onnx.cpp 105 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
14
#include <migraphx/make_op.hpp>
Paul's avatar
Paul committed
15
16
17
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
Paul's avatar
Paul committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gru.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/lstm.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn_last_cell_output.hpp>
#include <migraphx/op/rnn_last_hs_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/undefined.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/op/unsqueeze.hpp>

Paul's avatar
Paul committed
48
namespace migraphx {
Paul's avatar
Paul committed
49
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
50

51
52
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
53
54
55
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
56
57
58
59
60
61
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
62
    using op_func =
63
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
64
65
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
66
67
68
69
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
70
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
71
72

    std::unordered_map<std::string, op_func> ops;
73
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
74
75
76

    onnx_parser()
    {
77
        // sort onnx operator alphabetically through name
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        add_generic_op("Abs", "abs");
        add_generic_op("Acos", "acos");
        add_generic_op("Acosh", "acosh");
        add_generic_op("Asin", "asin");
        add_generic_op("Asinh", "asinh");
        add_generic_op("Atan", "atan");
        add_generic_op("Atanh", "atanh");
        add_generic_op("Ceil", "ceil");
        add_generic_op("Concat", "concat");
        add_generic_op("Cos", "cos");
        add_generic_op("Cosh", "cosh");
        add_generic_op("Erf", "erf");
        add_generic_op("Exp", "exp");
        add_generic_op("Flatten", "flatten");
        add_generic_op("Floor", "floor");
        add_generic_op("Gather", "gather", true);
        add_generic_op("Identity", "identity");
        add_generic_op("Log", "log");
        add_generic_op("LogSoftmax", "logsoftmax");
        add_generic_op("Neg", "neg");
        add_generic_op("Reciprocal", "recip");
        add_generic_op("Relu", "relu");
        add_generic_op("Round", "round");
        add_generic_op("Sigmoid", "sigmoid");
        add_generic_op("Sign", "sign");
        add_generic_op("Sin", "sin");
        add_generic_op("Sinh", "sinh");
        add_generic_op("Softmax", "softmax");
        add_generic_op("Sqrt", "sqrt");
        add_generic_op("Squeeze", "squeeze", true);
        add_generic_op("Tan", "tan");
        add_generic_op("Tanh", "tanh");
        add_generic_op("Unsqueeze", "unsqueeze", true);

        add_binary_op("Add", "add");
        add_binary_op("Div", "div");
        add_binary_op("Mul", "mul");
        add_binary_op("Pow", "pow");
        add_binary_op("PRelu", "prelu");
        add_binary_op("Sub", "sub");

        add_variadic_op("Sum", "add");
        add_variadic_op("Max", "max");
        add_variadic_op("Min", "min");
Paul's avatar
Paul committed
122

123
        add_mem_op("ATen", &onnx_parser::parse_aten);
124
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
125
126
        add_mem_op("ArgMax", "argmax", &onnx_parser::parse_arg_op);
        add_mem_op("ArgMin", "argmin", &onnx_parser::parse_arg_op);
127
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
128
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
129
        add_mem_op("Clip", &onnx_parser::parse_clip);
Paul's avatar
Paul committed
130
        add_mem_op("Constant", &onnx_parser::parse_constant);
131
132
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
133
134
        add_mem_op("Conv", "convolution", &onnx_parser::parse_conv);
        add_mem_op("ConvInteger", "quant_convolution", &onnx_parser::parse_conv);
kahmed10's avatar
kahmed10 committed
135
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
136
        add_mem_op("Dropout", &onnx_parser::parse_dropout);
137
        add_mem_op("Elu", &onnx_parser::parse_elu);
138
        add_mem_op("Equal", &onnx_parser::parse_equal);
139
        add_mem_op("Expand", &onnx_parser::parse_expand);
Shucai Xiao's avatar
Shucai Xiao committed
140
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
141
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
142
143
144
145
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
146
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
147
148
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
        add_mem_op("LRN", &onnx_parser::parse_lrn);
149
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
150
151
        add_mem_op("MatMul", "dot", &onnx_parser::parse_matmul);
        add_mem_op("MatMulInteger", "quant_dot", &onnx_parser::parse_matmul);
152
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
153
        add_mem_op("NonZero", &onnx_parser::parse_nonzero);
kahmed10's avatar
kahmed10 committed
154
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
155
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
156
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
161
162
163
164
165
        add_mem_op("ReduceMax", "reduce_max", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMean", "reduce_mean", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMin", "reduce_min", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceProd", "reduce_prod", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceSum", "reduce_sum", &onnx_parser::parse_reduce_oper);
Shucai Xiao's avatar
Shucai Xiao committed
166
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
167
168
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
Shucai Xiao's avatar
Shucai Xiao committed
169
        add_mem_op("Selu", &onnx_parser::parse_selu);
170
171
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
172
        add_mem_op("Split", &onnx_parser::parse_split);
kahmed10's avatar
kahmed10 committed
173
        add_mem_op("Tile", &onnx_parser::parse_tile);
174
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
175
        add_mem_op("Where", &onnx_parser::parse_where);
176
177
178
179
180
181
182

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
183
        // Support name format of all lower case or the first letter capital
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        map_actv_funcs.insert(std::make_pair("tanh", make_op("tanh")));
        map_actv_funcs.insert(std::make_pair("relu", make_op("relu")));
        map_actv_funcs.insert(std::make_pair("sigmoid", make_op("sigmoid")));
        map_actv_funcs.insert(std::make_pair("leakyrelu", make_op("leaky_relu")));
        map_actv_funcs.insert(std::make_pair("elu", make_op("elu")));
    }

    static operation load(const std::string& name, const node_info& info)
    {
        auto op = make_op(name);
        auto v  = op.to_value();
        for(auto&& x : v)
        {
            if(info.attributes.count(x.get_key()) == 0)
                continue;
            literal s = parse_value(info.attributes.at(x.get_key()));
            if(x.is_array())
            {
                std::vector<value> values;
                s.visit([&](auto y) {
                    std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                        return value(z);
                    });
                });
                x = values;
            }
            else
            {
                s.visit([&](auto y) { x = y.front(); });
            }
        }
        op.from_value(v);
        return op;
Paul's avatar
Paul committed
217
218
219
220
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
221
222
223
224
225
226
227
228
229
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
230
231
232
233
234
    {
        ops.emplace(name, f);
    }

    template <class F>
235
    void add_mem_op(const std::string& name, F f)
Paul's avatar
Paul committed
236
    {
Paul's avatar
Paul committed
237
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
238
239
240
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
241

