onnx.cpp 103 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
14
#include <migraphx/make_op.hpp>
Paul's avatar
Paul committed
15
16
17
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
19
#include <migraphx/pad_calc.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
20
21
#include <migraphx/type_traits.hpp>
#include <migraphx/float_equal.hpp>
Paul's avatar
Paul committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gru.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/lstm.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn_last_cell_output.hpp>
#include <migraphx/op/rnn_last_hs_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/undefined.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/op/unsqueeze.hpp>

Paul's avatar
Paul committed
48
namespace migraphx {
Paul's avatar
Paul committed
49
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
50

51
52
namespace onnx = onnx_for_migraphx;

Paul's avatar
Paul committed
53
54
55
struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
56
57
58
59
60
61
    struct node_info
    {
        attribute_map attributes{};
        std::size_t num_outputs = 1;
    };
    using node_map = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
62
    using op_func =
63
        std::function<std::vector<instruction_ref>(node_info, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
64
65
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
66
67
68
69
    program prog                  = program();
    bool is_pytorch               = false;
    std::size_t default_dim_value = 1;
    std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
70
    bool skip_unknown_operators = false;
Paul's avatar
Paul committed
71
72

    std::unordered_map<std::string, op_func> ops;
73
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
74
75
76

    onnx_parser()
    {
77
        // sort onnx operator alphabetically through name
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        add_generic_op("Abs", "abs");
        add_generic_op("Acos", "acos");
        add_generic_op("Acosh", "acosh");
        add_generic_op("Asin", "asin");
        add_generic_op("Asinh", "asinh");
        add_generic_op("Atan", "atan");
        add_generic_op("Atanh", "atanh");
        add_generic_op("Ceil", "ceil");
        add_generic_op("Concat", "concat");
        add_generic_op("Cos", "cos");
        add_generic_op("Cosh", "cosh");
        add_generic_op("Dropout", "identity");
        add_generic_op("Erf", "erf");
        add_generic_op("Exp", "exp");
        add_generic_op("Flatten", "flatten");
        add_generic_op("Floor", "floor");
        add_generic_op("Gather", "gather", true);
        add_generic_op("Identity", "identity");
        add_generic_op("Log", "log");
        add_generic_op("LogSoftmax", "logsoftmax");
        add_generic_op("Neg", "neg");
        add_generic_op("Reciprocal", "recip");
        add_generic_op("Relu", "relu");
        add_generic_op("Round", "round");
        add_generic_op("Sigmoid", "sigmoid");
        add_generic_op("Sign", "sign");
        add_generic_op("Sin", "sin");
        add_generic_op("Sinh", "sinh");
        add_generic_op("Softmax", "softmax");
        add_generic_op("Sqrt", "sqrt");
        add_generic_op("Squeeze", "squeeze", true);
        add_generic_op("Tan", "tan");
        add_generic_op("Tanh", "tanh");
        add_generic_op("Unsqueeze", "unsqueeze", true);

        add_binary_op("Add", "add");
        add_binary_op("Div", "div");
        add_binary_op("Mul", "mul");
        add_binary_op("Pow", "pow");
        add_binary_op("PRelu", "prelu");
        add_binary_op("Sub", "sub");

        add_variadic_op("Sum", "add");
        add_variadic_op("Max", "max");
        add_variadic_op("Min", "min");
Paul's avatar
Paul committed
123

124
        add_mem_op("ATen", &onnx_parser::parse_aten);
125
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
126
127
        add_mem_op("ArgMax", "argmax", &onnx_parser::parse_arg_op);
        add_mem_op("ArgMin", "argmin", &onnx_parser::parse_arg_op);
128
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
129
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
130
        add_mem_op("Clip", &onnx_parser::parse_clip);
Paul's avatar
Paul committed
131
        add_mem_op("Constant", &onnx_parser::parse_constant);
132
133
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
134
135
        add_mem_op("Conv", "convolution", &onnx_parser::parse_conv);
        add_mem_op("ConvInteger", "quant_convolution", &onnx_parser::parse_conv);
kahmed10's avatar
kahmed10 committed
136
        add_mem_op("ConvTranspose", &onnx_parser::parse_conv_transpose);
137
138
        add_mem_op("Elu", &onnx_parser::parse_elu);
        add_mem_op("Expand", &onnx_parser::parse_expand);
Shucai Xiao's avatar
Shucai Xiao committed
139
        add_mem_op("GatherElements", &onnx_parser::parse_gather_elements);
Paul's avatar
Paul committed
140
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
141
142
143
144
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GRU", &onnx_parser::parse_gru);
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
kahmed10's avatar
kahmed10 committed
145
        add_mem_op("InstanceNormalization", &onnx_parser::parse_instancenorm);
146
147
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
        add_mem_op("LRN", &onnx_parser::parse_lrn);
148
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
149
150
        add_mem_op("MatMul", "dot", &onnx_parser::parse_matmul);
        add_mem_op("MatMulInteger", "quant_dot", &onnx_parser::parse_matmul);
151
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
Shucai Xiao's avatar
Shucai Xiao committed
152
        add_mem_op("NonZero", &onnx_parser::parse_nonzero);
kahmed10's avatar
kahmed10 committed
153
        add_mem_op("OneHot", &onnx_parser::parse_onehot);
154
        add_mem_op("Pad", &onnx_parser::parse_pad);
kahmed10's avatar
kahmed10 committed
155
        add_mem_op("Range", &onnx_parser::parse_range);
Shucai Xiao's avatar
Shucai Xiao committed
156
157
158
159
        add_mem_op("ReduceL1", &onnx_parser::parse_reduce_l1);
        add_mem_op("ReduceL2", &onnx_parser::parse_reduce_l2);
        add_mem_op("ReduceLogSum", &onnx_parser::parse_reduce_log_sum);
        add_mem_op("ReduceLogSumExp", &onnx_parser::parse_reduce_log_sum_exp);
160
161
162
163
164
        add_mem_op("ReduceMax", "reduce_max", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMean", "reduce_mean", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceMin", "reduce_min", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceProd", "reduce_prod", &onnx_parser::parse_reduce_oper);
        add_mem_op("ReduceSum", "reduce_sum", &onnx_parser::parse_reduce_oper);
Shucai Xiao's avatar
Shucai Xiao committed
165
        add_mem_op("ReduceSumSquare", &onnx_parser::parse_reduce_sum_square);
166
167
168
169
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
        add_mem_op("RNN", &onnx_parser::parse_rnn);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("Slice", &onnx_parser::parse_slice);
170
        add_mem_op("Split", &onnx_parser::parse_split);
kahmed10's avatar
kahmed10 committed
171
        add_mem_op("Tile", &onnx_parser::parse_tile);
172
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
173
174
175
176
177
178
179

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
180
        // Support name format of all lower case or the first letter capital
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        map_actv_funcs.insert(std::make_pair("tanh", make_op("tanh")));
        map_actv_funcs.insert(std::make_pair("relu", make_op("relu")));
        map_actv_funcs.insert(std::make_pair("sigmoid", make_op("sigmoid")));
        map_actv_funcs.insert(std::make_pair("leakyrelu", make_op("leaky_relu")));
        map_actv_funcs.insert(std::make_pair("elu", make_op("elu")));
    }

    static operation load(const std::string& name, const node_info& info)
    {
        auto op = make_op(name);
        auto v  = op.to_value();
        for(auto&& x : v)
        {
            if(info.attributes.count(x.get_key()) == 0)
                continue;
            literal s = parse_value(info.attributes.at(x.get_key()));
            if(x.is_array())
            {
                std::vector<value> values;
                s.visit([&](auto y) {
                    std::transform(y.begin(), y.end(), std::back_inserter(values), [](auto z) {
                        return value(z);
                    });
                });
                x = values;
            }
            else
            {
                s.visit([&](auto y) { x = y.front(); });
            }
        }
        op.from_value(v);
        return op;
Paul's avatar
Paul committed
214
215
216
217
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
218
219
220
221
222
223
224
225
226
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
227
228
229
230
231
    {
        ops.emplace(name, f);
    }

    template <class F>
232
    void add_mem_op(const std::string& name, F f)
Paul's avatar
Paul committed
233
    {
Paul's avatar
Paul committed
234
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
235
236
237
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
238

239
240
241
242
243
244
245
246
247
    template <class F>
    void add_mem_op(const std::string& onnx_name, const std::string& op_name, F f)
    {
        add_op(onnx_name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, onnx_name, op_name, std::forward<decltype(xs)>(xs)...);
        });
    }

    void add_binary_op(const std::string& onnx_name, const std::string& op_name)
248
    {
249
        add_op(onnx_name, [this, op_name](node_info info, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
250
            if(args.size() != 2)
Paul's avatar
Paul committed
251
                MIGRAPHX_THROW("binary operators should have 2 operands");
252
            if(contains(info.attributes, "broadcast") and contains(info.attributes, "axis"))
253
            {
254
                uint64_t broadcasted = parse_value(info.attributes.at("broadcast")).at<uint64_t>();
255
256
                if(broadcasted != 0)
                {
257
                    uint64_t axis = parse_value(info.attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
258
259
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
260
                    return prog.add_instruction(make_op(op_name), args[0], l);
261
                }
262
                return prog.add_instruction(make_op(op_name), args);
263
            }
Paul's avatar
Paul committed
264
            else
265
            {
266
                return add_broadcastable_binary_op(args[0], args[1], op_name);
267
268
269
270
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
271
272
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
273
274
275
276
277
278
279
280
281
282
283
284
285
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
286
        if(s0.size() > s1.size())
287
288
289
290
291
292
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
293
294
295
296
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
297
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
298
                           if(a != b and a != 1 and b != 1)
299
                           {
Shucai Xiao's avatar
Shucai Xiao committed
300
301
302
303
304
305
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
306
307
308
309

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
310
311
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
312
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
313
314
315
316
        {
            return ins;
        }

317
        return prog.add_instruction(make_op("contiguous"), ins);
Shucai Xiao's avatar
Shucai Xiao committed
318
319
    }

320
321
    instruction_ref
    add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, const std::string& name)
Khalique's avatar
Khalique committed
322
    {
Khalique's avatar
Khalique committed
323
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
324
325
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
326
327
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
328
            auto out_lens = compute_broadcasted_lens(s0, s1);
329
330
331
332
333
334
335
336
337

            auto l0 = arg0;
            if(arg0->get_shape().lens() != out_lens)
                l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);

            auto l1 = arg1;
            if(arg1->get_shape().lens() != out_lens)
                l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);

