
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
694
        {
695
696
697
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
698
        }
699
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
700
        {
701
702
703
704
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
            check_attr_sizes(
                kdims, values["dilation"].size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
705
        }
706
707
708
709

        std::vector<int64_t> padding;
        if(contains(info.attributes, "pads"))
        {
710
            values["padding"].clear();
711
712
713
714
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
        }

715
        if(contains(info.attributes, "auto_pad"))
716
        {
717
718
            auto weight_lens = weights->get_shape().lens();
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
719
720
721
722
723
724
            cal_auto_padding_size(info,
                                  values,
                                  k_lens,
                                  values["dilation"].to_vector<std::size_t>(),
                                  in_lens,
                                  padding);
Shucai Xiao's avatar
Shucai Xiao committed
725
726
727
728
729
            auto auto_pad = info.attributes["auto_pad"].s();
            if(auto_pad.find("SAME") != std::string::npos)
            {
                values["padding_mode"] = to_value(op::padding_mode_t::same);
            }
730
        }
731
        check_asym_padding(l0, padding, values);
732

733
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
734
        {
735
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
736
        }
kahmed10's avatar
kahmed10 committed
737

738
        recalc_conv_attributes(values, kdims);
739

740
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
741
742
743
744
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

745
746
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
747
    {
748
749
750
        operation op = make_op("deconvolution");
        value values = op.to_value();
        // op::deconvolution op;
kahmed10's avatar
kahmed10 committed
751
752
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
753
754
755
756
757
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

758
759
760
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

761
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
762
        {
763
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
764
765
766
767

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
768
            {
kahmed10's avatar
kahmed10 committed
769
770
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
771
                values["padding"].clear();
kahmed10's avatar
kahmed10 committed
772
773
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
774
                               std::back_inserter(values["padding"]),
kahmed10's avatar
kahmed10 committed
775
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
776
777
            }
        }
778
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
779
        {
780
781
782
783
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(
                kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
784
        }
785
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
786
        {
787
788
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
kahmed10's avatar
kahmed10 committed
789
            check_attr_sizes(
790
                kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
791
        }
792
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
793
        {
794
795
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
796
            {
kahmed10's avatar
kahmed10 committed
797
798
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
799
800
801
802
            }

            if(s.find("SAME") != std::string::npos)
            {
803
                values["padding_mode"] = to_value(op::padding_mode_t::same);
kahmed10's avatar
kahmed10 committed
804
805
806
            }
        }

807
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
808
        {
809
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
810
811
        }

812
        recalc_conv_attributes(values, kdims);
kahmed10's avatar
kahmed10 committed
813

814
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
815
816
        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
817
818
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
819
        {
kahmed10's avatar
kahmed10 committed
820
821
822
823
824
825
826
827
828
829
830
831
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
832

kahmed10's avatar
kahmed10 committed
833
            l1 = prog.add_instruction(op::slice{axes, starts, ends}, l1);
kahmed10's avatar
kahmed10 committed
834
835
        }

836
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
837
        {
kahmed10's avatar
kahmed10 committed
838
839
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
840
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
841
842
843
844
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = prog.add_instruction(op::pad{output_padding}, l1);
kahmed10's avatar
kahmed10 committed
845
846
        }

847
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
848
849
        {
            std::vector<int64_t> output_shape;
850
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
851
852
853
854
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
855
856
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
857
858
859
860
861
862
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
kahmed10's avatar
kahmed10 committed
863
864
865
866
867
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
868
    }
Paul's avatar
Paul committed
869

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
    static void
    tune_padding_to_symmetric(int64_t& left, int64_t& right, const int stride, int64_t& s_start)
    {
        s_start = 0;
        if(left > right)
        {
            right = left;
        }
        else if(left < right)
        {
            auto diff = right - left;
            s_start   = (diff + stride - 1) / stride;
            left      = left + s_start * stride;
            right     = left;
        }
    }

887
    static void tune_padding_size(const value& v,
888
889
890
891
892
                                  std::vector<int64_t>& padding,
                                  int count_include_pad,
                                  std::vector<int64_t>& s_start)
    {
        // maxpooling or count_include_pad is 1, no change is required.
893
        if(v.at("mode").to<std::string>() == "max" or count_include_pad == 1)
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
        {
            return;
        }

        // if padding is symmetric, return directly
        if(!is_asym_padding(padding))
        {
            return;
        }