242
243
244
245
246
247
248
249
250
    template <class F>
    void add_mem_op(const std::string& onnx_name, const std::string& op_name, F f)
    {
        add_op(onnx_name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, onnx_name, op_name, std::forward<decltype(xs)>(xs)...);
        });
    }

    void add_binary_op(const std::string& onnx_name, const std::string& op_name)
251
    {
252
        add_op(onnx_name, [this, op_name](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
253
            if(args.size() != 2)
Paul's avatar
Paul committed
254
                MIGRAPHX_THROW("binary operators should have 2 operands");
255
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
256
            {
257
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
258
259
                if(broadcasted != 0)
                {
260
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
261
262
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
263
                    return prog.add_instruction(make_op(op_name), args[0], l);
264
                }
265
                return prog.add_instruction(make_op(op_name), args);
266
            }
Paul's avatar
Paul committed
267
            else
268
            {
269
                return add_broadcastable_binary_op(args[0], args[1], op_name);
270
271
272
273
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
274
275
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
276
277
278
279
280
281
282
283
284
285
286
287
288
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
289
        if(s0.size() > s1.size())
290
291
292
293
294
295
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
296
297
298
299
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
300
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
301
                           if(a != b and a != 1 and b != 1)
302
                           {
Shucai Xiao's avatar
Shucai Xiao committed
303
304
305
306
307
308
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
309
310
311
312

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
313
314
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
315
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
316
317
318
319
        {
            return ins;
        }

320
        return prog.add_instruction(make_op("contiguous"), ins);
Shucai Xiao's avatar
Shucai Xiao committed
321
322
    }

323
324
    instruction_ref
    add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, const std::string& name)
Khalique's avatar
Khalique committed
325
    {
Khalique's avatar
Khalique committed
326
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
327
328
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
329
330
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
331
            auto out_lens = compute_broadcasted_lens(s0, s1);
332
333
334
335
336
337
338
339
340

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

341
            return prog.add_instruction(make_op(name), l0, l1);
Khalique's avatar
Khalique committed
342
343
344
        }
        else
        {
345
            return prog.add_instruction(make_op(name), {arg0, arg1});
Khalique's avatar
Khalique committed
346
        }
347
348
    }

349
350
351
    void add_generic_op(const std::string& onnx_name,
                        const std::string& op_name,
                        bool contiguous = false)
Paul's avatar
Paul committed
352
    {
353
354
355
356
357
358
359
360
361
362
363
364
        add_op(
            onnx_name,
            [this, op_name, contiguous](const node_info& info, std::vector<instruction_ref> args) {
                auto op = load(op_name, info);
                if(contiguous)
                {
                    std::transform(args.begin(), args.end(), args.begin(), [&](auto arg) {
                        return this->make_contiguous(arg);
                    });
                }
                return prog.add_instruction(op, args);
            });
Paul's avatar
Paul committed
365
366
    }

367
    void add_variadic_op(const std::string& onnx_name, const std::string& op_name)
Khalique's avatar
Khalique committed
368
    {
369
        add_op(onnx_name, [this, op_name](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
370
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
371
372
                                   args.end(),
                                   args.front(),
373
374
                                   [this, op_name](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, op_name);
Khalique's avatar
Khalique committed
375
                                   });
Khalique's avatar
Khalique committed
376
        });
Khalique's avatar
Khalique committed
377
378
    }

kahmed10's avatar
kahmed10 committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
393
            return prog.add_instruction(make_op("add"), curr_ins, bias_bcast);
kahmed10's avatar
kahmed10 committed
394
395
396
397
        }
        return curr_ins;
    }

398
    static bool is_asym_padding(const std::vector<int64_t>& padding)
399
    {
400
401
402
403
404
405
406
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
407
                return true;
408
409
            }
        }
kahmed10's avatar
kahmed10 committed
410
411
        return false;
    }
412

kahmed10's avatar
kahmed10 committed
413
414
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
415
                            value& v,
416
417
                            int count_include_pad = 0,
                            float pad_val         = 0)
kahmed10's avatar
kahmed10 committed
418
419
420
421
422
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

423
        if(is_asym_padding(padding) or count_include_pad == 1)
424
        {
425
426
427
428
429
430
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
431
432
433
        }
        else
        {
434
            v["padding"] = std::vector<size_t>(left_pad_it, right_pad_it);
435
436
437
        }
    }

438
439
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
440
    {
kahmed10's avatar
kahmed10 committed
441
442
443
444
445
446
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

Shucai Xiao's avatar
Shucai Xiao committed
447
        if(args.size() == 3 and args[2]->name() != "undefined")
Khalique's avatar
Khalique committed
448
        {
kahmed10's avatar
kahmed10 committed
449
450
            max_arg  = args[2];
            max_used = true;
Khalique's avatar
Khalique committed
451
        }
Shucai Xiao's avatar
Shucai Xiao committed
452
453

        if(args.size() >= 2 and args[1]->name() != "undefined")
Khalique's avatar
Khalique committed
454
        {
kahmed10's avatar
kahmed10 committed
455
456
457
458
459
460
461
462
463
464
465
466
467
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
468
        }
kahmed10's avatar
kahmed10 committed
469
470

        if(min_used)
Shucai Xiao's avatar
Shucai Xiao committed
471
        {
kahmed10's avatar
kahmed10 committed
472
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
473
        }
kahmed10's avatar
kahmed10 committed
474
475

        if(max_used)
Shucai Xiao's avatar
Shucai Xiao committed
476
        {
kahmed10's avatar
kahmed10 committed
477
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
478
        }
kahmed10's avatar
kahmed10 committed
479
480

        if(min_used and max_used)
Shucai Xiao's avatar
Shucai Xiao committed
481
        {
482
            return prog.add_instruction(make_op("clip"), args[0], min_arg, max_arg);
Shucai Xiao's avatar
Shucai Xiao committed
483
484
485
486
487
488
489
        }
        else if(max_used)
        {
            return prog.add_instruction(make_op("min"), args[0], max_arg);
        }
        else if(min_used)
        {
490
            return prog.add_instruction(make_op("max"), args[0], min_arg);
Shucai Xiao's avatar
Shucai Xiao committed
491
492
493
494
495
        }
        else
        {
            return prog.add_instruction(make_op("identity"), args[0]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
496
497
    }

498
499
500
501
    instruction_ref parse_arg_op(const std::string&,
                                 const std::string& op_name,
                                 node_info info,
                                 std::vector<instruction_ref> args)
502
    {
503
        int64_t axis = 0;
504
        if(contains(info.attributes, "axis"))
505
        {
506
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
507
508
        }

Shucai Xiao's avatar
Shucai Xiao committed
509
        int keep_dims = 1;
510
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
511
        {
512
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
513
514
        }