338
            return prog.add_instruction(make_op(name), l0, l1);
Khalique's avatar
Khalique committed
339
340
341
        }
        else
        {
342
            return prog.add_instruction(make_op(name), {arg0, arg1});
Khalique's avatar
Khalique committed
343
        }
344
345
    }

346
347
348
    void add_generic_op(const std::string& onnx_name,
                        const std::string& op_name,
                        bool contiguous = false)
Paul's avatar
Paul committed
349
    {
350
351
352
353
354
355
356
357
358
359
360
361
        add_op(
            onnx_name,
            [this, op_name, contiguous](const node_info& info, std::vector<instruction_ref> args) {
                auto op = load(op_name, info);
                if(contiguous)
                {
                    std::transform(args.begin(), args.end(), args.begin(), [&](auto arg) {
                        return this->make_contiguous(arg);
                    });
                }
                return prog.add_instruction(op, args);
            });
Paul's avatar
Paul committed
362
363
    }

364
    void add_variadic_op(const std::string& onnx_name, const std::string& op_name)
Khalique's avatar
Khalique committed
365
    {
366
        add_op(onnx_name, [this, op_name](const node_info&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
367
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
368
369
                                   args.end(),
                                   args.front(),
370
371
                                   [this, op_name](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, op_name);
Khalique's avatar
Khalique committed
372
                                   });
Khalique's avatar
Khalique committed
373
        });
Khalique's avatar
Khalique committed
374
375
    }

kahmed10's avatar
kahmed10 committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    template <class T>
    std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
    {
        std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
        return output_vector;
    }

    instruction_ref
    add_bias(const std::vector<instruction_ref>& args, instruction_ref curr_ins, uint64_t axis)
    {
        if(args.size() == 3)
        {
            auto bias_bcast =
                prog.add_instruction(op::broadcast{axis, curr_ins->get_shape().lens()}, args[2]);
390
            return prog.add_instruction(make_op("add"), curr_ins, bias_bcast);
kahmed10's avatar
kahmed10 committed
391
392
393
394
        }
        return curr_ins;
    }

395
    static bool is_asym_padding(const std::vector<int64_t>& padding)
396
    {
397
398
399
400
401
402
403
        assert(padding.size() % 2 == 0);
        size_t pad_ndims = padding.size() / 2;

        for(size_t i = 0; i < pad_ndims; i++)
        {
            if(padding[i] != padding[i + pad_ndims])
            {
kahmed10's avatar
kahmed10 committed
404
                return true;
405
406
            }
        }
kahmed10's avatar
kahmed10 committed
407
408
        return false;
    }
409

kahmed10's avatar
kahmed10 committed
410
411
    void check_asym_padding(instruction_ref& ins,
                            const std::vector<int64_t>& padding,
412
                            value& v,
413
414
                            int count_include_pad = 0,
                            float pad_val         = 0)
kahmed10's avatar
kahmed10 committed
415
416
417
418
419
    {
        size_t pad_ndims  = padding.size() / 2;
        auto left_pad_it  = padding.begin();
        auto right_pad_it = left_pad_it + pad_ndims;

420
        if(is_asym_padding(padding) or count_include_pad == 1)
421
        {
422
423
424
425
426
427
            std::vector<int64_t> asym_pads{0, 0, 0, 0}; // don't pad N and C
            // add left pads
            asym_pads.insert(asym_pads.begin() + 2, left_pad_it, right_pad_it);
            // add right pads
            asym_pads.insert(asym_pads.begin() + pad_ndims + 4, right_pad_it, padding.end());
            ins = prog.add_instruction(op::pad{asym_pads, pad_val}, ins);
428
429
430
        }
        else
        {
431
            v["padding"] = std::vector<size_t>(left_pad_it, right_pad_it);
432
433
434
        }
    }

435
436
    instruction_ref
    parse_clip(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
437
    {
kahmed10's avatar
kahmed10 committed
438
439
440
441
442
443
444
        auto input_lens = args[0]->get_shape().lens();
        instruction_ref min_arg;
        instruction_ref max_arg;
        bool min_used = false;
        bool max_used = false;

        if(args.size() == 3)
Khalique's avatar
Khalique committed
445
        {
kahmed10's avatar
kahmed10 committed
446
447
448
449
            min_arg  = args[1];
            max_arg  = args[2];
            min_used = true;
            max_used = true;
Khalique's avatar
Khalique committed
450
        }
kahmed10's avatar
kahmed10 committed
451
        else if(args.size() == 2)
Khalique's avatar
Khalique committed
452
        {
kahmed10's avatar
kahmed10 committed
453
454
455
456
457
458
459
460
461
462
463
464
465
            min_arg  = args[1];
            min_used = true;
        }
        // if using previous opset for attributes
        else if(contains(info.attributes, "min") and contains(info.attributes, "max"))
        {

            float min_val = parse_value(info.attributes.at("min")).at<float>();
            float max_val = parse_value(info.attributes.at("max")).at<float>();
            min_arg       = prog.add_literal(min_val);
            max_arg       = prog.add_literal(max_val);
            min_used      = true;
            max_used      = true;
Khalique's avatar
Khalique committed
466
        }
kahmed10's avatar
kahmed10 committed
467
468
469
470
471
472
473
474

        if(min_used)
            min_arg = prog.add_instruction(op::multibroadcast{input_lens}, min_arg);

        if(max_used)
            max_arg = prog.add_instruction(op::multibroadcast{input_lens}, max_arg);

        if(min_used and max_used)
475
            return prog.add_instruction(make_op("clip"), args[0], min_arg, max_arg);
kahmed10's avatar
kahmed10 committed
476
        if(min_used)
477
            return prog.add_instruction(make_op("max"), args[0], min_arg);
478

479
        return prog.add_instruction(make_op("identity"), args[0]);
Shucai Xiao's avatar
Shucai Xiao committed
480
481
    }

482
483
484
485
    instruction_ref parse_arg_op(const std::string&,
                                 const std::string& op_name,
                                 node_info info,
                                 std::vector<instruction_ref> args)
486
    {
487
        int64_t axis = 0;
488
        if(contains(info.attributes, "axis"))
489
        {
490
            axis = static_cast<int64_t>(parse_value(info.attributes.at("axis")).at<int>());
491
492
        }

Shucai Xiao's avatar
Shucai Xiao committed
493
        int keep_dims = 1;
494
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
495
        {
496
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
497
498
        }

Shucai Xiao's avatar
Shucai Xiao committed
499
        if(keep_dims == 0)
500
        {
501
            auto ins = prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
502
            return prog.add_instruction(op::squeeze{{axis}}, ins);
503
504
505
        }
        else
        {
506
            return prog.add_instruction(make_op(op_name, {{"axis", axis}}), std::move(args));
507
        }
508
509
    }

kahmed10's avatar
kahmed10 committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    void calc_reflect_indices(std::vector<int>& indices, const int64_t num_dims)
    {
        int k         = 0;
        bool reversed = false;
        // in reflect padding, if the num_pads > num_dims,
        // compute the extra pad indices periodically, ex. ( 1, 2, 3, 2, 1, 0)
        for(int& idx : indices)
        {
            if(k == num_dims - 1)
                reversed = true;
            if(k == 0)
                reversed = false;
            if(reversed)
                k--;
            else
                k++;
            idx = k;
        }
    }

    instruction_ref reflect_pad(const std::vector<int64_t>& pads, instruction_ref input)
    {
        size_t num_dims = pads.size() / 2;
        std::vector<int> ldims(pads.begin(), pads.begin() + num_dims);
        std::vector<int> rdims(pads.begin() + num_dims, pads.end());
        assert(ldims.size() == rdims.size());

        std::vector<int64_t> axes(num_dims);
        std::iota(axes.begin(), axes.end(), int64_t{0});

        // iterate over dimensions, starting from lowest dimension
        for(int64_t i = num_dims - 1; i >= 0; i--)
        {
            auto axis   = i;
            auto lcount = ldims.at(i);
            auto rcount = rdims.at(i);
            if(lcount == 0 and rcount == 0) // no padding for current dim
                continue;

            // calculate starts and ends for each iteration since shape may change
            std::vector<size_t> dims = input->get_shape().lens();
            std::vector<int64_t> starts(axes.size(), 0);
            std::vector<int64_t> ends(dims.begin(), dims.end());
            std::vector<instruction_ref> slices;

            auto starts_it = starts.begin() + i;
            auto ends_it   = ends.begin() + i;
            auto dims_it   = dims.begin() + i;

            std::vector<int> l_indices(lcount);
            std::vector<int> r_indices(rcount);

            // compute slice indices in a periodic fashion
            calc_reflect_indices(l_indices, *dims_it);
            calc_reflect_indices(r_indices, *dims_it);

            for(int idx : l_indices)
            {
                *starts_it = idx;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            // when padding on the left side, the outermost pad should be at the beginning
            std::reverse(slices.begin(), slices.end());
            slices.push_back(input);
            for(int idx : r_indices)
            {
                *starts_it = *dims_it - idx - 1;
                *ends_it   = *starts_it + 1;
                slices.push_back(prog.add_instruction(op::slice{axes, starts, ends}, input));
            }
            input = prog.add_instruction(op::concat{axis}, slices);
        }
        return input;
    }

586
587
588
589
590
591
592
593
594
    void check_attr_sizes(size_t kdims, size_t attr_size, const std::string& error_msg)
    {
        if(kdims != attr_size)
        {
            MIGRAPHX_THROW(error_msg + " k-dims: " + to_string(kdims) +
                           " attribute size: " + to_string(attr_size));
        }
    }

595
    void recalc_conv_attributes(value& v, size_t kdims)
596
    {
597
        if(v["padding"].size() != kdims)
598
        {
599
600
            v["padding"].resize(kdims);
            std::fill_n(v["padding"].begin(), kdims, 0);
601
        }
602
        if(v["stride"].size() != kdims)
603
        {
604
605
            v["stride"].resize(kdims);
            std::fill_n(v["stride"].begin(), kdims, 1);
606
        }
607
        if(v["dilation"].size() != kdims)
608
        {
609
610
            v["dilation"].resize(kdims);
            std::fill_n(v["dilation"].begin(), kdims, 1);
611
612
613
        }
    }

