onnx.cpp 64.9 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
225
226
    }

Paul's avatar
Paul committed
227
    template <class T>
Paul's avatar
Paul committed
228
229
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
230
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
231
232
233
234
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
235
    template <class T>
Khalique's avatar
Khalique committed
236
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
239
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
240
241
242
243
244
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
245
        });
Khalique's avatar
Khalique committed
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
264
265
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
266
    {
Shucai Xiao's avatar
Shucai Xiao committed
267
268
269
270
271
272
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}},
            args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
273
274
    }

Shucai Xiao's avatar
Shucai Xiao committed
275
276
277
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
278
279
280
281
282
283
284
285
286
287
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

288
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
289
290
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
291
    {
292
        int64_t axis = 0;
293
294
        if(contains(attributes, "axis"))
        {
295
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
296
297
        }

Shucai Xiao's avatar
Shucai Xiao committed
298
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
299
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
300
301
302
303
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
304
        if(keep_dims == 0)
305
306
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
307
            return prog.add_instruction(op::squeeze{{axis}}, ins);
308
309
310
311
312
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
313
314
315
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
316
317
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
318
    {
319
        int64_t axis = 0;
320
321
        if(contains(attributes, "axis"))
        {
322
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
323
324
        }

Shucai Xiao's avatar
Shucai Xiao committed
325
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
326
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
327
328
329
330
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
331
        if(keep_dims == 0)
332
333
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
334
            return prog.add_instruction(op::squeeze{{axis}}, ins);
335
336
337
338
339
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
340
341
    }

Paul's avatar
Paul committed
342
    instruction_ref
Paul's avatar
Paul committed
343
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
344
    {
345
        op::convolution op;
346
        auto l0 = args[0];
Paul's avatar
Paul committed
347
348
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
349
            if(contains(attributes, "auto_pad"))
350
            {
Paul's avatar
Paul committed
351
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
352
            }
353
354
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
355
            if(padding.size() != 4)
356
            {
Paul's avatar
Paul committed
357
                MIGRAPHX_THROW("padding should have 4 values");
358
            }
Scott Thornton's avatar
Scott Thornton committed
359
            if(padding[0] != padding[2] || padding[1] != padding[3])
360
            {
361
362
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
363
                l0      = prog.add_instruction(op::pad{padding}, l0);
364
            }
365
366
367
368
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
369
            }
Paul's avatar
Paul committed
370
        }
Paul's avatar
Paul committed
371
372
373
374
375
376
377
378
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
379
        if(contains(attributes, "auto_pad"))
380
381
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
382
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
383
            {
Paul's avatar
Paul committed
384
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
385
386
            }

wsttiger's avatar
fixes  
wsttiger committed
387
            if(s.find("SAME") != std::string::npos)
388
            {
389
                op.padding_mode = op::padding_mode_t::same;
390
391
            }
        }
Khalique's avatar
Khalique committed
392
393
394
395
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
396
397
398
399
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
400
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
401
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
402
        }
403
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
404
    }
Paul's avatar
Paul committed
405

Paul's avatar
Paul committed
406
407
408
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
409
    {
Khalique's avatar
Khalique committed
410
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
411
        auto l0 = args[0];
Khalique's avatar
Khalique committed
412
        if(starts_with(name, "Global"))
413
        {
Khalique's avatar
Khalique committed
414
415
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
416
        }
Paul's avatar
Paul committed
417
418
        if(contains(attributes, "pads"))
        {
419
420
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
421
            if(padding.size() != 4)
422
            {
Paul's avatar
Paul committed
423
                MIGRAPHX_THROW("padding should have 4 values");
424
            }
Scott Thornton's avatar
Scott Thornton committed
425
            if(padding[0] != padding[2] || padding[1] != padding[3])
426
            {
427
428
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
429
430
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
431
432
433
434
435
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
436
            }
Paul's avatar
Paul committed
437
438
439
440
441
442
443
444
445
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
446
        if(contains(attributes, "auto_pad"))
447
448
        {
            auto s = attributes["auto_pad"].s();
449
            if(s.find("SAME_UPPER") == std::string::npos)
450
            {
451
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
452
            }
453
            op.padding_mode = op::padding_mode_t::same;
454
455
        }