Shucai Xiao's avatar
Shucai Xiao committed
515
        if(keep_dims == 0)
516
        {
517
            auto ins = prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
518
            return prog.add_instruction(op::squeeze{{axis}}, ins);
519
520
521
        }
        else
        {
522
            return prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
523
        }
524
525
    }

kahmed10's avatar
kahmed10 committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

602
603
604
605
606
607
608
609
610
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

611
    void recalc_conv_attributes(value& v, size_t kdims)
612
    {
613
        if(v["padding"].size() != kdims)
614
        {
615
616
            v["padding"].resize(kdims);
            std::fill_n(v["padding"].begin(), kdims, 0);
617
        }
618
        if(v["stride"].size() != kdims)
619
        {
620
621
            v["stride"].resize(kdims);
            std::fill_n(v["stride"].begin(), kdims, 1);
622
        }
623
        if(v["dilation"].size() != kdims)
624
        {
625
626
            v["dilation"].resize(kdims);
            std::fill_n(v["dilation"].begin(), kdims, 1);
627
628
629
        }
    }

630
    static void cal_auto_padding_size(node_info info,
631
                                      value& v,
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
                                      const std::vector<std::size_t>& k_lens,
                                      const std::vector<std::size_t>& dilation,
                                      const std::vector<std::size_t>& in_lens,
                                      std::vector<int64_t>& paddings)
    {
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

        if(!contains(info.attributes, "auto_pad"))
        {
            return;
        }

        auto auto_pad = info.attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            paddings.resize(2 * kdims);

            for(size_t i = 0; i < paddings.size() / 2; i++)
            {
                calculate_padding(i,
                                  paddings,
                                  in_lens[i + 2],
656
                                  v["stride"][i].to<int64_t>(),
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
        }
    }

    static void check_padding_mode(node_info info, const std::string& op_name)
    {
        // ensure pads availabe only when auto_pad is "NOT_SET"
        if(contains(info.attributes, "pads") and contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_" + op_name +
                               ": auto_pad and padding cannot be specified simultaneously");
            }
        }
    }

678
679
680
681
    instruction_ref parse_conv(const std::string&,
                               const std::string& op_name,
                               node_info info,
                               std::vector<instruction_ref> args)
Paul's avatar
Paul committed
682
    {
683
684
        auto op      = make_op(op_name);
        auto values  = op.to_value();
685
686
        auto l0      = args[0];
        auto weights = args[1];
687
688
689
690
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

691
692
693
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV");

694
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
695
        {
696
697
698
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
699
        }
700
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
701
        {
702
703
704
705
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
            check_attr_sizes(
                kdims, values["dilation"].size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
706
        }
707
708
709
710

        std::vector<int64_t> padding;
        if(contains(info.attributes, "pads"))
        {
711
            values["padding"].clear();
712
713
714
715
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
        }

716
        if(contains(info.attributes, "auto_pad"))
717
        {
718
719
            auto weight_lens = weights->get_shape().lens();
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
720
721
722
723
724
725
            cal_auto_padding_size(info,
                                  values,
                                  k_lens,
                                  values["dilation"].to_vector<std::size_t>(),
                                  in_lens,
                                  padding);
Shucai Xiao's avatar
Shucai Xiao committed
726
727
728
729
730
            auto auto_pad = info.attributes["auto_pad"].s();
            if(auto_pad.find("SAME") != std::string::npos)
            {
                values["padding_mode"] = to_value(op::padding_mode_t::same);
            }
731
        }
732
        check_asym_padding(l0, padding, values);
733

734
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
735
        {
736
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
737
        }
kahmed10's avatar
kahmed10 committed
738

739
        recalc_conv_attributes(values, kdims);
740

741
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
742
743
744
745
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

746
747
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
748
    {
749
750
751
        operation op = make_op("deconvolution");
        value values = op.to_value();
        // op::deconvolution op;
kahmed10's avatar
kahmed10 committed
752
753
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
754
755
756
757
758
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

759
760
761
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

762
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
763
        {
764
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
765
766
767
768

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
769
            {
kahmed10's avatar
kahmed10 committed
770
771
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
772
                values["padding"].clear();
kahmed10's avatar
kahmed10 committed
773
774
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
775
                               std::back_inserter(values["padding"]),
kahmed10's avatar
kahmed10 committed
776
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
777
778
            }
        }
779
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
780
        {
781
782
783
784
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(
                kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
785
        }
786
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
787
        {
788
789
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
kahmed10's avatar
kahmed10 committed
790
            check_attr_sizes(
791
                kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
792
        }
793
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
794
        {
795
796
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
797
            {
kahmed10's avatar
kahmed10 committed
798
799
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
800
801
802
803
            }

            if(s.find("SAME") != std::string::npos)
            {
804
                values["padding_mode"] = to_value(op::padding_mode_t::same);
kahmed10's avatar
kahmed10 committed
805
806
807
            }
        }

808
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
809
        {
810
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
811
812
        }

813
        recalc_conv_attributes(values, kdims);
kahmed10's avatar
kahmed10 committed
814

815
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
816
817
        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
818
819
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
820
        {
kahmed10's avatar
kahmed10 committed
821
822
823
824
825
826
827
828
829
830
831
832
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
833

kahmed10's avatar
kahmed10 committed
834
            l1 = prog.add_instruction(op::slice{axes, starts, ends}, l1);
kahmed10's avatar
kahmed10 committed
835
836
        }

837
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
838
        {
kahmed10's avatar
kahmed10 committed
839
840
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
841
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
842
843
844
845
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = prog.add_instruction(op::pad{output_padding}, l1);
kahmed10's avatar
kahmed10 committed
846
847
        }

848
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
849
850
        {
            std::vector<int64_t> output_shape;
851
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
852
853
854
855
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
856
857
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
858
859
860
861
862
863
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
kahmed10's avatar
kahmed10 committed
864
865
866
867
868
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
869
    }
Paul's avatar
Paul committed
870

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
    static void
    tune_padding_to_symmetric(int64_t& left, int64_t& right, const int stride, int64_t& s_start)
    {
        s_start = 0;
        if(left > right)
        {
            right = left;
        }
        else if(left < right)
        {
            auto diff = right - left;
            s_start   = (diff + stride - 1) / stride;
            left      = left + s_start * stride;
            right     = left;
        }
    }

888
    static void tune_padding_size(const value& v,
889
890
891
892
893
                                  std::vector<int64_t>& padding,
                                  int count_include_pad,
                                  std::vector<int64_t>& s_start)
    {
        // maxpooling or count_include_pad is 1, no change is required.
894
        if(v.at("mode").to<std::string>() == "max" or count_include_pad == 1)
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
        {
            return;
        }