614
    static void cal_auto_padding_size(node_info info,
615
                                      value& v,
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
                                      const std::vector<std::size_t>& k_lens,
                                      const std::vector<std::size_t>& dilation,
                                      const std::vector<std::size_t>& in_lens,
                                      std::vector<int64_t>& paddings)
    {
        size_t kdims = in_lens.size() - 2;
        assert(k_lens.size() == kdims and dilation.size() == kdims);

        if(!contains(info.attributes, "auto_pad"))
        {
            return;
        }

        auto auto_pad = info.attributes["auto_pad"].s();
        if(auto_pad.find("SAME") != std::string::npos)
        {
632
            v["padding_mode"]  = to_value(op::padding_mode_t::same);
633
634
635
636
637
638
639
640
            bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
            paddings.resize(2 * kdims);

            for(size_t i = 0; i < paddings.size() / 2; i++)
            {
                calculate_padding(i,
                                  paddings,
                                  in_lens[i + 2],
641
                                  v["stride"][i].to<int64_t>(),
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
                                  dilation[i],
                                  k_lens[i],
                                  is_same_upper);
            }
        }
    }

    static void check_padding_mode(node_info info, const std::string& op_name)
    {
        // ensure pads availabe only when auto_pad is "NOT_SET"
        if(contains(info.attributes, "pads") and contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_" + op_name +
                               ": auto_pad and padding cannot be specified simultaneously");
            }
        }
    }

663
664
665
666
    instruction_ref parse_conv(const std::string&,
                               const std::string& op_name,
                               node_info info,
                               std::vector<instruction_ref> args)
Paul's avatar
Paul committed
667
    {
668
669
        auto op      = make_op(op_name);
        auto values  = op.to_value();
670
671
        auto l0      = args[0];
        auto weights = args[1];
672
673
674
675
        auto in_lens = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

676
677
678
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV");

679
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
680
        {
681
682
683
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_CONV: inconsistent strides");
Paul's avatar
Paul committed
684
        }
685
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
686
        {
687
688
689
690
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
            check_attr_sizes(
                kdims, values["dilation"].size(), "PARSE_CONV: inconsistent dilations");
Paul's avatar
Paul committed
691
        }
692
693
694
695

        std::vector<int64_t> padding;
        if(contains(info.attributes, "pads"))
        {
696
            values["padding"].clear();
697
698
699
700
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
            check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings");
        }

701
        if(contains(info.attributes, "auto_pad"))
702
        {
703
            auto weight_lens = weights->get_shape().lens();
704

705
            std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
706
707
708
709
710
711
            cal_auto_padding_size(info,
                                  values,
                                  k_lens,
                                  values["dilation"].to_vector<std::size_t>(),
                                  in_lens,
                                  padding);
712
        }
713
        check_asym_padding(l0, padding, values);
714

715
        if(contains(info.attributes, "group"))
Khalique's avatar
Khalique committed
716
        {
717
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
Khalique's avatar
Khalique committed
718
        }
kahmed10's avatar
kahmed10 committed
719

720
        recalc_conv_attributes(values, kdims);
721

722
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
723
724
725
726
        auto l1 = prog.add_instruction(op, l0, args[1]);
        return add_bias(args, l1, 1);
    }

727
728
    instruction_ref
    parse_conv_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
729
    {
730
731
732
        operation op = make_op("deconvolution");
        value values = op.to_value();
        // op::deconvolution op;
kahmed10's avatar
kahmed10 committed
733
734
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
kahmed10's avatar
kahmed10 committed
735
736
737
738
739
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

740
741
742
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

743
        if(contains(info.attributes, "pads"))
kahmed10's avatar
kahmed10 committed
744
        {
745
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));
kahmed10's avatar
kahmed10 committed
746
747
748
749

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
kahmed10's avatar
kahmed10 committed
750
            {
kahmed10's avatar
kahmed10 committed
751
752
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
753
                values["padding"].clear();
kahmed10's avatar
kahmed10 committed
754
755
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
756
                               std::back_inserter(values["padding"]),
kahmed10's avatar
kahmed10 committed
757
                               [](auto pad_val) { return pad_val; });
kahmed10's avatar
kahmed10 committed
758
759
            }
        }
760
        if(contains(info.attributes, "strides"))
kahmed10's avatar
kahmed10 committed
761
        {
762
763
764
765
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(
                kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
kahmed10's avatar
kahmed10 committed
766
        }
767
        if(contains(info.attributes, "dilations"))
Paul's avatar
Paul committed
768
        {
769
770
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
kahmed10's avatar
kahmed10 committed
771
            check_attr_sizes(
772
                kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
Paul's avatar
Paul committed
773
        }
774
        if(contains(info.attributes, "auto_pad"))
kahmed10's avatar
kahmed10 committed
775
        {
776
777
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
kahmed10's avatar
kahmed10 committed
778
            {
kahmed10's avatar
kahmed10 committed
779
780
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
kahmed10's avatar
kahmed10 committed
781
782
783
784
            }

            if(s.find("SAME") != std::string::npos)
            {
785
                values["padding_mode"] = to_value(op::padding_mode_t::same);
kahmed10's avatar
kahmed10 committed
786
787
788
            }
        }

789
        if(contains(info.attributes, "group"))
kahmed10's avatar
kahmed10 committed
790
        {
791
            values["group"] = parse_value(info.attributes.at("group")).at<int>();
kahmed10's avatar
kahmed10 committed
792
793
        }

794
        recalc_conv_attributes(values, kdims);
kahmed10's avatar
kahmed10 committed
795

796
        op.from_value(values);
kahmed10's avatar
kahmed10 committed
797
798
        auto l1                   = prog.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
kahmed10's avatar
kahmed10 committed
799
800
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
kahmed10's avatar
kahmed10 committed
801
        {
kahmed10's avatar
kahmed10 committed
802
803
804
805
806
807
808
809
810
811
812
813
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });
kahmed10's avatar
kahmed10 committed
814

kahmed10's avatar
kahmed10 committed
815
            l1 = prog.add_instruction(op::slice{axes, starts, ends}, l1);
kahmed10's avatar
kahmed10 committed
816
817
        }

818
        if(contains(info.attributes, "output_padding"))
kahmed10's avatar
kahmed10 committed
819
        {
kahmed10's avatar
kahmed10 committed
820
821
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
822
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
kahmed10's avatar
kahmed10 committed
823
824
825
826
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = prog.add_instruction(op::pad{output_padding}, l1);
kahmed10's avatar
kahmed10 committed
827
828
        }

829
        if(contains(info.attributes, "output_shape"))
kahmed10's avatar
kahmed10 committed
830
831
        {
            std::vector<int64_t> output_shape;
832
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
kahmed10's avatar
kahmed10 committed
833
834
835
836
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
kahmed10's avatar
kahmed10 committed
837
838
            if(curr_shape != output_shape)
            {
kahmed10's avatar
kahmed10 committed
839
840
841
842
843
844
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
kahmed10's avatar
kahmed10 committed
845
846
847
848
849
                l1 = prog.add_instruction(op::pad{target_padding}, l1);
            }
        }

        return add_bias(args, l1, 1);
Paul's avatar
Paul committed
850
    }
Paul's avatar
Paul committed
851

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
    static void
    tune_padding_to_symmetric(int64_t& left, int64_t& right, const int stride, int64_t& s_start)
    {
        s_start = 0;
        if(left > right)
        {
            right = left;
        }
        else if(left < right)
        {
            auto diff = right - left;
            s_start   = (diff + stride - 1) / stride;
            left      = left + s_start * stride;
            right     = left;
        }
    }

869
    static void tune_padding_size(const value& v,
870
871
872
873
874
                                  std::vector<int64_t>& padding,
                                  int count_include_pad,
                                  std::vector<int64_t>& s_start)
    {
        // maxpooling or count_include_pad is 1, no change is required.
875
        if(v.at("mode").to<std::string>() == "max" or count_include_pad == 1)
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
        {
            return;
        }

        // if padding is symmetric, return directly
        if(!is_asym_padding(padding))
        {
            return;
        }

        // asymmetric padding, make it symmetric
        std::size_t n_dims = padding.size() / 2;
        s_start.resize(n_dims);
        for(std::size_t i = 0; i < n_dims; ++i)
        {
891
892
            tune_padding_to_symmetric(
                padding[i], padding[i + n_dims], v.at("stride")[i].to<int64_t>(), s_start[i]);
893
894
895
        }
    }

896
897
    instruction_ref
    parse_pooling(const std::string& name, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
898
    {
899
900
901
902
903
        std::string mode = ends_with(name, "MaxPool") ? "max" : "average";
        operation op     = make_op("pooling", {{"mode", mode}});
        value values     = op.to_value();
        auto l0          = args[0];
        auto in_lens     = l0->get_shape().lens();
904
905
906
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

Khalique's avatar
Khalique committed
907
        if(starts_with(name, "Global"))
908
        {
909
            values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
910
        }
911

912
913
        // does not support ceil_mode
        if(contains(info.attributes, "ceil_mode"))
Paul's avatar
Paul committed
914
        {
915
            if(info.attributes.at("ceil_mode").i() == 1)
916
            {
917
                MIGRAPHX_THROW("PARSE_POOLING: pool does not support ceil_mode");
918
            }
919
        }
920

921
922
923
924
925
926
        // count include padding, if count include pad is 1, we always use
        // explicit pad
        int count_include_pad = 0;
        if(contains(info.attributes, "count_include_pad"))
        {
            count_include_pad = info.attributes.at("count_include_pad").i();
Paul's avatar
Paul committed
927
        }
928

929
        if(contains(info.attributes, "strides"))
Paul's avatar
Paul committed
930
        {
931
932
933
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
Paul's avatar
Paul committed
934
        }
935
        if(contains(info.attributes, "kernel_shape"))
Paul's avatar
Paul committed
936
        {
937
938
939
940
            values["lengths"].clear();
            copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
            check_attr_sizes(
                kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
Paul's avatar
Paul committed
941
        }
942

943
944
945
946
        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "POOLING");

        std::vector<int64_t> paddings;
947
        float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
948
949
        if(contains(info.attributes, "pads"))
        {
950
            values["padding"].clear();
951
952
953
954
955
            copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
            check_attr_sizes(
                kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
        }

