onnx.cpp 65.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
225
226
    }

Paul's avatar
Paul committed
227
    template <class T>
Paul's avatar
Paul committed
228
229
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
230
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
231
232
233
234
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
235
    template <class T>
Khalique's avatar
Khalique committed
236
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
239
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
240
241
242
243
244
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
245
        });
Khalique's avatar
Khalique committed
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
264
265
266
267
268
269
270
271
272
273
    //    instruction_ref
    //    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    //    {
    //        auto dims = args.front()->get_shape().lens();
    //        auto r =
    //            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}},
    //            args.front());
    //        auto s = prog.add_instruction(op::softmax{}, r);
    //        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    //    }
274
275

    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
276
277
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
278
    {
279
280
281
282
283
284
285
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::softmax{axis}, std::move(args));
Paul's avatar
Paul committed
286
287
    }

Shucai Xiao's avatar
Shucai Xiao committed
288
289
290
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
291
292
293
294
295
296
297
298
299
300
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

301
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
302
303
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
304
    {
305
        int64_t axis = 0;
306
307
        if(contains(attributes, "axis"))
        {
308
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
309
310
        }

Shucai Xiao's avatar
Shucai Xiao committed
311
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
312
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
313
314
315
316
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
317
        if(keep_dims == 0)
318
319
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
320
            return prog.add_instruction(op::squeeze{{axis}}, ins);
321
322
323
324
325
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
326
327
328
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
329
330
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
331
    {
332
        int64_t axis = 0;
333
334
        if(contains(attributes, "axis"))
        {
335
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
336
337
        }

Shucai Xiao's avatar
Shucai Xiao committed
338
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
339
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
340
341
342
343
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
344
        if(keep_dims == 0)
345
346
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
347
            return prog.add_instruction(op::squeeze{{axis}}, ins);
348
349
350
351
352
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
353
354
    }

Paul's avatar
Paul committed
355
    instruction_ref
Paul's avatar
Paul committed
356
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
357
    {
358
        op::convolution op;
359
        auto l0 = args[0];
Paul's avatar
Paul committed
360
361
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
362
            if(contains(attributes, "auto_pad"))
363
            {
Paul's avatar
Paul committed
364
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
365
            }
366
367
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
368
            if(padding.size() != 4)
369
            {
Paul's avatar
Paul committed
370
                MIGRAPHX_THROW("padding should have 4 values");
371
            }
Scott Thornton's avatar
Scott Thornton committed
372
            if(padding[0] != padding[2] || padding[1] != padding[3])
373
            {
374
375
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
376
                l0      = prog.add_instruction(op::pad{padding}, l0);
377
            }
378
379
380
381
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
382
            }
Paul's avatar
Paul committed
383
        }
Paul's avatar
Paul committed
384
385
386
387
388
389
390
391
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
392
        if(contains(attributes, "auto_pad"))
393
394
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
395
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
396
            {
Paul's avatar
Paul committed
397
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
398
399
            }

wsttiger's avatar
fixes  
wsttiger committed
400
            if(s.find("SAME") != std::string::npos)
401
            {
402
                op.padding_mode = op::padding_mode_t::same;
403
404
            }
        }
Khalique's avatar
Khalique committed
405
406
407
408
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
409
410
411
412
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
413
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
414
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
415
        }
416
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
417
    }
Paul's avatar
Paul committed
418

Paul's avatar
Paul committed
419
420
421
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
422
    {
Khalique's avatar
Khalique committed
423
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
424
        auto l0 = args[0];
Khalique's avatar
Khalique committed
425
        if(starts_with(name, "Global"))
426
        {
Khalique's avatar
Khalique committed
427
428
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
429
        }
Paul's avatar
Paul committed
430
431
        if(contains(attributes, "pads"))
        {
432
433
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
434
            if(padding.size() != 4)
435
            {
Paul's avatar
Paul committed
436
                MIGRAPHX_THROW("padding should have 4 values");
437
            }
Scott Thornton's avatar
Scott Thornton committed
438
            if(padding[0] != padding[2] || padding[1] != padding[3])
439
            {
440
441
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
442
443
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
444
445
446
447
448
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
449
            }
Paul's avatar
Paul committed
450
451
452
453
454
455
456
457
458
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
459
        if(contains(attributes, "auto_pad"))
460
461
        {
            auto s = attributes["auto_pad"].s();
462
            if(s.find("SAME_UPPER") == std::string::npos)
463
            {
464
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
465
            }
466
            op.padding_mode = op::padding_mode_t::same;
467
468
        }