        // asymmetric padding, make it symmetric
        std::size_t n_dims = padding.size() / 2;
        s_start.resize(n_dims);
        for(std::size_t i = 0; i < n_dims; ++i)
        {
909
910
            tune_padding_to_symmetric(
                padding[i], padding[i + n_dims], v.at("stride")[i].to<int64_t>(), s_start[i]);
911
912
913
        }
    }

914
915
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
916
    {
917
918
919
920
921
        std::string mode = ends_with(name, "MaxPool") ? "max" : "average";
        operation op     = make_op("pooling", {{"mode", mode}});
        value values     = op.to_value();
        auto l0          = args[0];
        auto in_lens     = l0->get_shape().lens();
922
923
924
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
925
        if(starts_with(name, "Global"))
926
        {
927
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
928
        }
929

930
931
        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
Paul's avatar
Paul committed
932
        {
Shucai Xiao's avatar
Shucai Xiao committed
933
            values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
934
        }
935

936
937
938
939
940
941
        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
Paul's avatar
Paul committed
942
        }
943

944
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
945
        {
946
947
948
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
949
        }
950
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
951
        {
952
953
954
955
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
956
        }
957

958
959
960
961
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
962
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
963
964
        if(contains(info.attributes, "pads"))
        {
965
            values["padding"].clear();
966
967
968
969
970
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

971
        if(contains(info.attributes, "auto_pad"))
972
        {
973
            values["padding"].clear();
974
            // return paddings could be empty, then setting to 0 for no padding
975
976
977
978
979
980
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
981
        }
982

983
984
985
986
        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
987
988
        }

989
        if(values["padding"].size() != kdims)
990
        {
991
992
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
993
        }
994

995
        if(values["stride"].size() != kdims)
996
        {
997
998
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
999
        }
1000
1001
1002
1003
1004
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
1005
        tune_padding_size(values, paddings, count_include_pad, slice_start);
1006
1007
1008
1009
1010
1011
1012
1013

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
1014
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();
1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }

1025
        check_asym_padding(l0, paddings, values, count_include_pad, pad_val);
1026
        in_lens = l0->get_shape().lens();
1027
1028
        for(size_t i = 0; i < kdims; i++)
        {
1029
1030
            if(values["lengths"][i].to<int64_t>() >
               in_lens[i + 2] + 2 * values["padding"][i].to<int64_t>())
1031
            {
1032
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
1033
1034
            }
        }
1035
        op.from_value(values);
1036
1037
1038
1039
1040
1041
        auto l1 = prog.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = prog.add_instruction(op::slice{axes, slice_start, slice_end}, l1);
1042
1043
        }

1044
        return l1;
Paul's avatar
Paul committed
1045
1046
    }

Paul's avatar
Paul committed
1047
    instruction_ref
1048
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1049
    {
1050
        op::reshape op;
Paul's avatar
Paul committed
1051
1052
        if(args.size() == 1)
        {
1053
            literal s = parse_value(info.attributes.at("shape"));
1054
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1055
1056
1057
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
1058
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1059
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
1060
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1061
        }
1062

Shucai Xiao's avatar
Shucai Xiao committed
1063
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
1064
1065
    }

Shucai Xiao's avatar
Shucai Xiao committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
1116
1117
1118
        auto dim_diff  = prog.add_instruction(make_op("sub"), arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(make_op("mul"), dim_diff, l_stride);
        auto ind       = prog.add_instruction(make_op("add"), l_shape_idx, delta);
Shucai Xiao's avatar
Shucai Xiao committed
1119
1120
1121
1122
1123

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

1124
    instruction_ref
1125
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1126
1127
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1150
        {
1151
            literal s = parse_value(info.attributes.at("axes"));
1152
1153
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1154
1155

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1156
        {
Shucai Xiao's avatar
Shucai Xiao committed
1157
1158
1159
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1160
        }
Shucai Xiao's avatar
Shucai Xiao committed
1161
        else if(contains(info.attributes, "ends"))
1162
        {
1163
1164
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1165
        }
Shucai Xiao's avatar
Shucai Xiao committed
1166
1167
1168
1169
1170
1171
1172
1173

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1174
        {
1175
            literal s = parse_value(info.attributes.at("starts"));
1176
1177
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1178

kahmed10's avatar
kahmed10 committed
1179
1180
1181
1182
1183
1184
1185
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1186
1187
1188
        return prog.add_instruction(op, args[0]);
    }