956
        if(contains(info.attributes, "auto_pad"))
957
        {
958
            values["padding"].clear();
959
            // return paddings could be empty, then setting to 0 for no padding
960
961
962
963
964
965
            cal_auto_padding_size(info,
                                  values,
                                  values["lengths"].to_vector<std::size_t>(),
                                  {1, 1},
                                  in_lens,
                                  paddings);
966
        }
967

968
969
970
971
        if(paddings.size() != 2 * kdims)
        {
            paddings.resize(kdims * 2);
            std::fill_n(paddings.begin(), 2 * kdims, 0);
972
973
        }

974
        if(values["padding"].size() != kdims)
975
        {
976
977
            values["padding"].resize(kdims);
            std::fill_n(values["padding"].begin(), kdims, 0);
978
        }
979

980
        if(values["stride"].size() != kdims)
981
        {
982
983
            values["stride"].resize(kdims);
            std::fill_n(values["stride"].begin(), kdims, 1);
984
        }
985
986
987
988
989
        // used to calculate the supposed output shape
        std::vector<int64_t> orig_padding(paddings.begin(), paddings.end());

        std::vector<int64_t> slice_start;
        std::vector<int64_t> slice_end;
990
        tune_padding_size(values, paddings, count_include_pad, slice_start);
991
992
993
994
995
996
997
998

        if(!slice_start.empty())
        {
            // calculate expected output shape
            orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
            orig_padding.insert(orig_padding.begin(), 2, 0);
            op::pad pad{orig_padding, 0.0f};
            shape padded_shape = pad.compute_shape({l0->get_shape()});
999
            auto out_lens      = make_op("pooling", values).compute_shape({padded_shape}).lens();
1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
            // compute slice_end information
            slice_end.resize(slice_start.size());
            std::transform(out_lens.begin() + 2,
                           out_lens.end(),
                           slice_start.begin(),
                           slice_end.begin(),
                           [](auto i, auto j) { return i + j; });
        }

1010
        check_asym_padding(l0, paddings, values, count_include_pad, pad_val);
1011
        in_lens = l0->get_shape().lens();
1012
1013
        for(size_t i = 0; i < kdims; i++)
        {
1014
1015
            if(values["lengths"][i].to<int64_t>() >
               in_lens[i + 2] + 2 * values["padding"][i].to<int64_t>())
1016
            {
1017
                MIGRAPHX_THROW("PARSE_POOLING: kernel shape is too large");
1018
1019
            }
        }
1020
        op.from_value(values);
1021
1022
1023
1024
1025
1026
        auto l1 = prog.add_instruction(op, l0);
        if(!slice_start.empty())
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2);
            l1 = prog.add_instruction(op::slice{axes, slice_start, slice_end}, l1);
1027
1028
        }

1029
        return l1;
Paul's avatar
Paul committed
1030
1031
    }

Paul's avatar
Paul committed
1032
    instruction_ref
1033
    parse_reshape(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1034
    {
1035
        op::reshape op;
Paul's avatar
Paul committed
1036
1037
        if(args.size() == 1)
        {
1038
            literal s = parse_value(info.attributes.at("shape"));
1039
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1040
1041
1042
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
1043
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1044
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
1045
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
1046
        }
1047

Shucai Xiao's avatar
Shucai Xiao committed
1048
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
1049
1050
    }

Shucai Xiao's avatar
Shucai Xiao committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    instruction_ref
    parse_gather_elements(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        // standardize input data and index
        auto arg_data = make_contiguous(args[0]);
        auto arg_ind  = make_contiguous(args[1]);

        auto data_s = arg_data->get_shape();
        auto ind_s  = arg_ind->get_shape();

        if(data_s.lens().size() != ind_s.lens().size())
        {
            MIGRAPHX_THROW("PARSE_GATHER_ELEMENTS: input data and index must have the same rank!");
        }

        int n_rank     = static_cast<int>(data_s.lens().size());
        int tuned_axis = (axis < 0) ? (axis + n_rank) : axis;

        auto axis_stride      = data_s.strides()[tuned_axis];
        int64_t data_elem_num = static_cast<int64_t>(data_s.elements());
        // reshape the input data as one dimension and used as input data
        // to the gather operator
        arg_data = prog.add_instruction(op::reshape{{data_elem_num}}, arg_data);

        std::size_t elem_num = ind_s.elements();
        std::vector<int> ind_index(elem_num);
        std::iota(ind_index.begin(), ind_index.end(), 0);

        // convert index in input indices to that in input data
        std::vector<int> data_indices(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), data_indices.begin(), [&](auto i) {
            return data_s.index(ind_s.multi(i));
        });

        std::vector<int> vec_axis_ind(elem_num);
        std::transform(ind_index.begin(), ind_index.end(), vec_axis_ind.begin(), [&](auto i) {
            return ind_s.multi(i)[tuned_axis];
        });

        auto l_shape_idx =
            prog.add_literal(literal(ind_s, data_indices.begin(), data_indices.end()));
        auto l_dim_idx = prog.add_literal(literal(ind_s, vec_axis_ind.begin(), vec_axis_ind.end()));
        auto l_stride  = prog.add_literal(literal{{ind_s.type(), {1}}, {axis_stride}});
        l_stride       = prog.add_instruction(op::multibroadcast{ind_s.lens()}, l_stride);
1101
1102
1103
        auto dim_diff  = prog.add_instruction(make_op("sub"), arg_ind, l_dim_idx);
        auto delta     = prog.add_instruction(make_op("mul"), dim_diff, l_stride);
        auto ind       = prog.add_instruction(make_op("add"), l_shape_idx, delta);
Shucai Xiao's avatar
Shucai Xiao committed
1104
1105
1106
1107
1108

        op::gather op{0};
        return prog.add_instruction(op, arg_data, ind);
    }

1109
    instruction_ref
1110
    parse_slice(const std::string&, node_info info, std::vector<instruction_ref> args)
1111
1112
    {
        op::slice op;
Shucai Xiao's avatar
Shucai Xiao committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

        // slice can have up to 5 inputs, we first check the 5th one
        // to decide whether MIGRAPHX can handle this slice
        if(args.size() == 5)
        {
            migraphx::argument step_arg = args.back()->eval();
            check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
            std::vector<int> steps;
            step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
            if(!std::all_of(steps.begin(), steps.end(), [](auto s) { return s == 1; }))
            {
                MIGRAPHX_THROW("PARSE_SLICE: cannot handle step other than 1");
            }
        }

        if(args.size() >= 4)
        {
            migraphx::argument axes_arg = args.at(3)->eval();
            check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
            axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "axes"))
1135
        {
1136
            literal s = parse_value(info.attributes.at("axes"));
1137
1138
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1139
1140

        if(args.size() >= 3)
Khalique's avatar
Khalique committed
1141
        {
Shucai Xiao's avatar
Shucai Xiao committed
1142
1143
1144
            migraphx::argument end_arg = args.at(2)->eval();
            check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
            end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
Khalique's avatar
Khalique committed
1145
        }
Shucai Xiao's avatar
Shucai Xiao committed
1146
        else if(contains(info.attributes, "ends"))
1147
        {
1148
1149
            literal s = parse_value(info.attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
1150
        }
Shucai Xiao's avatar
Shucai Xiao committed
1151
1152
1153
1154
1155
1156
1157
1158

        if(args.size() >= 2)
        {
            migraphx::argument start_arg = args.at(1)->eval();
            check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
            start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
        }
        else if(contains(info.attributes, "starts"))
1159
        {
1160
            literal s = parse_value(info.attributes.at("starts"));
1161
1162
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
Shucai Xiao's avatar
Shucai Xiao committed
1163

kahmed10's avatar
kahmed10 committed
1164
1165
1166
1167
1168
1169
1170
        if(op.axes.empty())
        {
            std::vector<int64_t> axes(args[0]->get_shape().lens().size());
            std::iota(axes.begin(), axes.end(), int64_t{0});
            op.axes = axes;
        }

1171
1172
1173
        return prog.add_instruction(op, args[0]);
    }

1174
1175
    instruction_ref
    parse_constant(const std::string&, node_info info, const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
1176
    {
1177
        literal v = parse_value(info.attributes.at("value"));
1178
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
1179
        if(v.get_shape().elements() == 0)
1180
1181
1182
1183
        {
            return prog.add_literal(literal{});
        }

1184
        auto dim_size = info.attributes.at("value").t().dims_size();
1185
1186
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
1187
        {
1188
            migraphx::shape scalar_shape{v.get_shape().type()};
1189
1190
1191
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
1192
1193
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
1194

Paul's avatar
Paul committed
1195
    instruction_ref
1196
    parse_gemm(const std::string&, node_info info, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
1197
1198
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
1199
        float beta  = 1.0f;
Paul's avatar
Paul committed
1200
1201
        bool transa = false;
        bool transb = false;
1202
        if(contains(info.attributes, "alpha"))
Paul's avatar
Paul committed
1203
        {
1204
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Paul's avatar
Paul committed
1205
        }
1206
        if(contains(info.attributes, "beta"))
Paul's avatar
Paul committed
1207
        {
1208
            beta = parse_value(info.attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
1209
        }
1210
        if(contains(info.attributes, "transA"))
Paul's avatar
Paul committed
1211
        {
1212
            transa = parse_value(info.attributes.at("transA")).at<bool>();
Paul's avatar
Paul committed
1213
        }
1214
        if(contains(info.attributes, "transB"))
Paul's avatar
Paul committed
1215
        {
1216
            transb = parse_value(info.attributes.at("transB")).at<bool>();
Paul's avatar
Paul committed
1217
        }
1218
1219
1220
1221
1222
1223

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

1224
1225
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
1226
1227
        if(args.size() == 3)
        {
1228
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
1229
            {
Shucai Xiao's avatar
Shucai Xiao committed
1230
                auto out_lens   = l1->get_shape().lens();
1231
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
1232
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
1233
1234
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
1235
                {
1236
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
1237
                }
1238
1239
                return prog.add_instruction(
                    make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2, l3);
1240
            }
Paul's avatar
Paul committed
1241
        }
1242

1243
        return prog.add_instruction(make_op("dot", {{"alpha", alpha}, {"beta", beta}}), l1, l2);
Paul's avatar
Paul committed
1244
1245
    }