469
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
470
471
    }

Paul's avatar
Paul committed
472
    instruction_ref
Paul's avatar
Paul committed
473
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
474
    {
475
        op::reshape op;
Paul's avatar
Paul committed
476
477
        if(args.size() == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
478
            if(contains(attributes, "shape"))
479
480
481
482
483
484
            {
                literal s = parse_value(attributes.at("shape"));
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
485
486
487
                MIGRAPHX_THROW(
                    "Parse_reshape: shape attribute is needed when only one argument is provided!");
            }
Paul's avatar
Paul committed
488
489
490
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
491
            auto s = args[1]->eval();
Paul's avatar
Paul committed
492
            if(s.empty())
Paul's avatar
Paul committed
493
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
494
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
495
        }
496

Shucai Xiao's avatar
Shucai Xiao committed
497
        if(!args[0]->get_shape().standard())
498
499
500
501
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }

Paul's avatar
Paul committed
502
503
504
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
505
    instruction_ref
Paul's avatar
Paul committed
506
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
507
    {
508
        uint64_t axis = 1;
Paul's avatar
Paul committed
509
510
511
512
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
513
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
514
515
    }

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
534
535
536
537
538
539
540
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
541

542
543
544
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
545
        int axis = 0;
546
547
548
549
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
550
        op::gather op{axis};
551
552
553
        return prog.add_instruction(op, std::move(args));
    }

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
574
575
576
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
577
    {
Shucai Xiao's avatar
Shucai Xiao committed
578
        literal v = parse_value(attributes.at("value"));
579
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
580
        if(v.get_shape().elements() == 0)
581
582
583
584
        {
            return prog.add_literal(literal{});
        }

585
586
587
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
588
        {
589
            migraphx::shape scalar_shape{v.get_shape().type()};
590
591
592
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
593
594
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
595

Paul's avatar
Paul committed
596
    instruction_ref
Paul's avatar
Paul committed
597
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
598
599
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
600
        float beta  = 1.0f;
Paul's avatar
Paul committed
601
602
603
604
605
606
607
608
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
609
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
610
611
612
613
614
615
616
617
618
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
619
620
621
622
623
624

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

625
626
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
627
628
        if(args.size() == 3)
        {
629
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
630
            {
Shucai Xiao's avatar
Shucai Xiao committed
631
                auto out_lens   = l1->get_shape().lens();
632
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
633
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
634
635
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
636
                {
637
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
638
                }
639
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
640
            }
Paul's avatar
Paul committed
641
        }
642
643

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
644
645
    }

646
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
647
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
648
    {
Shucai Xiao's avatar
Shucai Xiao committed
649
650
        auto l0      = args[0];
        auto l1      = args[1];
651
652
653
654
655
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
656
        if(l0_lens.size() == 1)
657
658
659
660
661
662
663
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
664
        if(l1_lens.size() == 1)
665
666
667
668
669
670
671
672
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
673
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
674
675
676
677
678
679
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
680
            l0_broadcasted_lens = output_lens;
681
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
682
            l1_broadcasted_lens = output_lens;
683
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
684
            if(l0_lens != l0_broadcasted_lens)
685
686
687
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
688
            if(l1_lens != l1_broadcasted_lens)
689
690
691
692
693
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
694
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
695
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
696
        if(is_a_prepended)
697
698
699
700
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
701
        if(is_b_appended)
702
703
704
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
705

706
707
708
        return dot_res;
    }

709
    instruction_ref
Paul's avatar
Paul committed
710
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
711
    {
Scott Thornton's avatar
Scott Thornton committed
712
713
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
714
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
715
        bool is_test                                      = false;
716
717
718
719
720
721
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
722
            momentum = parse_value(attributes.at("momentum")).at<float>();
723
724
725
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
726
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
727
728
729
        }
        if(contains(attributes, "spatial"))
        {
730
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
731
732
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
733
        }
Paul's avatar
Paul committed
734
        (void)is_test;
Paul's avatar
Paul committed
735
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
736
        return prog.add_instruction(op, std::move(args));
737
738
    }

