onnx.cpp 64.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
225
226
    }

Paul's avatar
Paul committed
227
    template <class T>
Paul's avatar
Paul committed
228
229
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
230
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
231
232
233
234
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
235
    template <class T>
Khalique's avatar
Khalique committed
236
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
239
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
240
241
242
243
244
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
245
        });
Khalique's avatar
Khalique committed
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
264
265
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
266
    {
Shucai Xiao's avatar
Shucai Xiao committed
267
268
        auto dims = args.front()->get_shape().lens();
        auto r =
Shucai Xiao's avatar
Shucai Xiao committed
269
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
Shucai Xiao's avatar
Shucai Xiao committed
270
271
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
272
273
    }

Shucai Xiao's avatar
Shucai Xiao committed
274
275
276
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
277
278
279
280
281
282
283
284
285
286
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

287
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
288
289
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
290
    {
291
        int64_t axis = 0;
292
293
        if(contains(attributes, "axis"))
        {
294
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
295
296
        }

Shucai Xiao's avatar
Shucai Xiao committed
297
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
298
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
299
300
301
302
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
303
        if(keep_dims == 0)
304
305
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
306
            return prog.add_instruction(op::squeeze{{axis}}, ins);
307
308
309
310
311
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
312
313
314
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
315
316
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
317
    {
318
        int64_t axis = 0;
319
320
        if(contains(attributes, "axis"))
        {
321
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
322
323
        }

Shucai Xiao's avatar
Shucai Xiao committed
324
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
325
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
326
327
328
329
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
330
        if(keep_dims == 0)
331
332
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
333
            return prog.add_instruction(op::squeeze{{axis}}, ins);
334
335
336
337
338
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
339
340
    }

Paul's avatar
Paul committed
341
    instruction_ref
Paul's avatar
Paul committed
342
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
343
    {
344
        op::convolution op;
345
        auto l0 = args[0];
Paul's avatar
Paul committed
346
347
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
348
            if(contains(attributes, "auto_pad"))
349
            {
Paul's avatar
Paul committed
350
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
351
            }
352
353
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
354
            if(padding.size() != 4)
355
            {
Paul's avatar
Paul committed
356
                MIGRAPHX_THROW("padding should have 4 values");
357
            }
Scott Thornton's avatar
Scott Thornton committed
358
            if(padding[0] != padding[2] || padding[1] != padding[3])
359
            {
360
361
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
362
                l0      = prog.add_instruction(op::pad{padding}, l0);
363
            }
364
365
366
367
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
368
            }
Paul's avatar
Paul committed
369
        }
Paul's avatar
Paul committed
370
371
372
373
374
375
376
377
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
378
        if(contains(attributes, "auto_pad"))
379
380
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
381
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
382
            {
Paul's avatar
Paul committed
383
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
384
385
            }

wsttiger's avatar
fixes  
wsttiger committed
386
            if(s.find("SAME") != std::string::npos)
387
            {
388
                op.padding_mode = op::padding_mode_t::same;
389
390
            }
        }
Khalique's avatar
Khalique committed
391
392
393
394
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
395
396
397
398
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
399
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
400
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
401
        }
402
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
403
    }
Paul's avatar
Paul committed
404

Paul's avatar
Paul committed
405
406
407
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
408
    {
Khalique's avatar
Khalique committed
409
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
410
        auto l0 = args[0];
Khalique's avatar
Khalique committed
411
        if(starts_with(name, "Global"))
412
        {
Khalique's avatar
Khalique committed
413
414
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
415
        }
Paul's avatar
Paul committed
416
417
        if(contains(attributes, "pads"))
        {
418
419
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
420
            if(padding.size() != 4)
421
            {
Paul's avatar
Paul committed
422
                MIGRAPHX_THROW("padding should have 4 values");
423
            }
Scott Thornton's avatar
Scott Thornton committed
424
            if(padding[0] != padding[2] || padding[1] != padding[3])
425
            {
426
427
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
428
429
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
430
431
432
433
434
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
435
            }
Paul's avatar
Paul committed
436
437
438
439
440
441
442
443
444
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
445
        if(contains(attributes, "auto_pad"))
446
447
        {
            auto s = attributes["auto_pad"].s();
448
            if(s.find("SAME_UPPER") == std::string::npos)
449
            {
450
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
451
            }
452
            op.padding_mode = op::padding_mode_t::same;
453
454
        }