1246
1247
1248
1249
    instruction_ref parse_matmul(const std::string&,
                                 const std::string& op_name,
                                 const node_info&,
                                 std::vector<instruction_ref> args)
1250
    {
Shucai Xiao's avatar
Shucai Xiao committed
1251
1252
        auto l0      = args[0];
        auto l1      = args[1];
1253
1254
1255
1256
1257
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1258
        if(l0_lens.size() == 1)
1259
1260
1261
1262
1263
1264
1265
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
1266
        if(l1_lens.size() == 1)
1267
1268
1269
1270
1271
1272
1273
1274
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
1275
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
1276
1277
1278
1279
1280
1281
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
1282
            l0_broadcasted_lens = output_lens;
1283
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
1284
            l1_broadcasted_lens = output_lens;
1285
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
1286
            if(l0_lens != l0_broadcasted_lens)
1287
1288
1289
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
1290
            if(l1_lens != l1_broadcasted_lens)
1291
1292
1293
1294
1295
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

1296
1297
        auto dot_res =
            prog.add_instruction(make_op(op_name, {{"alpha", 1}, {"beta", 0}}), bl0, bl1);
1298
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
1299
        if(is_a_prepended)
1300
1301
1302
1303
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
1304
        if(is_b_appended)
1305
1306
1307
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1308

1309
1310
1311
        return dot_res;
    }

1312
    instruction_ref
1313
    parse_batchnorm(const std::string&, node_info info, std::vector<instruction_ref> args)
1314
    {
Scott Thornton's avatar
Scott Thornton committed
1315
1316
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
1317
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
1318
        if(contains(info.attributes, "epsilon"))
1319
        {
1320
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
1321
        }
1322
        if(contains(info.attributes, "momentum"))
1323
        {
1324
            momentum = parse_value(info.attributes.at("momentum")).at<float>();
1325
        }
1326
        if(contains(info.attributes, "spatial"))
1327
        {
1328
            bn_mode = (parse_value(info.attributes.at("spatial")).at<uint64_t>() > 0)
1329
1330
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
1331
        }
Paul's avatar
Paul committed
1332
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
1333
        return prog.add_instruction(op, std::move(args));
1334
1335
    }

1336
1337
    instruction_ref
    parse_instancenorm(const std::string&, node_info info, std::vector<instruction_ref> args)
kahmed10's avatar
kahmed10 committed
1338
1339
1340
1341
1342
1343
    {
        // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias
        // mean = reduce_mean({H, W}, x)
        // variance = reduce_mean({H, W}, (x - mean)^2)

        float epsilon = 1e-5f;
1344
        if(contains(info.attributes, "epsilon"))
kahmed10's avatar
kahmed10 committed
1345
        {
1346
            epsilon = parse_value(info.attributes.at("epsilon")).at<float>();
kahmed10's avatar
kahmed10 committed
1347
1348
1349
1350
1351
1352
        }
        auto x     = args[0];
        auto scale = args[1];
        auto bias  = args[2];
        auto dims  = x->get_shape().lens();

1353
        auto mean            = prog.add_instruction(make_op("reduce_mean", {{"axes", {2, 3}}}), x);
kahmed10's avatar
kahmed10 committed
1354
        auto mean_bcast      = prog.add_instruction(op::multibroadcast{dims}, mean);
1355
1356
1357
        auto l0              = prog.add_instruction(make_op("sqdiff"), x, mean_bcast);
        auto variance        = prog.add_instruction(make_op("reduce_mean", {{"axes", {2, 3}}}), l0);
        auto l1              = prog.add_instruction(make_op("sub"), x, mean_bcast);
kahmed10's avatar
kahmed10 committed
1358
1359
1360
        auto epsilon_literal = prog.add_literal(epsilon);
        auto epsilon_bcast   = prog.add_instruction(op::multibroadcast{dims}, epsilon_literal);
        auto variance_bcast  = prog.add_instruction(op::multibroadcast{dims}, variance);
1361
1362
1363
        auto l2              = prog.add_instruction(make_op("add"), variance_bcast, epsilon_bcast);
        auto l3              = prog.add_instruction(make_op("rsqrt"), l2);
        auto l4              = prog.add_instruction(make_op("mul"), l1, l3);
kahmed10's avatar
kahmed10 committed
1364
1365
1366
        auto scale_bcast     = prog.add_instruction(op::broadcast{1, dims}, scale);
        ;
        auto bias_bcast = prog.add_instruction(op::broadcast{1, dims}, bias);
1367
1368
        auto l5         = prog.add_instruction(make_op("mul"), l4, scale_bcast);
        return prog.add_instruction(make_op("add"), l5, bias_bcast);
kahmed10's avatar
kahmed10 committed
1369
1370
    }

1371
1372
    instruction_ref
    parse_leaky_relu(const std::string&, node_info info, std::vector<instruction_ref> args)
1373
    {
Khalique's avatar
Khalique committed
1374
        float alpha = 0.01; // default alpha val for leaky relu
1375
        if(contains(info.attributes, "alpha"))
1376
        {
1377
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
1378
        }
1379
        auto op = make_op("leaky_relu", {{"alpha", alpha}});
1380
1381
1382
        return prog.add_instruction(op, args.front());
    }

1383
    instruction_ref parse_elu(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1384
1385
    {
        float alpha = 1.0; // default alpha val for elu
1386
        if(contains(info.attributes, "alpha"))
Khalique's avatar
Khalique committed
1387
        {
1388
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
Khalique's avatar
Khalique committed
1389
        }
1390
        auto op = make_op("elu", {{"alpha", alpha}});
Khalique's avatar
Khalique committed
1391
1392
1393
        return prog.add_instruction(op, args.front());
    }

1394
    instruction_ref parse_lrn(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1395
1396
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
1397
1398
1399
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
1400
1401
1402
1403
1404
1405
1406
1407
        if(contains(info.attributes, "alpha"))
            alpha = parse_value(info.attributes.at("alpha")).at<float>();
        if(contains(info.attributes, "beta"))
            beta = parse_value(info.attributes.at("beta")).at<float>();
        if(contains(info.attributes, "bias"))
            bias = parse_value(info.attributes.at("bias")).at<float>();
        if(contains(info.attributes, "size"))
            size = parse_value(info.attributes.at("size")).at<int>();
Khalique's avatar
Khalique committed
1408
1409
1410
1411
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

1412
1413
    instruction_ref
    parse_imagescaler(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1414
1415
1416
    {
        float scale = 1.0;
        std::vector<float> bias{};
1417
        if(contains(info.attributes, "scale"))
Khalique's avatar
Khalique committed
1418
        {
1419
            scale = parse_value(info.attributes.at("scale")).at<float>();
Khalique's avatar
Khalique committed
1420
1421
        }

1422
        if(contains(info.attributes, "bias"))
Khalique's avatar
Khalique committed
1423
        {
1424
            auto&& bias_floats = info.attributes["bias"].floats();
Khalique's avatar
Khalique committed
1425
1426
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
Shucai Xiao's avatar
Shucai Xiao committed
1427
1428
1429
        auto input_shape       = args.front()->get_shape();
        auto const& input_lens = input_shape.lens();
        auto input_type        = input_shape.type();
Khalique's avatar
Khalique committed
1430

Shucai Xiao's avatar
Shucai Xiao committed
1431
1432
        auto scale_val = prog.add_literal(literal{shape{input_type}, {scale}});
        auto bias_vals = prog.add_literal(literal{shape{input_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
1433

1434
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
1435
1436
1437
1438
        auto img_scaled =
            prog.add_instruction(migraphx::make_op("mul"), args.front(), scale_tensor);
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
        return prog.add_instruction(migraphx::make_op("add"), img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
1439
    }
Khalique's avatar
Khalique committed
1440

Khalique's avatar
Khalique committed
1441
    instruction_ref
1442
    parse_transpose(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1443
1444
    {
        std::vector<int64_t> perm{};
1445
        if(contains(info.attributes, "perm"))
Khalique's avatar
Khalique committed
1446
        {
1447
            auto&& perm_vals = info.attributes["perm"].ints();
Khalique's avatar
Khalique committed
1448
1449
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
1450
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
1451
1452
    }

1453
    instruction_ref parse_pad(const std::string&, node_info info, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
1454
1455
    {
        std::vector<int64_t> pads{};
1456
1457
1458
1459
1460
1461
1462
        if(args.size() >= 2)
        {
            auto pad_arg = args.at(1)->eval();
            check_arg_empty(pad_arg, "PARSE_PAD: pad input must be constant");
            pad_arg.visit([&](auto v) { pads.assign(v.begin(), v.end()); });
        }
        else if(contains(info.attributes, "pads"))
Khalique's avatar
Khalique committed
1463
        {
1464
            auto&& pad_vals = info.attributes["pads"].ints();
Khalique's avatar
Khalique committed
1465
1466
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
1467
1468
1469
1470
1471
        else
        {
            MIGRAPHX_THROW("PARSE_PAD: pad must be available");
        }

1472
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
1473
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
1474
        {
1475
            return prog.add_instruction(make_op("identity"), args.front());
1476
        }
1477

kahmed10's avatar
kahmed10 committed
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
        if(contains(info.attributes, "mode"))
        {
            auto mode = info.attributes.at("mode").s();
            if(mode == "reflect")
                return reflect_pad(pads, args.front());
            if(mode != "constant")
            {
                MIGRAPHX_THROW(
                    "PARSE_PAD: migraphx currently only supports constant and reflect padding");
            }
        }

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
        float value = 0.0f;
        // third input is the value
        if(args.size() == 3)
        {
            auto val_ins = args.at(2);
            if(!val_ins->can_eval())
            {
                MIGRAPHX_THROW("PARSE_PAD: input value must be constant");
            }
            auto val_arg = val_ins->eval();
            if(val_arg.get_shape().elements() != 1)
            {
                MIGRAPHX_THROW("PARSE_PAD: value should contain only one element");
            }
            value = val_arg.at<float>();
        }
        else if(contains(info.attributes, "value"))
Khalique's avatar
Khalique committed
1507
        {
1508
            value = parse_value(info.attributes.at("value")).at<float>();
Khalique's avatar
Khalique committed
1509
        }
1510

Khalique's avatar
Khalique committed
1511
1512
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
1513
1514
1515
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
1516
    parse_shape(const std::string&, const node_info&, std::vector<instruction_ref> args)
1517
1518
    {
        if(args.size() != 1)
1519
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
1532
1533
    instruction_ref
    parse_constant_fill(const std::string&, node_info info, std::vector<instruction_ref> args)
1534
1535
1536
1537
1538
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