1189
1190
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1191
    {
1192
        literal v = parse_value(info.attributes.at("value"));
1193
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1194
        if(v.get_shape().elements() == 0)
1195
1196
1197
1198
        {
            return prog.add_literal(literal{});
        }

1199
        auto dim_size = info.attributes.at("value").t().dims_size();
1200
1201
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1202
        {
1203
            migraphx::shape scalar_shape{v.get_shape().type()};
1204
1205
1206
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1207
1208
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1209

Paul's avatar
Paul committed
1210
    instruction_ref
1211
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1212
1213
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1214
        float beta  = 1.0f;
Paul's avatar
Paul committed
1215
1216
        bool transa = false;
        bool transb = false;
1217
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1218
        {
1219
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1220
        }
1221
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1222
        {
1223
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1224
        }
1225
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1226
        {
1227
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1228
        }
1229
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1230
        {
1231
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1232
        }
1233
1234
1235
1236
1237
1238

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1239
1240
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1241
1242
        if(args.size() == 3)
        {
1243
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1244
            {
Shucai Xiao's avatar
Shucai Xiao committed
1245
                auto out_lens   = l1->get_shape().lens();
1246
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1247
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1248
1249
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1250
                {
1251
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1252
                }
1253
1254
                return prog.add_instruction(
                    make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2, l3);
1255
            }
Paul's avatar
Paul committed
1256
        }
1257

1258
        return prog.add_instruction(make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2);
Paul's avatar
Paul committed
1259
1260
    }

1261
1262
1263
1264
    instruction_ref parse_matmul(const std::string&,
                                 const std::string& op_name,
                                 const node_info&,
                                 std::vector<instruction_ref> args)
1265
    {
Shucai Xiao's avatar
Shucai Xiao committed
1266
1267
        auto l0      = args[0];
        auto l1      = args[1];
1268
1269
1270
1271
1272
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1273
        if(l0_lens.size() == 1)
1274
1275
1276
1277
1278
1279
1280
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1281
        if(l1_lens.size() == 1)
1282
1283
1284
1285
1286
1287
1288
1289
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1290
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1291
1292
1293
1294
1295
1296
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1297
            l0_broadcasted_lens = output_lens;
1298
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1299
            l1_broadcasted_lens = output_lens;
1300
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1301
            if(l0_lens != l0_broadcasted_lens)
1302
1303
1304
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1305
            if(l1_lens != l1_broadcasted_lens)
1306
1307
1308
1309
1310
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1311
1312
        auto dot_res =
            prog.add_instruction(make_op(op_name, {{"alpha", 1}, {"beta", 0}}), bl0, bl1);
1313
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1314
        if(is_a_prepended)
1315
1316
1317
1318
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1319
        if(is_b_appended)
1320
1321
1322
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1323

1324
1325
1326
        return dot_res;
    }

1327
    instruction_ref
1328
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1329
    {
Scott Thornton's avatar
Scott Thornton committed
1330
1331
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1332
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1333
        if(contains(info.attributes, "epsilon"))
1334
        {
1335
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1336
        }
1337
        if(contains(info.attributes, "momentum"))
1338
        {
1339
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1340
        }
1341
        if(contains(info.attributes, "spatial"))
1342
        {
1343
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1344
1345
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1346
        }
Paul's avatar
Paul committed
1347
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1348
        return prog.add_instruction(op, std::move(args));
1349
1350
    }

1351
1352
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1353
1354
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
kahmed10's avatar
kahmed10 committed
1355
1356
        // mean = reduce_mean({D1, D2, ... Dk}, x)
        // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2)
kahmed10's avatar
kahmed10 committed
1357
1358

        float epsilon = 1e-5f;
1359
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1360
        {
1361
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1362
1363
1364
1365
1366
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();
kahmed10's avatar
kahmed10 committed
1367
1368
1369
        auto ndims = dims.size();
        assert(ndims >= 2);
        auto kdims = ndims - 2;
kahmed10's avatar
kahmed10 committed
1370

kahmed10's avatar
kahmed10 committed
1371
1372
1373
1374
        std::vector<int64_t> axes(kdims);
        std::iota(axes.begin(), axes.end(), 2);

        auto mean            = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x);
kahmed10's avatar
kahmed10 committed
1375
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
1376
        auto l0              = prog.add_instruction(make_op("sqdiff"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1377
        auto variance        = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), l0);
1378
        auto l1              = prog.add_instruction(make_op("sub"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1379
1380
1381
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
1382
1383
1384
        auto l2              = prog.add_instruction(make_op("add"), variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(make_op("rsqrt"), l2);
        auto l4              = prog.add_instruction(make_op("mul"), l1, l3);
kahmed10's avatar
kahmed10 committed
1385
1386
1387
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
1388
1389
        auto l5         = prog.add_instruction(make_op("mul"), l4, scale_bcast);
        return prog.add_instruction(make_op("add"), l5, bias_bcast);
kahmed10's avatar
kahmed10 committed
1390
1391
    }