739
740
741
742
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
743
        float alpha = 0.01; // default alpha val for leaky relu
744
745
746
747
748
749
750
751
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
752
753
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
754
755
756
757
758
759
760
761
762
763
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
764
765
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
766
767
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
768
769
770
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
771
772
773
774
775
776
777
778
779
780
781
782
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
799
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
800

Khalique's avatar
Khalique committed
801
802
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
803
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
804

805
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
806
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
807
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
808
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
809
    }
Khalique's avatar
Khalique committed
810

Khalique's avatar
Khalique committed
811
812
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
813
814
815
816
817
818
819
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
820
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
821
822
    }

Khalique's avatar
Khalique committed
823
824
825
826
827
828
829
830
831
832
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
833
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
834
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
835
836
837
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
838
839
840
841
842
843
844
845
846
847
848
849
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
850
851
852
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
853
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
854
855
    {
        if(args.size() != 1)
856
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
893
894
        if(contains(attributes, "extra_shape"))
        {
895
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
896
897
        }

898
899
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
900
            if(args.size() != 1)
901
            {
902
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
903
904
            }

Shucai Xiao's avatar
Shucai Xiao committed
905
906
            if(contains(attributes, "shape"))
            {
907
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
908
                               "at the same time");
909
910
            }

911
912
913
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
914
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
915
            }
916

917
918
919
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
920
921
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
922
923
924
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
925
926
            if(!contains(attributes, "shape"))
            {
927
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
928
929
930
            }

            literal ls = parse_value(attributes.at("shape"));
931
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
932
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
933
            migraphx::shape s{type, dims};
934
935
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
936
937
938
        }
        else
        {
939
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
940
941
942
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
943
944
945
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
946
947
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
948
        if(contains(attributes, "value"))
949
950
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
951
            if(l_val.get_shape().elements() != 1)
952
953
954
955
956
957
958
959
960
961
962
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
963

Shucai Xiao's avatar
Shucai Xiao committed
964
        if(args.empty())
965
        {
966
            MIGRAPHX_THROW("Parse ConstantOfShape : must have 1 input!");
967
968
969
        }
        else
        {
970
971
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
972
            if(args[0]->get_shape().elements() == 0)
973
            {
974
                s = migraphx::shape{type, {1}, {0}};
975
            }
976
977
978
979
980
981
982
            else
            {
                migraphx::argument in = args[0]->eval();
                if(in.empty())
                {
                    MIGRAPHX_THROW("Parse ConstantOfShape: cannot handle dynamic shape as input");
                }
983

984
985
986
987
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
988
989
990
991
992
993
994
995
996
997
998
999
1000

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1001
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1002
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1003
    {
Shucai Xiao's avatar
Shucai Xiao committed
1004
        auto in_lens             = args[0]->get_shape().lens();
1005
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1006
        if(arg_s.empty())
1007
1008
1009
1010
1011
1012
        {
            MIGRAPHX_THROW("Parse Expand: cannot handle dynamic shape as input");
        }
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1013
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1014
1015
    }

Shucai Xiao's avatar
Shucai Xiao committed
1016
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1017
1018
1019
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1020
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1021
1022
1023

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1024
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1025
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1026
1027
1028
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1038
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1039
1040
        if(direction == "bidirectional")
        {
1041
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1042
1043
1044
        }
        else if(direction == "reverse")
        {
1045
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1046
1047
        }

1048
        std::vector<std::string> vec_names{"tanh"};
1049
1050
1051
1052
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1053
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1054
1055
1056
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1057
1058
        }

1059
1060
1061
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1062
        if(name_it != vec_names.end())
1063
1064
1065
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1066

Shucai Xiao's avatar
Shucai Xiao committed
1067
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1068
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1069
        // if only one actv function is provided, we use it in both
1070
        // forward and reverse direction
1071
        if(dirct == op::rnn_direction::bidirectional)
1072
        {
Shucai Xiao's avatar
Shucai Xiao committed
1073
            if(vec_names.size() == 1)
1074
1075
1076
1077
1078
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1079
1080
1081
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1082
        });
Shucai Xiao's avatar
Shucai Xiao committed
1083