        // if padding is symmetric, return directly
        if(!is_asym_padding(padding))
        {
            return;
        }

        // asymmetric padding, make it symmetric
        std::size_t n_dims = padding.size() / 2;
        s_start.resize(n_dims);
        for(std::size_t i = 0; i < n_dims; ++i)
        {
910
911
            tune_padding_to_symmetric(
                padding[i], padding[i + n_dims], v.at("stride")[i].to<int64_t>(), s_start[i]);
912
913
914
        }
    }

915
916
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
917
    {
918
919
920
921
922
        std::string mode = ends_with(name, "MaxPool") ? "max" : "average";
        operation op     = make_op("pooling", {{"mode", mode}});
        value values     = op.to_value();
        auto l0          = args[0];
        auto in_lens     = l0->get_shape().lens();
923
924
925
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
926
        if(starts_with(name, "Global"))
927
        {
928
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
929
        }
930

931
932
        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
Paul's avatar
Paul committed
933
        {
Shucai Xiao's avatar
Shucai Xiao committed
934
            values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
935
        }
936

937
938
939
940
941
942
        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
Paul's avatar
Paul committed
943
        }
944

945
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
946
        {
947
948
949
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
950
        }
951
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
952
        {
953
954
955
956
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
957
        }
958

959
960
961
962
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
963
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
964
965
        if(contains(info.attributes, "pads"))
        {
966
            values["padding"].clear();
967
968
969
970
971
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

972
        if(contains(info.attributes, "auto_pad"))
973
        {
974
            values["padding"].clear();
975
            // return paddings could be empty, then setting to 0 for no padding
976
977
978
979
980
981
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
982
        }
983

984
985
986
987
        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
988
989
        }

990
        if(values["padding"].size() != kdims)
991
        {
992
993
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
994
        }
995

996
        if(values["stride"].size() != kdims)
997
        {
998
999
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
1000
        }
1001
1002
1003
1004
1005
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
1006
        tune_padding_size(values, paddings, count_include_pad, slice_start);
1007
1008
1009
1010
1011
1012
1013
1014

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
1015
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();
1016

1017
1018
1019
1020
1021
1022
1023
1024
1025
            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }

1026
        check_asym_padding(l0, paddings, values, count_include_pad, pad_val);
1027
        in_lens = l0->get_shape().lens();
1028
1029
        for(size_t i = 0; i < kdims; i++)
        {
1030
1031
            if(values["lengths"][i].to<int64_t>() >
               in_lens[i + 2] + 2 * values["padding"][i].to<int64_t>())
1032
            {
1033
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
1034
1035
            }
        }
1036
        op.from_value(values);
1037
1038
1039
1040
1041
1042
        auto l1 = prog.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = prog.add_instruction(op::slice{axes, slice_start, slice_end}, l1);
1043
1044
        }

1045
        return l1;
Paul's avatar
Paul committed
1046
1047
    }

Paul's avatar
Paul committed
1048
    instruction_ref
1049
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1050
    {
1051
        op::reshape op;
Paul's avatar
Paul committed
1052
1053
        if(args.size() == 1)
        {
1054
            literal s = parse_value(info.attributes.at("shape"));
1055
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1056
1057
1058
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
1059
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1060
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
1061
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1062
        }
1063

Shucai Xiao's avatar
Shucai Xiao committed
1064
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
1065
1066
    }

Shucai Xiao's avatar
Shucai Xiao committed
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
1117
1118
1119
        auto dim_diff  = prog.add_instruction(make_op("sub"), arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(make_op("mul"), dim_diff, l_stride);
        auto ind       = prog.add_instruction(make_op("add"), l_shape_idx, delta);
Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
1122
1123
1124

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

1125
    instruction_ref
1126
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1127
1128
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1151
        {
1152
            literal s = parse_value(info.attributes.at("axes"));
1153
1154
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1155
1156

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1157
        {
Shucai Xiao's avatar
Shucai Xiao committed
1158
1159
1160
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1161
        }
Shucai Xiao's avatar
Shucai Xiao committed
1162
        else if(contains(info.attributes, "ends"))
1163
        {
1164
1165
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1166
        }
Shucai Xiao's avatar
Shucai Xiao committed
1167
1168
1169
1170
1171
1172
1173
1174

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1175
        {
1176
            literal s = parse_value(info.attributes.at("starts"));
1177
1178
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1179

kahmed10's avatar
kahmed10 committed
1180
1181
1182
1183
1184
1185
1186
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1187
1188
1189
        return prog.add_instruction(op, args[0]);
    }

1190
1191
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1192
    {
1193
        literal v = parse_value(info.attributes.at("value"));
1194
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1195
        if(v.get_shape().elements() == 0)
1196
1197
1198
1199
        {
            return prog.add_literal(literal{});
        }

1200
        auto dim_size = info.attributes.at("value").t().dims_size();
1201
1202
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1203
        {
1204
            migraphx::shape scalar_shape{v.get_shape().type()};
1205
1206
1207
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1208
1209
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1210

Paul's avatar
Paul committed
1211
    instruction_ref
1212
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1213
1214
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1215
        float beta  = 1.0f;
Paul's avatar
Paul committed
1216
1217
        bool transa = false;
        bool transb = false;
1218
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1219
        {
1220
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1221
        }
1222
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1223
        {
1224
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1225
        }
1226
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1227
        {
1228
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1229
        }
1230
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1231
        {
1232
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1233
        }
1234
1235
1236
1237
1238
1239

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1240
1241
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1242
1243
        if(args.size() == 3)
        {
1244
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1245
            {
Shucai Xiao's avatar
Shucai Xiao committed
1246
                auto out_lens   = l1->get_shape().lens();
1247
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1248
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1249
1250
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1251
                {
1252
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1253
                }
1254
1255
                return prog.add_instruction(
                    make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2, l3);
1256
            }
Paul's avatar
Paul committed
1257
        }
1258

1259
        return prog.add_instruction(make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2);
Paul's avatar
Paul committed
1260
1261
    }

1262
1263
1264
1265
    instruction_ref parse_matmul(const std::string&,
                                 const std::string& op_name,
                                 const node_info&,
                                 std::vector<instruction_ref> args)
1266
    {
Shucai Xiao's avatar
Shucai Xiao committed
1267
1268
        auto l0      = args[0];
        auto l1      = args[1];
1269
1270
1271
1272
1273
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1274
        if(l0_lens.size() == 1)
1275
1276
1277
1278
1279
1280
1281
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1282
        if(l1_lens.size() == 1)
1283
1284
1285
1286
1287
1288
1289
1290
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1291
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1292
1293
1294
1295
1296
1297
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1298
            l0_broadcasted_lens = output_lens;
1299
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1300
            l1_broadcasted_lens = output_lens;
1301
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1302
            if(l0_lens != l0_broadcasted_lens)
1303
1304
1305
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1306
            if(l1_lens != l1_broadcasted_lens)
1307
1308
1309
1310
1311
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1312
1313
        auto dot_res =
            prog.add_instruction(make_op(op_name, {{"alpha", 1}, {"beta", 0}}), bl0, bl1);
1314
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1315
        if(is_a_prepended)
1316
1317
1318
1319
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1320
        if(is_b_appended)
1321
1322
1323
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1324