1392
1393
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1394
    {
Khalique's avatar
Khalique committed
1395
        float alpha = 0.01; // default alpha val for leaky relu
1396
        if(contains(info.attributes, "alpha"))
1397
        {
1398
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1399
        }
1400
        auto op = make_op("leaky_relu", {{"alpha", alpha}});
1401
1402
1403
        return prog.add_instruction(op, args.front());
    }

1404
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1405
1406
    {
        float alpha = 1.0; // default alpha val for elu
1407
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1408
        {
1409
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1410
        }
1411
        auto op = make_op("elu", {{"alpha", alpha}});
Khalique's avatar
Khalique committed
1412
1413
1414
        return prog.add_instruction(op, args.front());
    }

1415
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1416
1417
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1418
1419
1420
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1421
1422
1423
1424
1425
1426
1427
1428
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1429
1430
1431
1432
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1433
1434
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1435
1436
1437
    {
        float scale = 1.0;
        std::vector<float> bias{};
1438
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1439
        {
1440
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1441
1442
        }

1443
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1444
        {
1445
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1446
1447
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1448
1449
1450
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1451

Shucai Xiao's avatar
Shucai Xiao committed
1452
1453
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1454

1455
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
1456
1457
1458
1459
        auto img_scaled =
            prog.add_instruction(migraphx::make_op("mul"), args.front(), scale_tensor);
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
        return prog.add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1460
    }
Khalique's avatar
Khalique committed
1461

Khalique's avatar
Khalique committed
1462
    instruction_ref
1463
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1464
1465
    {
        std::vector<int64_t> perm{};
1466
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1467
        {
1468
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1469
1470
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1471
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1472
1473
    }

1474
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1475
1476
    {
        std::vector<int64_t> pads{};
1477
1478
1479
1480
1481
1482
1483
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1484
        {
1485
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1486
1487
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1488
1489
1490
1491
1492
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1493
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1494
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1495
        {
1496
            return prog.add_instruction(make_op("identity"), args.front());
1497
        }
1498

kahmed10's avatar
kahmed10 committed
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1528
        {
1529
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1530
        }
1531

Khalique's avatar
Khalique committed
1532
1533
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1534
1535
1536
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1537
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1538
1539
    {
        if(args.size() != 1)
1540
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1553
1554
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1555
1556
1557
1558
1559
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1560
        if(contains(info.attributes, "dtype"))
1561
        {
1562
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1563
        }
Shucai Xiao's avatar
Shucai Xiao committed
1564
        shape::type_t type = get_type(dtype);
1565

1566
        if(contains(info.attributes, "input_as_shape"))
1567
        {
1568
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1569
1570
        }

1571
        if(contains(info.attributes, "value"))
1572
        {
1573
            value = parse_value(info.attributes.at("value")).at<float>();
1574
1575
        }

1576
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1577
        {
1578
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1579
1580
        }

1581
1582
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1583
            if(args.size() != 1)
1584
            {
1585
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1586
1587
            }

1588
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1589
            {
1590
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1591
                               "at the same time");
1592
1593
            }

1594
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1595
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1596

1597
1598
1599
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1600
1601
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1602
1603
1604
        }
        else if(input_as_shape == 0)
        {
1605
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1606
            {
1607
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1608
1609
            }

1610
            literal ls = parse_value(info.attributes.at("shape"));
1611
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1612
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1613
            migraphx::shape s{type, dims};
1614
1615
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1616
1617
1618
        }
        else
        {
1619
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1620
1621
1622
        }
    }

1623
1624
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1625
1626
    {
        literal l_val{};
1627
        if(contains(info.attributes, "value"))
1628
        {
1629
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1630
            if(l_val.get_shape().elements() != 1)
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1642

Shucai Xiao's avatar
Shucai Xiao committed
1643
        if(args.empty())
1644
        {
Shucai Xiao's avatar
Shucai Xiao committed
1645
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1646
1647
1648
        }
        else
        {
1649
1650
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1651
            if(args[0]->get_shape().elements() == 0)
1652
            {
1653
                s = migraphx::shape{type, {1}, {0}};
1654
            }
1655
1656
1657
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1658
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1659