Shucai Xiao's avatar
Shucai Xiao committed
1084
1085
1086
1087
1088
1089
1090
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1091
1092
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1093
        if(args.size() < 6)
1094
1095
1096
1097
1098
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1099
1100
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1101
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1102

1103
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1104
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1105

Shucai Xiao's avatar
Shucai Xiao committed
1106
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1107
1108
    }

1109
    std::vector<instruction_ref>
1110
1111
1112
1113
1114
1115
1116
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1117
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1118
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1119
1120
1121
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1122
1123
1124
1125
1126
1127
1128
1129
1130
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1131
        op::rnn_direction dirct = op::rnn_direction::forward;
1132
1133
        if(direction == "bidirectional")
        {
1134
            dirct = op::rnn_direction::bidirectional;
1135
1136
1137
        }
        else if(direction == "reverse")
        {
1138
            dirct = op::rnn_direction::reverse;
1139
1140
        }

1141
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1142
1143
        if(contains(attributes, "activations"))
        {
1144
            auto names = attributes.at("activations").strings();
1145
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1146
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1147
1148
1149
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1150
1151
        }

1152
        // need 4 activation functions
1153
        if(dirct == op::rnn_direction::bidirectional)
1154
        {
Shucai Xiao's avatar
Shucai Xiao committed
1155
            // 4 activation functions are used in the bidirectional
1156
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1157
1158
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1159
1160
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1161
1162
1163
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1164
            if(vec_names.size() == 1)
1165
            {
1166
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1167
            }
1168
            else if(vec_names.size() == 2)
1169
            {
1170
1171
1172
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1173
            }
1174
            else if(vec_names.size() == 3)
1175
            {
1176
                vec_names.push_back(vec_names.at(2));
1177
1178
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1179
        else
1180
        {
1181
            if(vec_names.size() == 1)
1182
            {
1183
                vec_names.push_back(vec_names.at(0));
1184
1185
1186
            }
        }

1187
1188
1189
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1190
        if(name_it != vec_names.end())
1191
1192
1193
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1194

Shucai Xiao's avatar
Shucai Xiao committed
1195
1196
1197
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1198
        });
1199
1200
1201
1202
1203
1204
1205
1206

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1207
        if(contains(attributes, "linear_before_reset"))
1208
1209
1210
1211
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1212
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1213
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1214
1215
1216
1217
1218
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1219
1220
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1221
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1222
            std::move(args));
1223
1224

        // second output for last gru output
1225
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1226

Shucai Xiao's avatar
Shucai Xiao committed
1227
        return {hidden_states, last_output};
1228
1229
    }

Shucai Xiao's avatar
Shucai Xiao committed
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1252
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1253
1254
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1255
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1256
1257
1258
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1259
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1260
        }
Shucai Xiao's avatar
Shucai Xiao committed
1261
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1262
        {
Shucai Xiao's avatar
Shucai Xiao committed
1263
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1264
1265
1266
1267
1268
1269
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1270
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1271
1272
1273
1274
1275
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1276
1277
1278
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1279
1280
1281
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1282
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1283
1284
1285
1286
1287
1288
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1289
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1290
1291
1292
1293
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1294
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1295
1296
1297
1298
1299
1300
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1301
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1302
1303
1304

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1305
1306
1307
1308
1309
1310
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1311
1312
1313
1314
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1315
1316
1317
1318
1319
1320
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1321
1322
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1323
1324
1325
1326
1327
1328
1329
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1330
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1331

Shucai Xiao's avatar
Shucai Xiao committed
1332
1333
1334
1335
1336
1337
1338
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1339
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1340

Shucai Xiao's avatar
Shucai Xiao committed
1341
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1342
1343
1344
1345
1346
1347
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1348
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1349
1350
1351

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1352
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1353
1354
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1355
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1356
1357
1358
            }
        }

1359
1360
1361
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1362
        if(name_it != vec_names.end())
1363
1364
1365
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1388
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1389
1390
1391
1392
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1393
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1394
1395

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1396
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1397
1398
1399
1400
1401
1402