1325
1326
1327
        return dot_res;
    }

1328
    instruction_ref
1329
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1330
    {
Scott Thornton's avatar
Scott Thornton committed
1331
1332
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1333
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1334
        if(contains(info.attributes, "epsilon"))
1335
        {
1336
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1337
        }
1338
        if(contains(info.attributes, "momentum"))
1339
        {
1340
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1341
        }
1342
        if(contains(info.attributes, "spatial"))
1343
        {
1344
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1345
1346
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1347
        }
Paul's avatar
Paul committed
1348
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1349
        return prog.add_instruction(op, std::move(args));
1350
1351
    }

1352
1353
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1354
1355
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
kahmed10's avatar
kahmed10 committed
1356
1357
        // mean = reduce_mean({D1, D2, ... Dk}, x)
        // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2)
kahmed10's avatar
kahmed10 committed
1358
1359

        float epsilon = 1e-5f;
1360
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1361
        {
1362
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1363
1364
1365
1366
1367
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();
kahmed10's avatar
kahmed10 committed
1368
1369
1370
        auto ndims = dims.size();
        assert(ndims >= 2);
        auto kdims = ndims - 2;
kahmed10's avatar
kahmed10 committed
1371

kahmed10's avatar
kahmed10 committed
1372
1373
1374
1375
        std::vector<int64_t> axes(kdims);
        std::iota(axes.begin(), axes.end(), 2);

        auto mean            = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x);
kahmed10's avatar
kahmed10 committed
1376
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
1377
        auto l0              = prog.add_instruction(make_op("sqdiff"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1378
        auto variance        = prog.add_instruction(make_op("reduce_mean", {{"axes", axes}}), l0);
1379
        auto l1              = prog.add_instruction(make_op("sub"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1380
1381
1382
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
1383
1384
1385
        auto l2              = prog.add_instruction(make_op("add"), variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(make_op("rsqrt"), l2);
        auto l4              = prog.add_instruction(make_op("mul"), l1, l3);
kahmed10's avatar
kahmed10 committed
1386
1387
1388
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
1389
1390
        auto l5         = prog.add_instruction(make_op("mul"), l4, scale_bcast);
        return prog.add_instruction(make_op("add"), l5, bias_bcast);
kahmed10's avatar
kahmed10 committed
1391
1392
    }

1393
1394
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1395
    {
Khalique's avatar
Khalique committed
1396
        float alpha = 0.01; // default alpha val for leaky relu
1397
        if(contains(info.attributes, "alpha"))
1398
        {
1399
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1400
        }
1401
        auto op = make_op("leaky_relu", {{"alpha", alpha}});
1402
1403
1404
        return prog.add_instruction(op, args.front());
    }

1405
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1406
1407
    {
        float alpha = 1.0; // default alpha val for elu
1408
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1409
        {
1410
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1411
        }
1412
        auto op = make_op("elu", {{"alpha", alpha}});
Khalique's avatar
Khalique committed
1413
1414
1415
        return prog.add_instruction(op, args.front());
    }

1416
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1417
1418
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1419
1420
1421
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1422
1423
1424
1425
1426
1427
1428
1429
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1430
1431
1432
1433
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1434
1435
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1436
1437
1438
    {
        float scale = 1.0;
        std::vector<float> bias{};
1439
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1440
        {
1441
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1442
1443
        }

1444
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1445
        {
1446
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1447
1448
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1449
1450
1451
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1452

Shucai Xiao's avatar
Shucai Xiao committed
1453
1454
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1455

1456
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
1457
1458
1459
1460
        auto img_scaled =
            prog.add_instruction(migraphx::make_op("mul"), args.front(), scale_tensor);
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
        return prog.add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1461
    }
Khalique's avatar
Khalique committed
1462

Khalique's avatar
Khalique committed
1463
    instruction_ref
1464
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1465
1466
    {
        std::vector<int64_t> perm{};
1467
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1468
        {
1469
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1470
1471
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1472
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1473
1474
    }

1475
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1476
1477
    {
        std::vector<int64_t> pads{};
1478
1479
1480
1481
1482
1483
1484
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1485
        {
1486
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1487
1488
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1489
1490
1491
1492
1493
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1494
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1495
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1496
        {
1497
            return prog.add_instruction(make_op("identity"), args.front());
1498
        }
1499

kahmed10's avatar
kahmed10 committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1529
        {
1530
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1531
        }
1532

Khalique's avatar
Khalique committed
1533
1534
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
Shucai Xiao's avatar
Shucai Xiao committed
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

    instruction_ref
    parse_selu(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        auto type   = args[0]->get_shape().type();
        auto lens   = args[0]->get_shape().lens();
        float alpha = 1.67326f;
        if(contains(info.attributes, "alpha"))
        {
            alpha = info.attributes.at("alpha").f();
        }

        float gamma = 1.0507f;
        if(contains(info.attributes, "gamma"))
        {
            gamma = info.attributes.at("gamma").f();
        }

        auto l_alpha = prog.add_literal({{type, {1}}, {alpha}});
        auto l_gamma = prog.add_literal({{type, {1}}, {gamma / 2.0f}});
        if(lens != std::vector<std::size_t>{1})
        {
            l_alpha =
                prog.add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), l_alpha);
            l_gamma =
                prog.add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), l_gamma);
        }

        auto sign_x = prog.add_instruction(make_op("sign"), args[0]);
        auto exp_x  = prog.add_instruction(make_op("exp"), args[0]);

        auto alpha_ex  = prog.add_instruction(make_op("mul"), l_alpha, exp_x);
        auto aex_alpha = prog.add_instruction(make_op("sub"), alpha_ex, l_alpha);

        auto ins1 = prog.add_instruction(make_op("add"), aex_alpha, args[0]);
        auto ins2 = prog.add_instruction(make_op("sub"), aex_alpha, args[0]);

        auto sign2   = prog.add_instruction(make_op("mul"), sign_x, ins2);
        auto ins_sub = prog.add_instruction(make_op("sub"), ins1, sign2);

        return prog.add_instruction(make_op("mul"), ins_sub, l_gamma);
    }

1578
1579
1580
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1581
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1582
1583
    {
        if(args.size() != 1)
1584
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1597
1598
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1599
1600
1601
1602
1603
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1604
        if(contains(info.attributes, "dtype"))
1605
        {
1606
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1607
        }
Shucai Xiao's avatar
Shucai Xiao committed
1608
        shape::type_t type = get_type(dtype);
1609