1660
1661
1662
1663
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1664

Shucai Xiao's avatar
Shucai Xiao committed
1665
            literal l_out{};
1666
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1667
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1668
                // l_val contains only one element
1669
                std::vector<val_type> out_vec(s.elements(), val.front());
1670
1671
1672
1673
1674
1675
1676
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1677
    instruction_ref
1678
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1679
    {
Shucai Xiao's avatar
Shucai Xiao committed
1680
        auto in_lens             = args[0]->get_shape().lens();
1681
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1682
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1683
1684
1685
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1686
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1687
1688
    }

Shucai Xiao's avatar
Shucai Xiao committed
1689
    std::vector<instruction_ref>
1690
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1691
1692
    {
        migraphx::shape input_shape = args[0]->get_shape();
1693
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1694

1695
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1696
        {
1697
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1698
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1699
1700
1701
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1702
1703
1704
1705
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1706
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1707
        {
1708
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1709
1710
        }

1711
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1712
1713
        if(direction == "bidirectional")
        {
1714
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1715
1716
1717
        }
        else if(direction == "reverse")
        {
1718
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1719
1720
        }

1721
        std::vector<std::string> vec_names{"tanh"};
1722
        if(contains(info.attributes, "activations"))
1723
        {
1724
            auto names = info.attributes.at("activations").strings();
1725
            vec_names.clear();
1726
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1727
1728
1729
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1730
1731
        }

1732
1733
1734
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1735
        if(name_it != vec_names.end())
1736
1737
1738
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1739

Shucai Xiao's avatar
Shucai Xiao committed
1740
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1741
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1742
        // if only one actv function is provided, we use it in both
1743
        // forward and reverse direction
1744
        if(dirct == op::rnn_direction::bidirectional)
1745
        {
Shucai Xiao's avatar
Shucai Xiao committed
1746
            if(vec_names.size() == 1)
1747
1748
1749
1750
1751
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1752
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1753
1754
1755
1756
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1757

Shucai Xiao's avatar
Shucai Xiao committed
1758
1759
        // To be added later
        float clip = 0.0;
1760
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1761
        {
1762
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1763
1764
        }

1765
1766
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1767
        if(args.size() < 6)
1768
1769
1770
1771
1772
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1773
1774
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1775
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1776

1777
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1778
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1779

Shucai Xiao's avatar
Shucai Xiao committed
1780
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1781
1782
    }

1783
    std::vector<instruction_ref>
1784
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1785
1786
1787
1788
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1789
        if(contains(info.attributes, "hidden_size"))
1790
        {
1791
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1792
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1793
1794
1795
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1796
1797
1798
1799
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1800
        if(contains(info.attributes, "direction"))
1801
        {
1802
            direction = info.attributes.at("direction").s();
1803
1804
        }

1805
        op::rnn_direction dirct = op::rnn_direction::forward;
1806
1807
        if(direction == "bidirectional")
        {
1808
            dirct = op::rnn_direction::bidirectional;
1809
1810
1811
        }
        else if(direction == "reverse")
        {
1812
            dirct = op::rnn_direction::reverse;
1813
1814
        }

1815
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1816
        if(contains(info.attributes, "activations"))
1817
        {
1818
            auto names = info.attributes.at("activations").strings();
1819
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1820
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1821
1822
1823
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1824
1825
        }

1826
        // need 4 activation functions
1827
        if(dirct == op::rnn_direction::bidirectional)
1828
        {
Shucai Xiao's avatar
Shucai Xiao committed
1829
            // 4 activation functions are used in the bidirectional
1830
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1831
1832
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1833
1834
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1835
1836
1837
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1838
            if(vec_names.size() == 1)
1839
            {
1840
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1841
            }
1842
            else if(vec_names.size() == 2)
1843
            {
1844
1845
1846
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1847
            }
1848
            else if(vec_names.size() == 3)
1849
            {
1850
                vec_names.push_back(vec_names.at(2));
1851
1852
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1853
        else
1854
        {
1855
            if(vec_names.size() == 1)
1856
            {
1857
                vec_names.push_back(vec_names.at(0));
1858
1859
1860
            }
        }

1861
1862
1863
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1864
        if(name_it != vec_names.end())
1865
1866
1867
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1868