455
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
456
457
    }

Paul's avatar
Paul committed
458
    instruction_ref
Paul's avatar
Paul committed
459
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
460
    {
461
        op::reshape op;
Paul's avatar
Paul committed
462
463
        if(args.size() == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
464
            if(contains(attributes, "shape"))
465
466
467
468
469
470
            {
                literal s = parse_value(attributes.at("shape"));
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
471
472
473
                MIGRAPHX_THROW(
                    "Parse_reshape: shape attribute is needed when only one argument is provided!");
            }
Paul's avatar
Paul committed
474
475
476
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
477
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
478
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
479
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
480
        }
481

Shucai Xiao's avatar
Shucai Xiao committed
482
        if(!args[0]->get_shape().standard())
483
484
485
486
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }

Paul's avatar
Paul committed
487
488
489
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
490
    instruction_ref
Paul's avatar
Paul committed
491
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
492
    {
493
        uint64_t axis = 1;
Paul's avatar
Paul committed
494
495
496
497
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
498
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
499
500
    }

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
519
520
521
522
523
524
525
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
526

527
528
529
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
530
        int axis = 0;
531
532
533
534
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
535
        op::gather op{axis};
536
537
538
        return prog.add_instruction(op, std::move(args));
    }

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
559
560
561
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
562
    {
Shucai Xiao's avatar
Shucai Xiao committed
563
        literal v = parse_value(attributes.at("value"));
564
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
565
        if(v.get_shape().elements() == 0)
566
567
568
569
        {
            return prog.add_literal(literal{});
        }

570
571
572
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
573
        {
574
            migraphx::shape scalar_shape{v.get_shape().type()};
575
576
577
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
578
579
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
580

Paul's avatar
Paul committed
581
    instruction_ref
Paul's avatar
Paul committed
582
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
583
584
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
585
        float beta  = 1.0f;
Paul's avatar
Paul committed
586
587
588
589
590
591
592
593
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
594
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
595
596
597
598
599
600
601
602
603
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
604
605
606
607
608
609

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

610
611
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
612
613
        if(args.size() == 3)
        {
614
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
615
            {
Shucai Xiao's avatar
Shucai Xiao committed
616
                auto out_lens   = l1->get_shape().lens();
617
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
618
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
619
620
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
621
                {
622
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
623
                }
624
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
625
            }
Paul's avatar
Paul committed
626
        }
627
628

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
629
630
    }

631
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
632
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
633
    {
Shucai Xiao's avatar
Shucai Xiao committed
634
635
        auto l0      = args[0];
        auto l1      = args[1];
636
637
638
639
640
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
641
        if(l0_lens.size() == 1)
642
643
644
645
646
647
648
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
649
        if(l1_lens.size() == 1)
650
651
652
653
654
655
656
657
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
658
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
659
660
661
662
663
664
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
665
            l0_broadcasted_lens = output_lens;
666
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
667
            l1_broadcasted_lens = output_lens;
668
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
669
            if(l0_lens != l0_broadcasted_lens)
670
671
672
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
673
            if(l1_lens != l1_broadcasted_lens)
674
675
676
677
678
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
679
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
680
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
681
        if(is_a_prepended)
682
683
684
685
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
686
        if(is_b_appended)
687
688
689
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
690

691
692
693
        return dot_res;
    }

694
    instruction_ref
Paul's avatar
Paul committed
695
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
696
    {
Scott Thornton's avatar
Scott Thornton committed
697
698
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
699
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
700
        bool is_test                                      = false;
701
702
703
704
705
706
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
707
            momentum = parse_value(attributes.at("momentum")).at<float>();
708
709
710
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
711
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
712
713
714
        }
        if(contains(attributes, "spatial"))
        {
715
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
716
717
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
718
        }
Paul's avatar
Paul committed
719
        (void)is_test;
Paul's avatar
Paul committed
720
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
721
        return prog.add_instruction(op, std::move(args));
722
723
    }