1539
        if(contains(info.attributes, "dtype"))
1540
        {
1541
            dtype = parse_value(info.attributes.at("dtype")).at<int>();
1542
        }
Shucai Xiao's avatar
Shucai Xiao committed
1543
        shape::type_t type = get_type(dtype);
1544

1545
        if(contains(info.attributes, "input_as_shape"))
1546
        {
1547
            input_as_shape = parse_value(info.attributes.at("input_as_shape")).at<int>();
1548
1549
        }

1550
        if(contains(info.attributes, "value"))
1551
        {
1552
            value = parse_value(info.attributes.at("value")).at<float>();
1553
1554
        }

1555
        if(contains(info.attributes, "extra_shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1556
        {
1557
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
1558
1559
        }

1560
1561
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1562
            if(args.size() != 1)
1563
            {
1564
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
1565
1566
            }

1567
            if(contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1568
            {
1569
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
1570
                               "at the same time");
1571
1572
            }

1573
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1574
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
1575

1576
1577
1578
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
1579
1580
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1581
1582
1583
        }
        else if(input_as_shape == 0)
        {
1584
            if(!contains(info.attributes, "shape"))
Shucai Xiao's avatar
Shucai Xiao committed
1585
            {
1586
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
1587
1588
            }

1589
            literal ls = parse_value(info.attributes.at("shape"));
1590
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
1591
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
1592
            migraphx::shape s{type, dims};
1593
1594
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
1595
1596
1597
        }
        else
        {
1598
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
1599
1600
1601
        }
    }

1602
1603
    instruction_ref
    parse_constant_of_shape(const std::string&, node_info info, std::vector<instruction_ref> args)
1604
1605
    {
        literal l_val{};
1606
        if(contains(info.attributes, "value"))
1607
        {
1608
            l_val = parse_value(info.attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
1609
            if(l_val.get_shape().elements() != 1)
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
1621

Shucai Xiao's avatar
Shucai Xiao committed
1622
        if(args.empty())
1623
        {
Shucai Xiao's avatar
Shucai Xiao committed
1624
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
1625
1626
1627
        }
        else
        {
1628
1629
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1630
            if(args[0]->get_shape().elements() == 0)
1631
            {
1632
                s = migraphx::shape{type, {1}, {0}};
1633
            }
1634
1635
1636
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1637
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
1638

1639
1640
1641
1642
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1643

Shucai Xiao's avatar
Shucai Xiao committed
1644
            literal l_out{};
1645
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
1646
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
1647
                // l_val contains only one element
1648
                std::vector<val_type> out_vec(s.elements(), val.front());
1649
1650
1651
1652
1653
1654
1655
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1656
    instruction_ref
1657
    parse_expand(const std::string&, const node_info&, std::vector<instruction_ref> args)
1658
    {
Shucai Xiao's avatar
Shucai Xiao committed
1659
        auto in_lens             = args[0]->get_shape().lens();
1660
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1661
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
1662
1663
1664
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1665
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1666
1667
    }

Shucai Xiao's avatar
Shucai Xiao committed
1668
    std::vector<instruction_ref>
1669
    parse_rnn(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1670
1671
    {
        migraphx::shape input_shape = args[0]->get_shape();
1672
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1673

1674
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1675
        {
1676
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1677
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1678
1679
1680
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1681
1682
1683
1684
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1685
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1686
        {
1687
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1688
1689
        }

1690
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1691
1692
        if(direction == "bidirectional")
        {
1693
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1694
1695
1696
        }
        else if(direction == "reverse")
        {
1697
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1698
1699
        }

1700
        std::vector<std::string> vec_names{"tanh"};
1701
        if(contains(info.attributes, "activations"))
1702
        {
1703
            auto names = info.attributes.at("activations").strings();
1704
            vec_names.clear();
1705
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1706
1707
1708
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1709
1710
        }

1711
1712
1713
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1714
        if(name_it != vec_names.end())
1715
1716
1717
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1718

Shucai Xiao's avatar
Shucai Xiao committed
1719
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1720
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1721
        // if only one actv function is provided, we use it in both
1722
        // forward and reverse direction
1723
        if(dirct == op::rnn_direction::bidirectional)
1724
        {
Shucai Xiao's avatar
Shucai Xiao committed
1725
            if(vec_names.size() == 1)
1726
1727
1728
1729
1730
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1731
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1732
1733
1734
1735
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1736

Shucai Xiao's avatar
Shucai Xiao committed
1737
1738
        // To be added later
        float clip = 0.0;
1739
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
1740
        {
1741
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
1742
1743
        }

1744
1745
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1746
        if(args.size() < 6)
1747
1748
1749
1750
1751
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1752
1753
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1754
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1755

1756
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1757
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1758

Shucai Xiao's avatar
Shucai Xiao committed
1759
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1760
1761
    }

1762
    std::vector<instruction_ref>
1763
    parse_gru(const std::string&, node_info info, std::vector<instruction_ref> args)
1764
1765
1766
1767
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1768
        if(contains(info.attributes, "hidden_size"))
1769
        {
1770
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1771
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1772
1773
1774
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1775
1776
1777
1778
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1779
        if(contains(info.attributes, "direction"))
1780
        {
1781
            direction = info.attributes.at("direction").s();
1782
1783
        }

1784
        op::rnn_direction dirct = op::rnn_direction::forward;
1785
1786
        if(direction == "bidirectional")
        {
1787
            dirct = op::rnn_direction::bidirectional;
1788
1789
1790
        }
        else if(direction == "reverse")
        {
1791
            dirct = op::rnn_direction::reverse;
1792
1793
        }

1794
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1795
        if(contains(info.attributes, "activations"))
1796
        {
1797
            auto names = info.attributes.at("activations").strings();
1798
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1799
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1800
1801
1802
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1803
1804
        }

1805
        // need 4 activation functions
1806
        if(dirct == op::rnn_direction::bidirectional)
1807
        {
Shucai Xiao's avatar
Shucai Xiao committed
1808
            // 4 activation functions are used in the bidirectional
1809
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1810
1811
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1812
1813
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1814
1815
1816
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1817
            if(vec_names.size() == 1)
1818
            {
1819
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1820
            }
1821
            else if(vec_names.size() == 2)
1822
            {
1823
1824
1825
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1826
            }
1827
            else if(vec_names.size() == 3)
1828
            {
1829
                vec_names.push_back(vec_names.at(2));
1830
1831
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1832
        else
1833
        {
1834
            if(vec_names.size() == 1)
1835
            {
1836
                vec_names.push_back(vec_names.at(0));
1837
1838
1839
            }
        }

1840
1841
1842
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1843
        if(name_it != vec_names.end())
1844
1845
1846
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1847

Shucai Xiao's avatar
Shucai Xiao committed
1848
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1849
1850
1851
1852
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1853
1854

        float clip = 0.0;
1855
        if(contains(info.attributes, "clip"))
1856
        {
1857
            clip = parse_value(info.attributes.at("clip")).at<float>();
1858
1859
1860
        }

        int linear_before_reset = 0;
1861
        if(contains(info.attributes, "linear_before_reset"))
1862
        {
1863
            linear_before_reset = parse_value(info.attributes.at("linear_before_reset")).at<int>();
1864
1865
        }

Shucai Xiao's avatar
Shucai Xiao committed
1866
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1867
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1868
1869
1870
1871
1872
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1873
1874
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1875
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1876
            std::move(args));
1877
1878

        // second output for last gru output
Shucai Xiao's avatar
Shucai Xiao committed
1879
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
1880

Shucai Xiao's avatar
Shucai Xiao committed
1881
        return {hidden_states, last_output};
1882
1883
    }

Shucai Xiao's avatar
Shucai Xiao committed
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
    void lstm_actv_functions(op::rnn_direction dirct, std::vector<std::string>& actv_func_names)
    {
        // need 6 activation functions for bidirectional directions
        if(dirct == op::rnn_direction::bidirectional)
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
            // if 3 actv funcs are provide, repeat all three once.
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0),
                                   actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(1)};
                break;

            case 3:
                // repeat all three actv funcs once
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2)};
                break;

            case 4:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3),
                                   actv_func_names.at(3)};
                break;

            case 5:
                actv_func_names = {actv_func_names.at(0),
                                   actv_func_names.at(1),
                                   actv_func_names.at(2),
                                   actv_func_names.at(3),
                                   actv_func_names.at(4),
                                   actv_func_names.at(4)};
                break;

            default: break;
            }
        }
        else
        {
            switch(actv_func_names.size())
            {
            case 1:
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(0), actv_func_names.at(0)};
                break;

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
                actv_func_names = {
                    actv_func_names.at(0), actv_func_names.at(1), actv_func_names.at(1)};
                break;

            default: break;
            }
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1969
    std::vector<instruction_ref>
1970
    parse_lstm(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1971
1972
1973
1974
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

1975
        if(contains(info.attributes, "hidden_size"))
Shucai Xiao's avatar
Shucai Xiao committed
1976
        {
1977
            std::size_t hidden_size_att = parse_value(info.attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1978
1979
1980
1981
1982
1983
1984
1985
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
1986
        if(contains(info.attributes, "direction"))
Shucai Xiao's avatar
Shucai Xiao committed
1987
        {
1988
            direction = info.attributes.at("direction").s();
Shucai Xiao's avatar
Shucai Xiao committed
1989
1990
        }

Shucai Xiao's avatar
Shucai Xiao committed
1991
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1992
1993
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1994
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1995
1996
1997
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1998
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1999
        }
Shucai Xiao's avatar
Shucai Xiao committed
2000
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
2001
        {
Shucai Xiao's avatar
Shucai Xiao committed
2002
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
2003
2004
2005
2006
2007
2008
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

2009
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
2010
        if(contains(info.attributes, "activations"))
Shucai Xiao's avatar
Shucai Xiao committed
2011
        {
2012
            auto names = info.attributes.at("activations").strings();
Shucai Xiao's avatar
Shucai Xiao committed
2013
2014
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
2015
2016
2017
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
2018
2019
        }

Shucai Xiao's avatar
Shucai Xiao committed
2020
        lstm_actv_functions(dirct, vec_names);
Shucai Xiao's avatar
Shucai Xiao committed
2021

2022
2023
2024
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
2025
        if(name_it != vec_names.end())
2026
2027
2028
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
2029
2030