456
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
457
458
    }

Paul's avatar
Paul committed
459
    instruction_ref
Paul's avatar
Paul committed
460
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
461
    {
462
        op::reshape op;
Paul's avatar
Paul committed
463
464
        if(args.size() == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
465
            if(contains(attributes, "shape"))
466
467
468
469
470
471
            {
                literal s = parse_value(attributes.at("shape"));
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
472
473
474
                MIGRAPHX_THROW(
                    "Parse_reshape: shape attribute is needed when only one argument is provided!");
            }
Paul's avatar
Paul committed
475
476
477
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
478
            auto s = args[1]->eval();
Paul's avatar
Paul committed
479
            if(s.empty())
Paul's avatar
Paul committed
480
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
481
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
482
        }
483

Shucai Xiao's avatar
Shucai Xiao committed
484
        if(!args[0]->get_shape().standard())
485
486
487
488
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }

Paul's avatar
Paul committed
489
490
491
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
492
    instruction_ref
Paul's avatar
Paul committed
493
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
494
    {
495
        uint64_t axis = 1;
Paul's avatar
Paul committed
496
497
498
499
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
500
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
501
502
    }

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
521
522
523
524
525
526
527
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
528

529
530
531
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
532
        int axis = 0;
533
534
535
536
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
537
        op::gather op{axis};
538
539
540
        return prog.add_instruction(op, std::move(args));
    }

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
561
562
563
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
564
    {
Shucai Xiao's avatar
Shucai Xiao committed
565
        literal v = parse_value(attributes.at("value"));
566
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
567
        if(v.get_shape().elements() == 0)
568
569
570
571
        {
            return prog.add_literal(literal{});
        }

572
573
574
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
575
        {
576
            migraphx::shape scalar_shape{v.get_shape().type()};
577
578
579
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
580
581
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
582

Paul's avatar
Paul committed
583
    instruction_ref
Paul's avatar
Paul committed
584
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
585
586
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
587
        float beta  = 1.0f;
Paul's avatar
Paul committed
588
589
590
591
592
593
594
595
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
596
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
597
598
599
600
601
602
603
604
605
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
606
607
608
609
610
611

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

612
613
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
614
615
        if(args.size() == 3)
        {
616
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
617
            {
Shucai Xiao's avatar
Shucai Xiao committed
618
                auto out_lens   = l1->get_shape().lens();
619
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
620
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
621
622
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
623
                {
624
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
625
                }
626
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
627
            }
Paul's avatar
Paul committed
628
        }
629
630

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
631
632
    }

633
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
634
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
635
    {
Shucai Xiao's avatar
Shucai Xiao committed
636
637
        auto l0      = args[0];
        auto l1      = args[1];
638
639
640
641
642
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
643
        if(l0_lens.size() == 1)
644
645
646
647
648
649
650
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
651
        if(l1_lens.size() == 1)
652
653
654
655
656
657
658
659
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
660
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
661
662
663
664
665
666
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
667
            l0_broadcasted_lens = output_lens;
668
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
669
            l1_broadcasted_lens = output_lens;
670
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
671
            if(l0_lens != l0_broadcasted_lens)
672
673
674
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
675
            if(l1_lens != l1_broadcasted_lens)
676
677
678
679
680
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
681
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
682
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
683
        if(is_a_prepended)
684
685
686
687
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
688
        if(is_b_appended)
689
690
691
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
692