1610
        if(contains(info.attributes, "input_as_shape"))
1611
        {
1612
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1613
1614
        }

1615
        if(contains(info.attributes, "value"))
1616
        {
1617
            value = parse_value(info.attributes.at("value")).at<float>();
1618
1619
        }

1620
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1621
        {
1622
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1623
1624
        }

1625
1626
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1627
            if(args.size() != 1)
1628
            {
1629
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1630
1631
            }

1632
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1633
            {
1634
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1635
                               "at the same time");
1636
1637
            }

1638
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1639
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1640

1641
1642
1643
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1644
1645
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1646
1647
1648
        }
        else if(input_as_shape == 0)
        {
1649
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1650
            {
1651
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1652
1653
            }

1654
            literal ls = parse_value(info.attributes.at("shape"));
1655
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1656
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1657
            migraphx::shape s{type, dims};
1658
1659
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1660
1661
1662
        }
        else
        {
1663
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1664
1665
1666
        }
    }

1667
1668
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1669
1670
    {
        literal l_val{};
1671
        if(contains(info.attributes, "value"))
1672
        {
1673
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1674
            if(l_val.get_shape().elements() != 1)
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1686

Shucai Xiao's avatar
Shucai Xiao committed
1687
        if(args.empty())
1688
        {
Shucai Xiao's avatar
Shucai Xiao committed
1689
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1690
1691
1692
        }
        else
        {
1693
1694
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1695
            if(args[0]->get_shape().elements() == 0)
1696
            {
1697
                s = migraphx::shape{type, {1}, {0}};
1698
            }
1699
1700
1701
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1702
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1703

1704
1705
1706
1707
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1708

Shucai Xiao's avatar
Shucai Xiao committed
1709
            literal l_out{};
1710
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1711
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1712
                // l_val contains only one element
1713
                std::vector<val_type> out_vec(s.elements(), val.front());
1714
1715
1716
1717
1718
1719
1720
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1721
    instruction_ref
1722
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1723
    {
Shucai Xiao's avatar
Shucai Xiao committed
1724
        auto in_lens             = args[0]->get_shape().lens();
1725
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1726
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1727
1728
1729
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1730
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1731
1732
    }

Shucai Xiao's avatar
Shucai Xiao committed
1733
    std::vector<instruction_ref>
1734
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1735
1736
    {
        migraphx::shape input_shape = args[0]->get_shape();
1737
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1738

1739
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1740
        {
1741
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1742
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1743
1744
1745
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1746
1747
1748
1749
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1750
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1751
        {
1752
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1753
1754
        }

1755
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1756
1757
        if(direction == "bidirectional")
        {
1758
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1759
1760
1761
        }
        else if(direction == "reverse")
        {
1762
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1763
1764
        }

1765
        std::vector<std::string> vec_names{"tanh"};
1766
        if(contains(info.attributes, "activations"))
1767
        {
1768
            auto names = info.attributes.at("activations").strings();
1769
            vec_names.clear();
1770
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1771
1772
1773
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1774
1775
        }

1776
1777
1778
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1779
        if(name_it != vec_names.end())
1780
1781
1782
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1783

Shucai Xiao's avatar
Shucai Xiao committed
1784
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1785
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1786
        // if only one actv function is provided, we use it in both
1787
        // forward and reverse direction
1788
        if(dirct == op::rnn_direction::bidirectional)
1789
        {
Shucai Xiao's avatar
Shucai Xiao committed
1790
            if(vec_names.size() == 1)
1791
1792
1793
1794
1795
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1796
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1797
1798
1799
1800
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1801

Shucai Xiao's avatar
Shucai Xiao committed
1802
1803
        // To be added later
        float clip = 0.0;
1804
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1805
        {
1806
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1807
1808
        }

1809
1810
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1811
        if(args.size() < 6)
1812
1813
1814
1815
1816
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1817
1818
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1819
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1820

1821
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1822
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1823

Shucai Xiao's avatar
Shucai Xiao committed
1824
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1825
1826
    }

1827
    std::vector<instruction_ref>
1828
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1829
1830
1831
1832
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1833
        if(contains(info.attributes, "hidden_size"))
1834
        {
1835
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1836
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1837
1838
1839
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1840
1841
1842
1843
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1844
        if(contains(info.attributes, "direction"))
1845
        {
1846
            direction = info.attributes.at("direction").s();
1847
1848
        }

1849
        op::rnn_direction dirct = op::rnn_direction::forward;
1850
1851
        if(direction == "bidirectional")
        {
1852
            dirct = op::rnn_direction::bidirectional;
1853
1854
1855
        }
        else if(direction == "reverse")
        {
1856
            dirct = op::rnn_direction::reverse;
1857
1858
        }

1859
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1860
        if(contains(info.attributes, "activations"))
1861
        {
1862
            auto names = info.attributes.at("activations").strings();
1863
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1864
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1865
1866
1867
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1868
1869
        }

1870
        // need 4 activation functions
1871
        if(dirct == op::rnn_direction::bidirectional)
1872
        {
Shucai Xiao's avatar
Shucai Xiao committed
1873
            // 4 activation functions are used in the bidirectional
1874
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1875
1876
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1877
1878
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1879
1880
1881
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1882
            if(vec_names.size() == 1)
1883
            {
1884
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1885
            }
1886
            else if(vec_names.size() == 2)
1887
            {
1888
1889
1890
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1891
            }
1892
            else if(vec_names.size() == 3)
1893
            {
1894
                vec_names.push_back(vec_names.at(2));
1895
1896
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1897
        else
1898
        {
1899
            if(vec_names.size() == 1)
1900
            {
1901
                vec_names.push_back(vec_names.at(0));
1902
1903
1904
            }
        }

1905
1906
1907
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1908
        if(name_it != vec_names.end())
1909
1910
1911
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1912

Shucai Xiao's avatar
Shucai Xiao committed
1913
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1914
1915
1916
1917
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1918
1919

        float clip = 0.0;
1920
        if(contains(info.attributes, "clip"))
1921
        {
1922
            clip = parse_value(info.attributes.at("clip")).at<float>();
1923
1924
1925
        }

        int linear_before_reset = 0;
1926
        if(contains(info.attributes, "linear_before_reset"))
1927
        {
1928
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1929
1930
        }