724
725
726
727
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
728
        float alpha = 0.01; // default alpha val for leaky relu
729
730
731
732
733
734
735
736
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
737
738
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
739
740
741
742
743
744
745
746
747
748
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
749
750
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
751
752
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
753
754
755
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
756
757
758
759
760
761
762
763
764
765
766
767
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
784
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
785

Khalique's avatar
Khalique committed
786
787
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
788
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
789

790
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
791
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
792
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
793
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
794
    }
Khalique's avatar
Khalique committed
795

Khalique's avatar
Khalique committed
796
797
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
798
799
800
801
802
803
804
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
805
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
806
807
    }

Khalique's avatar
Khalique committed
808
809
810
811
812
813
814
815
816
817
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
818
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
819
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
820
821
822
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
823
824
825
826
827
828
829
830
831
832
833
834
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
835
836
837
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
838
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
839
840
    {
        if(args.size() != 1)
841
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
878
879
        if(contains(attributes, "extra_shape"))
        {
880
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
881
882
        }

883
884
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
885
            if(args.size() != 1)
886
            {
887
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
888
889
            }

Shucai Xiao's avatar
Shucai Xiao committed
890
891
            if(contains(attributes, "shape"))
            {
892
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
893
                               "at the same time");
894
895
            }

896
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
897
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
898

899
900
901
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
902
903
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
904
905
906
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
907
908
            if(!contains(attributes, "shape"))
            {
909
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
910
911
912
            }

            literal ls = parse_value(attributes.at("shape"));
913
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
914
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
915
            migraphx::shape s{type, dims};
916
917
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
918
919
920
        }
        else
        {
921
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
922
923
924
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
925
926
927
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
928
929
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
930
        if(contains(attributes, "value"))
931
932
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
933
            if(l_val.get_shape().elements() != 1)
934
935
936
937
938
939
940
941
942
943
944
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
945

Shucai Xiao's avatar
Shucai Xiao committed
946
        if(args.empty())
947
        {
Shucai Xiao's avatar
Shucai Xiao committed
948
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
949
950
951
        }
        else
        {
952
953
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
954
            if(args[0]->get_shape().elements() == 0)
955
            {
956
                s = migraphx::shape{type, {1}, {0}};
957
            }
958
959
960
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
961
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
962

963
964
965
966
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
967

Shucai Xiao's avatar
Shucai Xiao committed
968
            literal l_out{};
969
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
970
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
971
                // l_val contains only one element
Shucai Xiao's avatar
Shucai Xiao committed
972
                std::vector<val_type> out_vec(s.elements(), *val.begin());
973
974
975
976
977
978
979
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
980
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
981
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
982
    {
Shucai Xiao's avatar
Shucai Xiao committed
983
        auto in_lens             = args[0]->get_shape().lens();
984
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
985
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
986
987
988
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
989
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
990
991
    }

Shucai Xiao's avatar
Shucai Xiao committed
992
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
993
994
995
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
996
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
997
998
999

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1000
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1001
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1002
1003
1004
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1014
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1015
1016
        if(direction == "bidirectional")
        {
1017
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1018
1019
1020
        }
        else if(direction == "reverse")
        {
1021
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1022
1023
        }

1024
        std::vector<std::string> vec_names{"tanh"};
1025
1026
1027
1028
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1029
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1030
1031
1032
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1033
1034
        }

1035
1036
1037
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1038
        if(name_it != vec_names.end())
1039
1040
1041
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1042

Shucai Xiao's avatar
Shucai Xiao committed
1043
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1044
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1045
        // if only one actv function is provided, we use it in both
1046
        // forward and reverse direction
1047
        if(dirct == op::rnn_direction::bidirectional)
1048
        {
Shucai Xiao's avatar
Shucai Xiao committed
1049
            if(vec_names.size() == 1)
1050
1051
1052
1053
1054
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1055
1056
1057
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1058
        });
Shucai Xiao's avatar
Shucai Xiao committed
1059