693
694
695
        return dot_res;
    }

696
    instruction_ref
Paul's avatar
Paul committed
697
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
698
    {
Scott Thornton's avatar
Scott Thornton committed
699
700
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
701
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
702
        bool is_test                                      = false;
703
704
705
706
707
708
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
709
            momentum = parse_value(attributes.at("momentum")).at<float>();
710
711
712
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
713
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
714
715
716
        }
        if(contains(attributes, "spatial"))
        {
717
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
718
719
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
720
        }
Paul's avatar
Paul committed
721
        (void)is_test;
Paul's avatar
Paul committed
722
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
723
        return prog.add_instruction(op, std::move(args));
724
725
    }

726
727
728
729
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
730
        float alpha = 0.01; // default alpha val for leaky relu
731
732
733
734
735
736
737
738
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
739
740
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
741
742
743
744
745
746
747
748
749
750
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
751
752
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
753
754
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
755
756
757
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
758
759
760
761
762
763
764
765
766
767
768
769
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
786
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
787

Khalique's avatar
Khalique committed
788
789
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
790
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
791

792
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
793
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
794
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
795
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
796
    }
Khalique's avatar
Khalique committed
797

Khalique's avatar
Khalique committed
798
799
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
800
801
802
803
804
805
806
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
807
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
808
809
    }

Khalique's avatar
Khalique committed
810
811
812
813
814
815
816
817
818
819
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
820
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
821
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
822
823
824
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
825
826
827
828
829
830
831
832
833
834
835
836
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
837
838
839
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
840
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
841
842
    {
        if(args.size() != 1)
843
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
880
881
        if(contains(attributes, "extra_shape"))
        {
882
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
883
884
        }

885
886
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
887
            if(args.size() != 1)
888
            {
889
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
890
891
            }

Shucai Xiao's avatar
Shucai Xiao committed
892
893
            if(contains(attributes, "shape"))
            {
894
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
895
                               "at the same time");
896
897
            }

898
899
900
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
901
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
902
            }
903

904
905
906
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
907
908
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
909
910
911
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
912
913
            if(!contains(attributes, "shape"))
            {
914
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
915
916
917
            }

            literal ls = parse_value(attributes.at("shape"));
918
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
919
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
920
            migraphx::shape s{type, dims};
921
922
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
923
924
925
        }
        else
        {
926
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
927
928
929
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
930
931
932
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
933
934
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
935
        if(contains(attributes, "value"))
936
937
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
938
            if(l_val.get_shape().elements() != 1)
939
940
941
942
943
944
945
946
947
948
949
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
950

Shucai Xiao's avatar
Shucai Xiao committed
951
        if(args.empty())
952
        {
953
            MIGRAPHX_THROW("Parse ConstantOfShape : must have 1 input!");
954
955
956
        }
        else
        {
957
958
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
959
            if(args[0]->get_shape().elements() == 0)
960
            {
961
                s = migraphx::shape{type, {1}, {0}};
962
            }
963
964
965
966
967
968
969
            else
            {
                migraphx::argument in = args[0]->eval();
                if(in.empty())
                {
                    MIGRAPHX_THROW("Parse ConstantOfShape: cannot handle dynamic shape as input");
                }
970

971
972
973
974
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
975
976
977
978
979
980
981
982
983
984
985
986
987

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
988
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
989
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
990
    {
Shucai Xiao's avatar
Shucai Xiao committed
991
        auto in_lens             = args[0]->get_shape().lens();
992
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
993
        if(arg_s.empty())
994
995
996
997
998
999
        {
            MIGRAPHX_THROW("Parse Expand: cannot handle dynamic shape as input");
        }
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1000
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1001
1002
    }

Shucai Xiao's avatar
Shucai Xiao committed
1003
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1004
1005
1006
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1007
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1008
1009
1010

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1011
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1012
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1013
1014
1015
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1025
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1026
1027
        if(direction == "bidirectional")
        {
1028
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1029
1030
1031
        }
        else if(direction == "reverse")
        {
1032
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1033
1034
        }