Shucai Xiao's avatar
Shucai Xiao committed
1931
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1932
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1933
1934
1935
1936
1937
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1938
1939
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1940
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1941
            std::move(args));
1942
1943

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1944
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1945

Shucai Xiao's avatar
Shucai Xiao committed
1946
        return {hidden_states, last_output};
1947
1948
    }

Shucai Xiao's avatar
Shucai Xiao committed
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
2034
    std::vector<instruction_ref>
2035
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2036
2037
2038
2039
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

2040
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
2041
        {
2042
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2043
2044
2045
2046
2047
2048
2049
2050
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
2051
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
2052
        {
2053
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
2054
2055
        }

Shucai Xiao's avatar
Shucai Xiao committed
2056
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2057
2058
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2059
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
2060
2061
2062
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
2063
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
2064
        }
Shucai Xiao's avatar
Shucai Xiao committed
2065
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
2066
        {
Shucai Xiao's avatar
Shucai Xiao committed
2067
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2068
2069
2070
2071
2072
2073
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

2074
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
2075
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
2076
        {
2077
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
2078
2079
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
2080
2081
2082
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
2083
2084
        }

Shucai Xiao's avatar
Shucai Xiao committed
2085
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
2086

2087
2088
2089
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2090
        if(name_it != vec_names.end())
2091
2092
2093
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2094
2095

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2096
2097
2098
2099
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
2100
2101

        float clip = 0.0;
2102
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2103
        {
2104
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2105
2106
2107
        }

        int input_forget = 0;
2108
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
2109
        {
2110
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2111
2112
2113
2114
2115
2116
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
2117
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
2118
2119
2120
2121
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
2122
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2123

Shucai Xiao's avatar
Shucai Xiao committed
2124
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2125
2126

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
2127
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2128
2129
2130

        return {hidden_states, last_output, last_cell_output};
    }
2131

2132
2133
2134
2135
    instruction_ref parse_reduce_oper(const std::string&,
                                      const std::string& op_name,
                                      node_info info,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2136
2137
2138
2139
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
2140
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
2141
        std::iota(axes.begin(), axes.end(), 0);
2142
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
2143
2144
        {
            axes.clear();
2145
            auto&& attr_axes = info.attributes["axes"].ints();
2146
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
2147
2148
2149
        }

        int keep_dims = 1;
2150
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
2151
        {
2152
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2153
2154
2155
2156
        }

        if(keep_dims == 1)
        {
2157
            return prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2158
2159
2160
        }
        else
        {
2161
            auto ins = prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
2162
            return prog.add_instruction(op::squeeze{axes}, ins);
2163
2164
        }
    }
2165

Shucai Xiao's avatar
Shucai Xiao committed
2166
    instruction_ref
2167
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2168
    {
2169
2170
        auto abs_ins = prog.add_instruction(make_op("abs"), args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2171
2172
2173
    }

    instruction_ref
2174
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2175
    {
2176
2177
2178
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        auto sum_ins    = parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
        return prog.add_instruction(make_op("sqrt"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2179
2180
    }

2181
2182
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2183
    {
2184
2185
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), std::move(args));
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2186
2187
    }

2188
2189
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2190
    {
2191
2192
2193
        auto exp_ins = prog.add_instruction(make_op("exp"), args[0]);
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), {exp_ins});
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2194
2195
    }

2196
2197
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2198
    {
2199
2200
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2201
2202
    }

Shucai Xiao's avatar
Shucai Xiao committed
2203
    instruction_ref
2204
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
2205
    {
2206
        if(!contains(info.attributes, "to"))
2207
2208
2209
2210
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2211
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2212
        shape::type_t type = get_type(to_type);
Shucai Xiao's avatar
Shucai Xiao committed
2213
        return prog.add_instruction(make_op("convert", {{"target_type", type}}), std::move(args));
2214
    }
Shucai Xiao's avatar
Shucai Xiao committed
2215

2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2269
2270
2271
2272
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2273
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2274
2275
2276
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2277
2278
2279
2280
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2281

Shucai Xiao's avatar
Shucai Xiao committed
2282
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2283
2284
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2285
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2286
2287
        }

Shucai Xiao's avatar
Shucai Xiao committed
2288
2289
2290
2291
2292
2293
2294
2295
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2296
        {
Shucai Xiao's avatar
Shucai Xiao committed
2297
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2298
        }
Shucai Xiao's avatar
Shucai Xiao committed
2299
2300
2301
2302
2303
2304
2305
2306
2307
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
2308
        auto diff          = prog.add_instruction(make_op("sub"), on_val, off_val);
Shucai Xiao's avatar
Shucai Xiao committed
2309
2310
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
2311
2312
        auto l_mul         = prog.add_instruction(make_op("mul"), tr_out, unsq_diff_val);
        return prog.add_instruction(make_op("add"), l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2313
2314
    }

kahmed10's avatar
kahmed10 committed
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
2396
2397
2398
2399
2400
2401
2402
2403
2404
        case reduce_mode_t::sum:
            l0 = prog.add_instruction(make_op("reduce_sum", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::mean:
            l0 = prog.add_instruction(make_op("reduce_mean", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::max:
            l0 = prog.add_instruction(make_op("reduce_max", {{"axes", {0}}}), l0);
            break;
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
    std::vector<instruction_ref>
    parse_dropout(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto out = prog.add_instruction(make_op("identity"), args[0]);
        auto s   = args[0]->get_shape();
        std::vector<int8_t> vec(s.elements(), 1);
        shape mask_s{shape::bool_type, s.lens()};
        auto mask = prog.add_literal(literal(mask_s, vec));

        return {out, mask};
    }

Shucai Xiao's avatar
Shucai Xiao committed
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
    template <class T>
    std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
    {
        std::vector<std::size_t> indices;
        for(std::size_t i = 0; i < data.size(); ++i)
        {
            if(!float_equal(data[i], 0))
                indices.push_back(i);
        }

        return indices;
    }

    instruction_ref
    parse_nonzero(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument data_arg = args.back()->eval();
        check_arg_empty(data_arg, "PARSE_NONZERO: cannot support non-constant input!");

        std::vector<std::size_t> indices;
        data_arg.visit([&](auto val) {
            using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
            std::vector<val_type> vec_data;
            vec_data.assign(val.begin(), val.end());
            indices = this->nonzero_indices(vec_data);
        });

        shape in_s = args[0]->get_shape();
        shape out_s{shape::int64_type, {in_s.lens().size(), indices.size()}};

        std::vector<int64_t> out_data(out_s.elements());
        for(std::size_t i = 0; i < indices.size(); ++i)
        {
            auto idx = in_s.multi(indices[i]);
            for(std::size_t j = 0; j < in_s.lens().size(); ++j)
            {
                out_data[out_s.index({j, i})] = idx[j];
            }
        }