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
2031
2032
2033
2034
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
2035
2036

        float clip = 0.0;
2037
        if(contains(info.attributes, "clip"))
Shucai Xiao's avatar
Shucai Xiao committed
2038
        {
2039
            clip = parse_value(info.attributes.at("clip")).at<float>();
Shucai Xiao's avatar
Shucai Xiao committed
2040
2041
2042
        }

        int input_forget = 0;
2043
        if(contains(info.attributes, "input_forget"))
Shucai Xiao's avatar
Shucai Xiao committed
2044
        {
2045
            input_forget = parse_value(info.attributes.at("input_forget")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2046
2047
2048
2049
2050
2051
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
2052
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
2053
2054
2055
2056
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
2057
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2058

Shucai Xiao's avatar
Shucai Xiao committed
2059
        auto last_output = prog.add_instruction(op::rnn_last_hs_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2060
2061

        // third output for last cell output
Shucai Xiao's avatar
Shucai Xiao committed
2062
        auto last_cell_output = prog.add_instruction(op::rnn_last_cell_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
2063
2064
2065

        return {hidden_states, last_output, last_cell_output};
    }
2066

2067
2068
2069
2070
    instruction_ref parse_reduce_oper(const std::string&,
                                      const std::string& op_name,
                                      node_info info,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2071
2072
2073
2074
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
2075
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
2076
        std::iota(axes.begin(), axes.end(), 0);
2077
        if(contains(info.attributes, "axes"))
Shucai Xiao's avatar
Shucai Xiao committed
2078
2079
        {
            axes.clear();
2080
            auto&& attr_axes = info.attributes["axes"].ints();
2081
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
2082
2083
2084
        }

        int keep_dims = 1;
2085
        if(contains(info.attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
2086
        {
2087
            keep_dims = parse_value(info.attributes.at("keepdims")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
2088
2089
2090
2091
        }

        if(keep_dims == 1)
        {
2092
            return prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
2093
2094
2095
        }
        else
        {
2096
            auto ins = prog.add_instruction(make_op(op_name, {{"axes", axes}}), std::move(args));
2097
            return prog.add_instruction(op::squeeze{axes}, ins);
2098
2099
        }
    }
2100

Shucai Xiao's avatar
Shucai Xiao committed
2101
    instruction_ref
2102
    parse_reduce_l1(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2103
    {
2104
2105
        auto abs_ins = prog.add_instruction(make_op("abs"), args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {abs_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2106
2107
2108
    }

    instruction_ref
2109
    parse_reduce_l2(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2110
    {
2111
2112
2113
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        auto sum_ins    = parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
        return prog.add_instruction(make_op("sqrt"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2114
2115
    }

2116
2117
    instruction_ref
    parse_reduce_log_sum(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2118
    {
2119
2120
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), std::move(args));
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2121
2122
    }

2123
2124
    instruction_ref
    parse_reduce_log_sum_exp(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2125
    {
2126
2127
2128
        auto exp_ins = prog.add_instruction(make_op("exp"), args[0]);
        auto sum_ins = parse_reduce_oper({}, "reduce_sum", std::move(info), {exp_ins});
        return prog.add_instruction(make_op("log"), sum_ins);
Shucai Xiao's avatar
Shucai Xiao committed
2129
2130
    }

2131
2132
    instruction_ref
    parse_reduce_sum_square(const std::string&, node_info info, std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
2133
    {
2134
2135
        auto square_ins = prog.add_instruction(make_op("mul"), args[0], args[0]);
        return parse_reduce_oper({}, "reduce_sum", std::move(info), {square_ins});
Shucai Xiao's avatar
Shucai Xiao committed
2136
2137
    }

Shucai Xiao's avatar
Shucai Xiao committed
2138
    instruction_ref
2139
    parse_cast(const std::string&, node_info info, std::vector<instruction_ref> args)
2140
    {
2141
        if(!contains(info.attributes, "to"))
2142
2143
2144
2145
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

2146
        int to_type        = parse_value(info.attributes.at("to")).at<int>();
2147
2148
2149
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
2150

2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
    std::vector<instruction_ref>
    parse_split(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        int64_t axis = 0;
        if(contains(info.attributes, "axis"))
        {
            axis = parse_value(info.attributes.at("axis")).at<int>();
        }

        auto lens      = args[0]->get_shape().lens();
        int64_t n_rank = static_cast<int64_t>(lens.size());
        if((axis < -n_rank) || (axis >= n_rank))
        {
            MIGRAPHX_THROW("PARSE_SPLIT: axis attribute out of rank!");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;

        std::vector<int64_t> vec_splits;
        if(contains(info.attributes, "split"))
        {
            literal s = parse_value(info.attributes.at("split"));
            s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });

            if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
               static_cast<int64_t>(lens[tuned_axis]))
            {
                MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
            }
        }
        // no split attribute, input is equally divided
        else
        {
            if((lens[tuned_axis] % info.num_outputs) != 0)
            {
                MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " +
                               to_string(info.num_outputs) + " splits!");
            }
            auto dl = lens[tuned_axis] / info.num_outputs;
            vec_splits.resize(info.num_outputs, dl);
        }

        std::vector<instruction_ref> ret_ins;
        int64_t start = 0;
        for(auto sl : vec_splits)
        {
            ret_ins.push_back(
                prog.add_instruction(op::slice{{axis}, {start}, {start + sl}}, args[0]));
            start += sl;
        }

        return ret_ins;
    }

kahmed10's avatar
kahmed10 committed
2204
2205
2206
2207
    instruction_ref
    parse_onehot(const std::string&, node_info info, std::vector<instruction_ref> args)
    {
        migraphx::argument depth_arg = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
2208
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
kahmed10's avatar
kahmed10 committed
2209
2210
2211
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
Shucai Xiao's avatar
Shucai Xiao committed
2212
2213
2214
2215
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }
kahmed10's avatar
kahmed10 committed
2216

Shucai Xiao's avatar
Shucai Xiao committed
2217
        std::vector<float> depth_input(depth * depth, 0.0f);
kahmed10's avatar
kahmed10 committed
2218
2219
        for(int i = 0; i < depth; i++)
        {
Shucai Xiao's avatar
Shucai Xiao committed
2220
            depth_input[depth * i + i] = 1.0f;
kahmed10's avatar
kahmed10 committed
2221
2222
        }

Shucai Xiao's avatar
Shucai Xiao committed
2223
2224
2225
2226
2227
2228
2229
2230
        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
        auto l_val      = prog.add_literal({s, depth_input});
        auto gather_out = prog.add_instruction(op::gather{0}, {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
kahmed10's avatar
kahmed10 committed
2231
        {
Shucai Xiao's avatar
Shucai Xiao committed
2232
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
kahmed10's avatar
kahmed10 committed
2233
        }
Shucai Xiao's avatar
Shucai Xiao committed
2234
2235
2236
2237
2238
2239
2240
2241
2242
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = prog.add_instruction(op::transpose{perm}, gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val       = prog.add_instruction(op::slice{{0}, {0}, {1}}, args[2]);
        auto on_val        = prog.add_instruction(op::slice{{0}, {1}, {2}}, args[2]);
2243
        auto diff          = prog.add_instruction(make_op("sub"), on_val, off_val);
Shucai Xiao's avatar
Shucai Xiao committed
2244
2245
        auto unsq_off_val  = prog.add_instruction(op::multibroadcast{lens}, off_val);
        auto unsq_diff_val = prog.add_instruction(op::multibroadcast{lens}, diff);
2246
2247
        auto l_mul         = prog.add_instruction(make_op("mul"), tr_out, unsq_diff_val);
        return prog.add_instruction(make_op("add"), l_mul, unsq_off_val);
kahmed10's avatar
kahmed10 committed
2248
2249
    }

kahmed10's avatar
kahmed10 committed
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
    instruction_ref
    parse_tile(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument arg_s = args[1]->eval();
        check_arg_empty(arg_s, "PARSE_TILE: dynamic shape is not supported");
        std::vector<std::int64_t> repeats;
        arg_s.visit([&](auto input) { repeats.assign(input.begin(), input.end()); });

        auto l0 = args[0];
        for(int i = 0; i < repeats.size(); i++)
        {
            auto l1 = l0;
            for(int j = 1; j < repeats[i]; j++)
            {
                l0 = prog.add_instruction(op::concat{i}, l0, l1);
            }
        }
        return l0;
    }

kahmed10's avatar
kahmed10 committed
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
    instruction_ref
    parse_range(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {

        auto start_arg = args[0]->eval();
        check_arg_empty(start_arg, "PARSE_RANGE: start arg dynamic shape is not supported");
        auto limit_arg = args[1]->eval();
        check_arg_empty(limit_arg, "PARSE_RANGE: limit arg dynamic shape is not supported");
        auto delta_arg = args[2]->eval();
        check_arg_empty(delta_arg, "PARSE_RANGE: delta arg dynamic shape is not supported");

        assert(args[0]->get_shape().elements() == 1 and args[1]->get_shape().elements() == 1 and
               args[2]->get_shape().elements() == 1);

        instruction_ref l0;

        visit_all(start_arg, limit_arg, delta_arg)([&](auto start, auto limit, auto delta) {
            auto start_val = start.front();
            auto limit_val = limit.front();
            auto delta_val = delta.front();

            size_t num_elements = static_cast<size_t>(
                ceil(static_cast<double>(limit_val - start_val) / static_cast<double>(delta_val)));

            assert(num_elements > 0);

            using type = decltype(start_val);

            std::vector<type> range_vals(num_elements);

            std::generate(range_vals.begin(), range_vals.end(), [&]() {
                auto result = start_val;
                start_val += delta_val;
                return result;
            });

            l0 = prog.add_literal({shape{args[0]->get_shape().type(), {num_elements}}, range_vals});
        });
        return l0;
    }