Shucai Xiao's avatar
Shucai Xiao committed
1869
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1870
1871
1872
1873
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1874
1875

        float clip = 0.0;
1876
        if(contains(info.attributes, "clip"))
1877
        {
1878
            clip = parse_value(info.attributes.at("clip")).at<float>();
1879
1880
1881
        }

        int linear_before_reset = 0;
1882
        if(contains(info.attributes, "linear_before_reset"))
1883
        {
1884
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1885
1886
        }

Shucai Xiao's avatar
Shucai Xiao committed
1887
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1888
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1889
1890
1891
1892
1893
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1894
1895
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1896
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1897
            std::move(args));
1898
1899

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1900
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1901

Shucai Xiao's avatar
Shucai Xiao committed
1902
        return {hidden_states, last_output};
1903
1904
    }

Shucai Xiao's avatar
Shucai Xiao committed
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1990
    std::vector<instruction_ref>
1991
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1992
1993
1994
1995
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1996
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1997
        {
1998
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1999
2000
2001
2002
2003
2004
2005
2006
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
2007
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
2008
        {
2009
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
2010
2011
        }

Shucai Xiao's avatar
Shucai Xiao committed
2012
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2013
2014
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2015
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
2016
2017
2018
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2019
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
2020
        }
Shucai Xiao's avatar
Shucai Xiao committed
2021
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
2022
        {
Shucai Xiao's avatar
Shucai Xiao committed
2023
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2024
2025
2026
2027
2028
2029
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

2030
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
2031
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
2032
        {
2033
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
2034
2035
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
2036
2037
2038
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
2039
2040
        }

Shucai Xiao's avatar
Shucai Xiao committed
2041
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
2042

2043
2044
2045
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2046
        if(name_it != vec_names.end())
2047
2048
2049
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2050
2051

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2052
2053
2054
2055
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
2056
2057

        float clip = 0.0;
2058
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2059
        {
2060
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2061
2062
2063
        }

        int input_forget = 0;
2064
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
2065
        {
2066
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2067
2068
2069
2070
2071
2072
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
2073
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
2074
2075
2076
2077
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
2078
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2079

Shucai Xiao's avatar
Shucai Xiao committed
2080
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2081
2082

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
2083
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2084
2085
2086

        return {hidden_states, last_output, last_cell_output};
    }
2087

2088
2089
2090
2091
    instruction_ref parse_reduce_oper(const std::string&,
                                      const std::string& op_name,
                                      node_info info,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2092
2093
2094
2095
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
2096
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
2097
        std::iota(axes.begin(), axes.end(), 0);
2098
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
2099
2100
        {
            axes.clear();
2101
            auto&& attr_axes = info.attributes["axes"].ints();
2102
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
2103
2104
2105
        }

        int keep_dims = 1;
2106
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
2107
        {
2108
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2109
2110
2111
2112
        }

        if(keep_dims == 1)
        {
2113
            return prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2114
2115
2116
        }
        else
        {
2117
            auto ins = prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
2118
            return prog.add_instruction(op::squeeze{axes}, ins);
2119
2120
        }
    }
2121

Shucai Xiao's avatar
Shucai Xiao committed
2122
    instruction_ref
2123
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2124
    {
2125
2126
        auto abs_ins = prog.add_instruction(make_op("abs"), args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2127
2128
2129
    }

    instruction_ref
2130
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2131
    {
2132
2133
2134
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        auto sum_ins    = parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
        return prog.add_instruction(make_op("sqrt"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2135
2136
    }

2137
2138
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2139
    {
2140
2141
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), std::move(args));
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2142
2143
    }

2144
2145
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2146
    {
2147
2148
2149
        auto exp_ins = prog.add_instruction(make_op("exp"), args[0]);
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), {exp_ins});
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2150
2151
    }

2152
2153
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2154
    {
2155
2156
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2157
2158
    }

Shucai Xiao's avatar
Shucai Xiao committed
2159
    instruction_ref
2160
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
2161
    {
2162
        if(!contains(info.attributes, "to"))
2163
2164
2165
2166
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2167
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2168
        shape::type_t type = get_type(to_type);
Shucai Xiao's avatar
Shucai Xiao committed
2169
        return prog.add_instruction(make_op("convert", {{"target_type", type}}), std::move(args));
2170
    }
Shucai Xiao's avatar
Shucai Xiao committed
2171

2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2225
2226
2227
2228
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2229
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2230
2231
2232
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2233
2234
2235
2236
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2237

Shucai Xiao's avatar
Shucai Xiao committed
2238
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2239
2240
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2241
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2242
2243
        }