Shucai Xiao's avatar
Shucai Xiao committed
1060
1061
1062
1063
1064
1065
1066
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1067
1068
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1069
        if(args.size() < 6)
1070
1071
1072
1073
1074
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1075
1076
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1077
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1078

1079
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1080
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1081

Shucai Xiao's avatar
Shucai Xiao committed
1082
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1083
1084
    }

1085
    std::vector<instruction_ref>
1086
1087
1088
1089
1090
1091
1092
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1093
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1094
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1095
1096
1097
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1098
1099
1100
1101
1102
1103
1104
1105
1106
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1107
        op::rnn_direction dirct = op::rnn_direction::forward;
1108
1109
        if(direction == "bidirectional")
        {
1110
            dirct = op::rnn_direction::bidirectional;
1111
1112
1113
        }
        else if(direction == "reverse")
        {
1114
            dirct = op::rnn_direction::reverse;
1115
1116
        }

1117
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1118
1119
        if(contains(attributes, "activations"))
        {
1120
            auto names = attributes.at("activations").strings();
1121
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1122
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1123
1124
1125
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1126
1127
        }

1128
        // need 4 activation functions
1129
        if(dirct == op::rnn_direction::bidirectional)
1130
        {
Shucai Xiao's avatar
Shucai Xiao committed
1131
            // 4 activation functions are used in the bidirectional
1132
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1135
1136
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1137
1138
1139
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1140
            if(vec_names.size() == 1)
1141
            {
1142
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1143
            }
1144
            else if(vec_names.size() == 2)
1145
            {
1146
1147
1148
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1149
            }
1150
            else if(vec_names.size() == 3)
1151
            {
1152
                vec_names.push_back(vec_names.at(2));
1153
1154
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1155
        else
1156
        {
1157
            if(vec_names.size() == 1)
1158
            {
1159
                vec_names.push_back(vec_names.at(0));
1160
1161
1162
            }
        }

1163
1164
1165
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1166
        if(name_it != vec_names.end())
1167
1168
1169
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1170

Shucai Xiao's avatar
Shucai Xiao committed
1171
1172
1173
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1174
        });
1175
1176
1177
1178
1179
1180
1181
1182

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1183
        if(contains(attributes, "linear_before_reset"))
1184
1185
1186
1187
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1188
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1189
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1190
1191
1192
1193
1194
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1195
1196
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1197
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1198
            std::move(args));
1199
1200

        // second output for last gru output
1201
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1202

Shucai Xiao's avatar
Shucai Xiao committed
1203
        return {hidden_states, last_output};
1204
1205
    }

Shucai Xiao's avatar
Shucai Xiao committed
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1228
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1229
1230
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1231
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1232
1233
1234
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1235
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1236
        }
Shucai Xiao's avatar
Shucai Xiao committed
1237
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1238
        {
Shucai Xiao's avatar
Shucai Xiao committed
1239
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1240
1241
1242
1243
1244
1245
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1246
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1247
1248
1249
1250
1251
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1252
1253
1254
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1255
1256
1257
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1258
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1259
1260
1261
1262
1263
1264
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1265
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1266
1267
1268
1269
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1270
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1271
1272
1273
1274
1275
1276
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1277
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1278
1279
1280

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1281
1282
1283
1284
1285
1286
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1287
1288
1289
1290
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1291
1292
1293
1294
1295
1296
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1297
1298
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1299
1300
1301
1302
1303
1304
1305
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1306
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1307

Shucai Xiao's avatar
Shucai Xiao committed
1308
1309
1310
1311
1312
1313
1314
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1315
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1316

Shucai Xiao's avatar
Shucai Xiao committed
1317
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1318
1319
1320
1321
1322
1323
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1324
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1325
1326
1327

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1328
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1329
1330
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1331
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1332
1333
1334
            }
        }

1335
1336
1337
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1338
        if(name_it != vec_names.end())
1339
1340
1341
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1364
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1365
1366
1367
1368
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1369
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1370
1371

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1372
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1373
1374
1375
1376
1377
1378