2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
    enum class reduce_mode_t
    {
        sum  = 0,
        mean = 1,
        max  = 2
    };

    instruction_ref parse_embedding_bag(const node_info& info, std::vector<instruction_ref> args)
    {
        if(args[2]->get_shape().elements() != 1)
            MIGRAPHX_THROW("PARSE_EMBEDDING_BAG: MIGraphX only supports offsets of size 1");
        reduce_mode_t reduce_mode = reduce_mode_t::sum;
        if(contains(info.attributes, "mode"))
        {
            reduce_mode = static_cast<reduce_mode_t>(info.attributes.at("mode").i());
        }

        auto l0 = prog.add_instruction(op::gather{}, args[0], args[1]);
        switch(reduce_mode)
        {
2331
2332
2333
2334
2335
2336
2337
2338
2339
        case reduce_mode_t::sum:
            l0 = prog.add_instruction(make_op("reduce_sum", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::mean:
            l0 = prog.add_instruction(make_op("reduce_mean", {{"axes", {0}}}), l0);
            break;
        case reduce_mode_t::max:
            l0 = prog.add_instruction(make_op("reduce_max", {{"axes", {0}}}), l0);
            break;
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
        }
        return l0;
    }

    instruction_ref
    parse_aten(const std::string&, const node_info& info, std::vector<instruction_ref> args)
    {
        if(contains(info.attributes, "operator"))
        {
            auto op_name = info.attributes.at("operator").s();
            if(op_name.find("embedding_bag") != std::string::npos)
            {
                return parse_embedding_bag(info, std::move(args));
            }
        }
        MIGRAPHX_THROW("PARSE_ATEN: unsupported custom operator");
    }

Shucai Xiao's avatar
Shucai Xiao committed
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
    template <class T>
    std::vector<std::size_t> nonzero_indices(const std::vector<T>& data)
    {
        std::vector<std::size_t> indices;
        for(std::size_t i = 0; i < data.size(); ++i)
        {
            if(!float_equal(data[i], 0))
                indices.push_back(i);
        }

        return indices;
    }

    instruction_ref
    parse_nonzero(const std::string&, const node_info&, std::vector<instruction_ref> args)
    {
        migraphx::argument data_arg = args.back()->eval();
        check_arg_empty(data_arg, "PARSE_NONZERO: cannot support non-constant input!");

        std::vector<std::size_t> indices;
        data_arg.visit([&](auto val) {
            using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
            std::vector<val_type> vec_data;
            vec_data.assign(val.begin(), val.end());
            indices = this->nonzero_indices(vec_data);
        });

        shape in_s = args[0]->get_shape();
        shape out_s{shape::int64_type, {in_s.lens().size(), indices.size()}};

        std::vector<int64_t> out_data(out_s.elements());
        for(std::size_t i = 0; i < indices.size(); ++i)
        {
            auto idx = in_s.multi(indices[i]);
            for(std::size_t j = 0; j < in_s.lens().size(); ++j)
            {
                out_data[out_s.index({j, i})] = idx[j];
            }
        }

        return prog.add_literal(literal(out_s, out_data));
    }

Paul's avatar
Paul committed
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
2413
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
2414
2415
2416
        }
    }

Paul Fultz II's avatar
Paul Fultz II committed
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
    void parse_from(const void* data, std::size_t size)
    {
        onnx::ModelProto model;
        if(model.ParseFromArray(data, size))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            MIGRAPHX_THROW("Failed reading onnx file.");
        }
    }

Paul's avatar
Paul committed
2433
2434
    void parse_graph(const onnx::GraphProto& graph)
    {
2435
        for(auto&& f : graph.initializer())
2436
2437
            instructions[f.name()] = prog.add_literal(parse_tensor(f));

Paul's avatar
Paul committed
2438
2439
2440
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
2441
2442
            // input not in initializer_data, so it is a real input
            if(!contains(instructions, name))
2443
            {
2444
2445
2446
2447
2448
2449
2450
                std::vector<std::size_t> dims;
                if(map_input_dims.count(name) > 0)
                {
                    dims = map_input_dims.at(name);
                }

                shape s            = parse_type(input.type(), dims);
2451
2452
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
2453
        }
2454
2455

        for(auto&& node : graph.node())
Paul's avatar
Paul committed
2456
        {
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(input.empty())
                {
                    this->parse_undefined(input);
                }
                if(instructions.count(input) == 0)
                {
                    MIGRAPHX_THROW("PARSE_GRAPH: invalid onnx file. Input \"" + input +
                                   "\" is unavailable due to unordered nodes!");
                }
                args.push_back(instructions.at(input));
            }

            std::vector<instruction_ref> result;
            std::size_t output_num = static_cast<std::size_t>(node.output().size());
            if(ops.count(node.op_type()) == 0)
            {
2476
2477
2478
2479
                if(skip_unknown_operators)
                    result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
                else
                    MIGRAPHX_THROW("Unknown operator: " + node.op_type());
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
            }
            else
            {
                result = ops[node.op_type()]({get_attributes(node), output_num}, args);
            }

            output_num = std::min<std::size_t>(output_num, result.size());
            std::transform(node.output().begin(),
                           node.output().begin() + output_num,
                           result.begin(),
                           std::inserter(instructions, instructions.end()),
                           [](auto&& x, auto&& y) { return std::make_pair(x, y); });
Paul's avatar
Paul committed
2492
        }
Shucai Xiao's avatar
Shucai Xiao committed
2493

2494
        // Find instructions corresponding to the output
Shucai Xiao's avatar
Shucai Xiao committed
2495
        auto prog_output = graph.output();
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
        std::vector<std::string> all_output_names;
        std::vector<std::string> prog_output_names;
        std::transform(prog_output.begin(),
                       prog_output.end(),
                       std::back_inserter(all_output_names),
                       [](auto& node) { return node.name(); });
        std::copy_if(
            all_output_names.begin(),
            all_output_names.end(),
            std::back_inserter(prog_output_names),
            [&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });

        std::vector<instruction_ref> output_ins;
        std::transform(prog_output_names.begin(),
                       prog_output_names.end(),
                       std::back_inserter(output_ins),
                       [&](const auto& name) { return instructions[name]; });

        // add the return instuction
        prog.add_return(output_ins);
Paul's avatar
Paul committed
2516
2517
    }

Shucai Xiao's avatar
Shucai Xiao committed
2518
    void parse_undefined(const std::string& name)
2519
    {
Shucai Xiao's avatar
Shucai Xiao committed
2520
        auto ins           = prog.add_instruction(op::undefined{});
2521
2522
2523
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
2548
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
2549
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
2550
2551
2552
2553
2554
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
2555
2556
        case onnx::AttributeProto::SPARSE_TENSOR:
        case onnx::AttributeProto::SPARSE_TENSORS:
Paul's avatar
Paul committed
2557
2558
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
2559
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
2560
2561
2562
2563
2564
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
2565
2566
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
2567
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
2568
2569
            switch(t.data_type())
            {
2570
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
2571
2572
2573
2574
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
2575
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
2576
2577
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
Shucai Xiao's avatar
Shucai Xiao committed
2578
            case onnx::TensorProto::INT16: return create_literal(shape::int16_type, dims, s.data());
Paul's avatar
Paul committed
2579
            case onnx::TensorProto::INT32:
2580
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
2581
2582
2583
2584
2585
2586
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
2587
2588
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
2589
            MIGRAPHX_THROW("Invalid tensor type");
2590
        }
Paul's avatar
Paul committed
2591
2592
2593
2594
2595
2596
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
2597
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
2598
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
2599
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
2600
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
2601
2602
2603
2604
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
2605
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
2606
        {
Khalique's avatar
Khalique committed
2607
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
2608
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
2609
2610
2611
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
2612
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
2613
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
2614
        }
Paul's avatar
Paul committed
2615
2616
2617
2618
2619
2620
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
2621
2622
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
2623
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
2624
2625
    }

Khalique's avatar
Khalique committed
2626
    static literal
2627
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
2628
    {
Khalique's avatar
Khalique committed
2629
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
2630
        if(dims.empty())
2631
            return literal{{shape_type}, data};
2632
2633
2634
        return literal{{shape_type, dims}, data};
    }

2635
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
2636
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
2637
2638
    {
        if(dims.empty())
2639
            return literal{{shape_type}, data.begin(), data.end()};
2640
        return literal{{shape_type, dims}, data.begin(), data.end()};
2641
2642
    }

2643
    shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims)
Paul's avatar
Paul committed
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
2654
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
2655
2656
2657
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
2658
        case onnx::TensorProto::UINT8: shape_type = shape::uint8_type; break;
Paul's avatar
Paul committed
2659
2660
2661
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
2662
2663
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
2664
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
2665
        }
2666
2667
2668
2669
2670
2671

        if(!input_dims.empty())
        {
            return {shape_type, input_dims};
        }

Paul's avatar
Paul committed
2672
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
2673
        auto&& tensor_dims = t.tensor_type().shape().dim();
2674
2675
2676
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
2677
2678
                       [&](auto&& d) -> std::size_t {
                           if(d.has_dim_value())
2679
                           {
2680
                               if(static_cast<int>(d.dim_value()) <= 0)
2681
2682
2683
                               {
                                   return default_dim_value;
                               }
2684
                               return d.dim_value();
2685
                           }
2686
2687
2688
2689
                           else
                           {
                               return default_dim_value;
                           }
2690
                       });
2691

2692
2693
2694
        if(dims.empty())
            return {shape_type};

Paul's avatar
Paul committed
2695
2696
        return {shape_type, dims};
    }
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
2719
2720
2721

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
2722
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
2723
2724
2725
2726
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
2727
2728
};

Paul Fultz II's avatar
Paul Fultz II committed
2729
template <class... Ts>
2730
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
Paul's avatar
Paul committed
2731
2732
{
    onnx_parser parser;
2733
2734
2735
    parser.map_input_dims         = options.map_input_dims;
    parser.default_dim_value      = options.default_dim_value;
    parser.skip_unknown_operators = options.skip_unknown_operators;
2736

2737
    if(options.print_program_on_error)
Paul's avatar
Paul committed
2738
    {
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
        // Log the program when it can't be parsed
        try
        {
            parser.parse_from(std::forward<Ts>(xs)...);
        }
        catch(...)
        {
            std::cerr << parser.prog << std::endl;
            throw;
        }
Paul's avatar
Paul committed
2749
    }
2750
    else
Paul's avatar
Paul committed
2751
    {
2752
        parser.parse_from(std::forward<Ts>(xs)...);
Paul's avatar
Paul committed
2753
2754
2755
2756
    }
    return std::move(parser.prog);
}

2757
program parse_onnx(const std::string& name, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2758
2759
2760
2761
2762
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    return parse_onnx_from(options, input);
}

2763
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2764
2765
2766
2767
{
    return parse_onnx_from(options, buffer.data(), buffer.size());
}

2768
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options)
Paul Fultz II's avatar
Paul Fultz II committed
2769
2770
2771
2772
{
    return parse_onnx_from(options, data, size);
}

Paul's avatar
Paul committed
2773
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
2774
} // namespace migraphx