Shucai Xiao's avatar
Shucai Xiao committed
2244
2245
2246
2247
2248
2249
2250
2251
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2252
        {
Shucai Xiao's avatar
Shucai Xiao committed
2253
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2254
        }
Shucai Xiao's avatar
Shucai Xiao committed
2255
2256
2257
2258
2259
2260
2261
2262
2263
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
2264
        auto diff          = prog.add_instruction(make_op("sub"), on_val, off_val);
Shucai Xiao's avatar
Shucai Xiao committed
2265
2266
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
2267
2268
        auto l_mul         = prog.add_instruction(make_op("mul"), tr_out, unsq_diff_val);
        return prog.add_instruction(make_op("add"), l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2269
2270
    }

kahmed10's avatar
kahmed10 committed
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
2352
2353
2354
2355
2356
2357
2358
2359
2360
        case reduce_mode_t::sum:
            l0 = prog.add_instruction(make_op("reduce_sum", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::mean:
            l0 = prog.add_instruction(make_op("reduce_mean", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::max:
            l0 = prog.add_instruction(make_op("reduce_max", {{"axes", {0}}}), l0);
            break;
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
    std::vector<instruction_ref>
    parse_dropout(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto out = prog.add_instruction(make_op("identity"), args[0]);
        auto s   = args[0]->get_shape();
        std::vector<int8_t> vec(s.elements(), 1);
        shape mask_s{shape::bool_type, s.lens()};
        auto mask = prog.add_literal(literal(mask_s, vec));

        return {out, mask};
    }

Shucai Xiao's avatar
Shucai Xiao committed
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
    template <class T>
    std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
    {
        std::vector<std::size_t> indices;
        for(std::size_t i = 0; i < data.size(); ++i)
        {
            if(!float_equal(data[i], 0))
                indices.push_back(i);
        }

        return indices;
    }

    instruction_ref
    parse_nonzero(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument data_arg = args.back()->eval();
        check_arg_empty(data_arg, "PARSE_NONZERO: cannot support non-constant input!");

        std::vector<std::size_t> indices;
        data_arg.visit([&](auto val) {
            using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
            std::vector<val_type> vec_data;
            vec_data.assign(val.begin(), val.end());
            indices = this->nonzero_indices(vec_data);
        });

        shape in_s = args[0]->get_shape();
        shape out_s{shape::int64_type, {in_s.lens().size(), indices.size()}};

        std::vector<int64_t> out_data(out_s.elements());
        for(std::size_t i = 0; i < indices.size(); ++i)
        {
            auto idx = in_s.multi(indices[i]);
            for(std::size_t j = 0; j < in_s.lens().size(); ++j)
            {
                out_data[out_s.index({j, i})] = idx[j];
            }
        }

        return prog.add_literal(literal(out_s, out_data));
    }

2434
2435
2436
2437
2438
2439
    instruction_ref
    parse_equal(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto l = add_broadcastable_binary_op(args[0], args[1], "equal");
        if(l->get_shape().type() != shape::bool_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2440
            l = prog.add_instruction(make_op("convert", {{"target_type", shape::bool_type}}), l);
2441
2442
2443
2444
        }
        return l;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
    instruction_ref
    parse_where(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto type = args[1]->get_shape().type();
        // the operation of if cond == 1 select x; else select y,
        // is equivalent to cond * (x - y) + y
        auto cond = prog.add_instruction(make_op("convert", {{"target_type", type}}), args[0]);
        auto diff = add_broadcastable_binary_op(args[1], args[2], "sub");
        auto cd   = add_broadcastable_binary_op(diff, cond, "mul");
        return add_broadcastable_binary_op(cd, args[2], "add");
    }

Paul's avatar
Paul committed
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2469
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2470
2471
2472
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2489
2490
    void parse_graph(const onnx::GraphProto& graph)
    {
2491
        for(auto&& f : graph.initializer())
2492
2493
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2494
2495
2496
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2497
2498
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2499
            {
2500
2501
2502
2503
2504
2505
2506
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2507
2508
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2509
        }
2510
2511

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2512
        {
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2532
2533
2534
2535
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2548
        }
Shucai Xiao's avatar
Shucai Xiao committed
2549

2550
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2551
        auto prog_output = graph.output();
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2572
2573
    }