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1379

Shucai Xiao's avatar
Shucai Xiao committed
1380
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1381
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1382
1383
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1384
1385
1386
1387
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1388
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1389
1390
1391
1392
1393
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1394
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1405
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1406
1407
1408
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1409
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1410
            return prog.add_instruction(op::squeeze{axes}, ins);
1411
1412
        }
    }
1413

Shucai Xiao's avatar
Shucai Xiao committed
1414
1415
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1416
    {
Shucai Xiao's avatar
Shucai Xiao committed
1417
        if(!contains(attributes, "to"))
1418
1419
1420
1421
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1422
        int to_type        = parse_value(attributes.at("to")).at<int>();
1423
1424
1425
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1426

Paul's avatar
Paul committed
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1439
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1440
1441
1442
1443
1444
1445
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1446
1447
1448
1449
1450
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1451
1452
1453
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1466
        }
Paul's avatar
Paul committed
1467
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1468
        {
Paul's avatar
Paul committed
1469
            this->parse_node(output.name());
Paul's avatar
Paul committed
1470
1471
1472
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1473
    void parse_undefined(const std::string& name)
1474
    {
Shucai Xiao's avatar
Shucai Xiao committed
1475
        auto ins           = prog.add_instruction(op::undefined{});
1476
1477
1478
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1479
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1480
    {
Paul's avatar
Paul committed
1481
        if(name.empty())
Paul's avatar
Paul committed
1482
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1483
1484
1485
1486
1487
1488
1489
1490
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1491
1492
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1493
                }
Shucai Xiao's avatar
Shucai Xiao committed
1494
                else if(input.empty())
Paul's avatar
Paul committed
1495
                {
1496
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1497
                }
1498
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1499
            }
Paul's avatar
Paul committed
1500
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1501
1502
            if(ops.count(node.op_type()) == 0)
            {
1503
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1504
1505
1506
            }
            else
            {
Paul's avatar
Paul committed
1507
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1508
            }
Paul's avatar
Paul committed
1509
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1510
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1511
1512
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1513
1514
1515
            }
            else
            {
Paul's avatar
Paul committed
1516
1517
1518
1519
1520
1521
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1539
        std::size_t n = 0;
Paul's avatar
Paul committed
1540
1541
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1542
            if(node.output().empty())
Paul's avatar
Paul committed
1543
            {
Paul's avatar
Paul committed
1544
                if(node.name().empty())
Paul's avatar
Paul committed
1545
1546
1547
1548
1549
1550
1551
1552
1553
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1579
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1580
1581
1582
1583
1584
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1585
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1586
1587
1588
1589
1590
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1591
1592
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1593
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1594
1595
1596
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1597
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1598
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1599
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1600
1601
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1602
1603
1604
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1605
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1606
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1607
1608
1609
1610
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1611
1612
1613
1614
1615
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1616
            MIGRAPHX_THROW("Invalid tensor type");
1617
        }
Paul's avatar
Paul committed
1618
1619
1620
1621
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1622
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1623
1624
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1625
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1626
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1627
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1628
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1629
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1630
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1631
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1632
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1633
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1634
1635
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1636
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1637
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1638
        {
Khalique's avatar
Khalique committed
1639
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1640
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1641
1642
1643
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1644
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1645
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1646
        }
Paul's avatar
Paul committed
1647
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1648
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1649
1650
1651
1652
1653
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1654
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1655
1656
    }

Khalique's avatar
Khalique committed
1657
    static literal
1658
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1659
    {
Khalique's avatar
Khalique committed
1660
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1661
        if(dims.empty())
1662
            return literal{{shape_type}, data};
1663
1664
1665
        return literal{{shape_type, dims}, data};
    }

1666
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1667
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1668
1669
    {
        if(dims.empty())
1670
            return literal{{shape_type}, data.begin(), data.end()};
1671
        return literal{{shape_type, dims}, data.begin(), data.end()};
1672
1673
    }

Paul's avatar
Paul committed
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1693
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1694
1695
1696
1697
1698
1699
1700
1701
1702
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1703
        auto&& tensor_dims = t.tensor_type().shape().dim();
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1715
1716
        return {shape_type, dims};
    }
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1739
1740
1741

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
1742
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
1743
1744
1745
1746
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1770
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1771
} // namespace migraphx