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1403

Shucai Xiao's avatar
Shucai Xiao committed
1404
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1405
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1406
1407
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1408
1409
1410
1411
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1412
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1413
1414
1415
1416
1417
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1418
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1429
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1430
1431
1432
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1433
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1434
            return prog.add_instruction(op::squeeze{axes}, ins);
1435
1436
        }
    }
1437

Shucai Xiao's avatar
Shucai Xiao committed
1438
1439
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1440
    {
Shucai Xiao's avatar
Shucai Xiao committed
1441
        if(!contains(attributes, "to"))
1442
1443
1444
1445
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1446
        int to_type        = parse_value(attributes.at("to")).at<int>();
1447
1448
1449
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1450

Paul's avatar
Paul committed
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1463
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1464
1465
1466
1467
1468
1469
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1470
1471
1472
1473
1474
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1475
1476
1477
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1490
        }
Paul's avatar
Paul committed
1491
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1492
        {
Paul's avatar
Paul committed
1493
            this->parse_node(output.name());
Paul's avatar
Paul committed
1494
1495
1496
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1497
    void parse_undefined(const std::string& name)
1498
    {
Shucai Xiao's avatar
Shucai Xiao committed
1499
        auto ins           = prog.add_instruction(op::undefined{});
1500
1501
1502
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1503
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1504
    {
Paul's avatar
Paul committed
1505
        if(name.empty())
Paul's avatar
Paul committed
1506
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1507
1508
1509
1510
1511
1512
1513
1514
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1515
1516
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1517
                }
Shucai Xiao's avatar
Shucai Xiao committed
1518
                else if(input.empty())
Paul's avatar
Paul committed
1519
                {
1520
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1521
                }
1522
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1523
            }
Paul's avatar
Paul committed
1524
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1525
1526
            if(ops.count(node.op_type()) == 0)
            {
1527
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1528
1529
1530
            }
            else
            {
Paul's avatar
Paul committed
1531
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1532
            }
Paul's avatar
Paul committed
1533
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1534
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1535
1536
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1537
1538
1539
            }
            else
            {
Paul's avatar
Paul committed
1540
1541
1542
1543
1544
1545
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1563
        std::size_t n = 0;
Paul's avatar
Paul committed
1564
1565
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1566
            if(node.output().empty())
Paul's avatar
Paul committed
1567
            {
Paul's avatar
Paul committed
1568
                if(node.name().empty())
Paul's avatar
Paul committed
1569
1570
1571
1572
1573
1574
1575
1576
1577
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1603
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1604
1605
1606
1607
1608
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1609
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1610
1611
1612
1613
1614
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1615
1616
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1617
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1618
1619
1620
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1621
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1622
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1623
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1624
1625
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1626
1627
1628
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1629
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1630
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1631
1632
1633
1634
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1635
1636
1637
1638
1639
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1640
            MIGRAPHX_THROW("Invalid tensor type");
1641
        }
Paul's avatar
Paul committed
1642
1643
1644
1645
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1646
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1647
1648
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1649
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1650
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1651
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1652
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1653
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1654
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1655
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1656
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1657
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1658
1659
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1660
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1661
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1662
        {
Khalique's avatar
Khalique committed
1663
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1664
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1665
1666
1667
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1668
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1669
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1670
        }
Paul's avatar
Paul committed
1671
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1672
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1673
1674
1675
1676
1677
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1678
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1679
1680
    }

Khalique's avatar
Khalique committed
1681
    static literal
1682
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1683
    {
Khalique's avatar
Khalique committed
1684
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1685
        if(dims.empty())
1686
            return literal{{shape_type}, data};
1687
1688
1689
        return literal{{shape_type, dims}, data};
    }

1690
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1691
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1692
1693
    {
        if(dims.empty())
1694
            return literal{{shape_type}, data.begin(), data.end()};
1695
        return literal{{shape_type, dims}, data.begin(), data.end()};
1696
1697
    }

Paul's avatar
Paul committed
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1717
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1718
1719
1720
1721
1722
1723
1724
1725
1726
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1727
        auto&& tensor_dims = t.tensor_type().shape().dim();
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1739
1740
        return {shape_type, dims};
    }
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1786
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1787
} // namespace migraphx