Shucai Xiao's avatar
Shucai Xiao committed
2574
    void parse_undefined(const std::string& name)
2575
    {
Shucai Xiao's avatar
Shucai Xiao committed
2576
2577
2578
2579
2580
        if(!contains(instructions, name))
        {
            auto ins           = prog.add_instruction(op::undefined{});
            instructions[name] = ins;
        }
2581
2582
    }

Paul's avatar
Paul committed
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
    static shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 9: return shape::bool_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }

Paul's avatar
Paul committed
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2630
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2631
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2632
2633
2634
2635
2636
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2637
2638
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2639
2640
        case onnx::AttributeProto::GRAPHS: return {};
        }
Shucai Xiao's avatar
Shucai Xiao committed
2641
        MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
Paul's avatar
Paul committed
2642
2643
2644
2645
2646
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2647
2648
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2649
            const std::string& s = t.raw_data();
Shucai Xiao's avatar
Shucai Xiao committed
2650
2651
            auto type            = get_type(t.data_type());
            return create_literal(type, dims, s.data());
2652
        }
Shucai Xiao's avatar
Shucai Xiao committed
2653

Paul's avatar
Paul committed
2654
2655
        switch(t.data_type())
        {
Shucai Xiao's avatar
Shucai Xiao committed
2656
2657
2658
2659
        case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
        case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
        case onnx::TensorProto::UINT8:
            return create_literal(shape::uint8_type, dims, t.int32_data());
Paul's avatar
Paul committed
2660
        case onnx::TensorProto::INT16:
Shucai Xiao's avatar
Shucai Xiao committed
2661
2662
2663
            return create_literal(shape::int16_type, dims, t.int32_data());
        case onnx::TensorProto::UINT16:
            return create_literal(shape::uint16_type, dims, t.int32_data());
Paul's avatar
Paul committed
2664
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
2665
            return create_literal(shape::int32_type, dims, t.int32_data());
Shucai Xiao's avatar
Shucai Xiao committed
2666
2667
        case onnx::TensorProto::UINT32:
            return create_literal(shape::uint32_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2668
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2669
            return create_literal(shape::int64_type, dims, t.int64_data());
Shucai Xiao's avatar
Shucai Xiao committed
2670
2671
        case onnx::TensorProto::UINT64:
            return create_literal(shape::uint64_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2672
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2673
        {
Khalique's avatar
Khalique committed
2674
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2675
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2676
2677
2678
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2679
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2680
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2681
        }
Shucai Xiao's avatar
Shucai Xiao committed
2682
2683
2684
2685
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2686
2687
2688
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2689
2690
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2691
        MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
Paul's avatar
Paul committed
2692
2693
    }

Khalique's avatar
Khalique committed
2694
    static literal
2695
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2696
    {
Khalique's avatar
Khalique committed
2697
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2698
        if(dims.empty())
2699
            return literal{{shape_type}, data};
2700
2701
2702
        return literal{{shape_type, dims}, data};
    }

2703
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2704
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2705
2706
    {
        if(dims.empty())
2707
            return literal{{shape_type}, data.begin(), data.end()};
2708
        return literal{{shape_type, dims}, data.begin(), data.end()};
2709
2710
    }

2711
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2712
    {
Shucai Xiao's avatar
Shucai Xiao committed
2713
        shape::type_t shape_type = get_type(t.tensor_type().elem_type());
2714
2715
2716
2717
2718
        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2719
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2720
        auto&& tensor_dims = t.tensor_type().shape().dim();
2721
2722
2723
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2724
2725
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2726
                           {
2727
                               if(static_cast<int>(d.dim_value()) <= 0)
2728
2729
2730
                               {
                                   return default_dim_value;
                               }
2731
                               return d.dim_value();
2732
                           }
2733
2734
2735
2736
                           else
                           {
                               return default_dim_value;
                           }
2737
                       });
2738

2739
2740
2741
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2742
2743
        return {shape_type, dims};
    }
2744

Shucai Xiao's avatar
Shucai Xiao committed
2745
2746
    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2747
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2748
2749
2750
2751
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2752
2753
};

Paul Fultz II's avatar
Paul Fultz II committed
2754
template <class... Ts>
2755
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2756
2757
{
    onnx_parser parser;
2758
2759
2760
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2761

2762
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2763
    {
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2774
    }
2775
    else
Paul's avatar
Paul committed
2776
    {
2777
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2778
2779
2780
2781
    }
    return std::move(parser.prog);
}

2782
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2783
2784
2785
2786
2787
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2788
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2789
2790
2791
2792
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2793
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2794
2795
2796
2797
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2798
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2799
} // namespace migraphx