        return prog.add_literal(literal(out_s, out_data));
    }

2478
2479
2480
2481
2482
2483
    instruction_ref
    parse_equal(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto l = add_broadcastable_binary_op(args[0], args[1], "equal");
        if(l->get_shape().type() != shape::bool_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2484
            l = prog.add_instruction(make_op("convert", {{"target_type", shape::bool_type}}), l);
2485
2486
2487
2488
        }
        return l;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
    instruction_ref
    parse_where(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        auto type = args[1]->get_shape().type();
        // the operation of if cond == 1 select x; else select y,
        // is equivalent to cond * (x - y) + y
        auto cond = prog.add_instruction(make_op("convert", {{"target_type", type}}), args[0]);
        auto diff = add_broadcastable_binary_op(args[1], args[2], "sub");
        auto cd   = add_broadcastable_binary_op(diff, cond, "mul");
        return add_broadcastable_binary_op(cd, args[2], "add");
    }

Paul's avatar
Paul committed
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2513
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2514
2515
2516
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2533
2534
    void parse_graph(const onnx::GraphProto& graph)
    {
2535
        for(auto&& f : graph.initializer())
2536
2537
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2538
2539
2540
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2541
2542
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2543
            {
2544
2545
2546
2547
2548
2549
2550
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2551
2552
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2553
        }
2554
2555

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2556
        {
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2576
2577
2578
2579
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2592
        }
Shucai Xiao's avatar
Shucai Xiao committed
2593

2594
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2595
        auto prog_output = graph.output();
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2616
2617
    }

Shucai Xiao's avatar
Shucai Xiao committed
2618
    void parse_undefined(const std::string& name)
2619
    {
Shucai Xiao's avatar
Shucai Xiao committed
2620
2621
2622
2623
2624
        if(!contains(instructions, name))
        {
            auto ins           = prog.add_instruction(op::undefined{});
            instructions[name] = ins;
        }
2625
2626
    }

Paul's avatar
Paul committed
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

Shucai Xiao's avatar
Shucai Xiao committed
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
    static shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 9: return shape::bool_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }

Paul's avatar
Paul committed
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2674
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2675
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2676
2677
2678
2679
2680
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2681
2682
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2683
2684
        case onnx::AttributeProto::GRAPHS: return {};
        }
Shucai Xiao's avatar
Shucai Xiao committed
2685
        MIGRAPHX_THROW("PARSE_VALUE: Invalid attribute type " + std::to_string(attr.type()));
Paul's avatar
Paul committed
2686
2687
2688
2689
2690
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2691
2692
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2693
            const std::string& s = t.raw_data();
Shucai Xiao's avatar
Shucai Xiao committed
2694
2695
            auto type            = get_type(t.data_type());
            return create_literal(type, dims, s.data());
2696
        }
Shucai Xiao's avatar
Shucai Xiao committed
2697

Paul's avatar
Paul committed
2698
2699
        switch(t.data_type())
        {
Shucai Xiao's avatar
Shucai Xiao committed
2700
2701
2702
2703
        case onnx::TensorProto::BOOL: return create_literal(shape::bool_type, dims, t.int32_data());
        case onnx::TensorProto::INT8: return create_literal(shape::int8_type, dims, t.int32_data());
        case onnx::TensorProto::UINT8:
            return create_literal(shape::uint8_type, dims, t.int32_data());
Paul's avatar
Paul committed
2704
        case onnx::TensorProto::INT16:
Shucai Xiao's avatar
Shucai Xiao committed
2705
2706
2707
            return create_literal(shape::int16_type, dims, t.int32_data());
        case onnx::TensorProto::UINT16:
            return create_literal(shape::uint16_type, dims, t.int32_data());
Paul's avatar
Paul committed
2708
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
2709
            return create_literal(shape::int32_type, dims, t.int32_data());
Shucai Xiao's avatar
Shucai Xiao committed
2710
2711
        case onnx::TensorProto::UINT32:
            return create_literal(shape::uint32_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2712
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2713
            return create_literal(shape::int64_type, dims, t.int64_data());
Shucai Xiao's avatar
Shucai Xiao committed
2714
2715
        case onnx::TensorProto::UINT64:
            return create_literal(shape::uint64_type, dims, t.uint64_data());
Paul's avatar
Paul committed
2716
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2717
        {
Khalique's avatar
Khalique committed
2718
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2719
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2720
2721
2722
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2723
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2724
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2725
        }
Shucai Xiao's avatar
Shucai Xiao committed
2726
2727
2728
2729
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2730
2731
2732
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2733
2734
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2735
        MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
Paul's avatar
Paul committed
2736
2737
    }

Khalique's avatar
Khalique committed
2738
    static literal
2739
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2740
    {
Khalique's avatar
Khalique committed
2741
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2742
        if(dims.empty())
2743
            return literal{{shape_type}, data};
2744
2745
2746
        return literal{{shape_type, dims}, data};
    }

2747
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2748
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2749
2750
    {
        if(dims.empty())
2751
            return literal{{shape_type}, data.begin(), data.end()};
2752
        return literal{{shape_type, dims}, data.begin(), data.end()};
2753
2754
    }

2755
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2756
    {
Shucai Xiao's avatar
Shucai Xiao committed
2757
        shape::type_t shape_type = get_type(t.tensor_type().elem_type());
2758
2759
2760
2761
2762
        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2763
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2764
        auto&& tensor_dims = t.tensor_type().shape().dim();
2765
2766
2767
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2768
2769
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2770
                           {
2771
                               if(static_cast<int>(d.dim_value()) <= 0)
2772
2773
2774
                               {
                                   return default_dim_value;
                               }
2775
                               return d.dim_value();
2776
                           }
2777
2778
2779
2780
                           else
                           {
                               return default_dim_value;
                           }
2781
                       });
2782

2783
2784
2785
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2786
2787
        return {shape_type, dims};
    }
2788

Shucai Xiao's avatar
Shucai Xiao committed
2789
2790
    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2791
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2792
2793
2794
2795
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2796
2797
};

Paul Fultz II's avatar
Paul Fultz II committed
2798
template <class... Ts>
2799
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2800
2801
{
    onnx_parser parser;
2802
2803
2804
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2805

2806
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2807
    {
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2818
    }
2819
    else
Paul's avatar
Paul committed
2820
    {
2821
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2822
2823
2824
2825
    }
    return std::move(parser.prog);
}

2826
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2827
2828
2829
2830
2831
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2832
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2833
2834
2835
2836
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2837
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2838
2839
2840
2841
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2842
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2843
} // namespace migraphx