1035
        std::vector<std::string> vec_names{"tanh"};
1036
1037
1038
1039
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1040
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1041
1042
1043
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1044
1045
        }

1046
1047
1048
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1049
        if(name_it != vec_names.end())
1050
1051
1052
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1053

Shucai Xiao's avatar
Shucai Xiao committed
1054
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1055
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1056
        // if only one actv function is provided, we use it in both
1057
        // forward and reverse direction
1058
        if(dirct == op::rnn_direction::bidirectional)
1059
        {
Shucai Xiao's avatar
Shucai Xiao committed
1060
            if(vec_names.size() == 1)
1061
1062
1063
1064
1065
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1066
1067
1068
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1069
        });
Shucai Xiao's avatar
Shucai Xiao committed
1070

Shucai Xiao's avatar
Shucai Xiao committed
1071
1072
1073
1074
1075
1076
1077
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1078
1079
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1080
        if(args.size() < 6)
1081
1082
1083
1084
1085
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1086
1087
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1088
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1089

1090
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1091
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1092

Shucai Xiao's avatar
Shucai Xiao committed
1093
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1094
1095
    }

1096
    std::vector<instruction_ref>
1097
1098
1099
1100
1101
1102
1103
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1104
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1105
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1106
1107
1108
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1109
1110
1111
1112
1113
1114
1115
1116
1117
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1118
        op::rnn_direction dirct = op::rnn_direction::forward;
1119
1120
        if(direction == "bidirectional")
        {
1121
            dirct = op::rnn_direction::bidirectional;
1122
1123
1124
        }
        else if(direction == "reverse")
        {
1125
            dirct = op::rnn_direction::reverse;
1126
1127
        }

1128
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1129
1130
        if(contains(attributes, "activations"))
        {
1131
            auto names = attributes.at("activations").strings();
1132
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1133
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1134
1135
1136
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1137
1138
        }

1139
        // need 4 activation functions
1140
        if(dirct == op::rnn_direction::bidirectional)
1141
        {
Shucai Xiao's avatar
Shucai Xiao committed
1142
            // 4 activation functions are used in the bidirectional
1143
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1146
1147
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1148
1149
1150
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1151
            if(vec_names.size() == 1)
1152
            {
1153
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1154
            }
1155
            else if(vec_names.size() == 2)
1156
            {
1157
1158
1159
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1160
            }
1161
            else if(vec_names.size() == 3)
1162
            {
1163
                vec_names.push_back(vec_names.at(2));
1164
1165
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1166
        else
1167
        {
1168
            if(vec_names.size() == 1)
1169
            {
1170
                vec_names.push_back(vec_names.at(0));
1171
1172
1173
            }
        }

1174
1175
1176
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1177
        if(name_it != vec_names.end())
1178
1179
1180
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1181

Shucai Xiao's avatar
Shucai Xiao committed
1182
1183
1184
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1185
        });
1186
1187
1188
1189
1190
1191
1192
1193

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1194
        if(contains(attributes, "linear_before_reset"))
1195
1196
1197
1198
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1199
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1200
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1201
1202
1203
1204
1205
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1206
1207
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1208
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1209
            std::move(args));
1210
1211

        // second output for last gru output
1212
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1213

Shucai Xiao's avatar
Shucai Xiao committed
1214
        return {hidden_states, last_output};
1215
1216
    }

Shucai Xiao's avatar
Shucai Xiao committed
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1239
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1240
1241
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1242
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1243
1244
1245
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1246
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1247
        }
Shucai Xiao's avatar
Shucai Xiao committed
1248
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1249
        {
Shucai Xiao's avatar
Shucai Xiao committed
1250
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1251
1252
1253
1254
1255
1256
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1257
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1258
1259
1260
1261
1262
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1263
1264
1265
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1266
1267
1268
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1269
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1270
1271
1272
1273
1274
1275
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1276
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1277
1278
1279
1280
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1281
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1282
1283
1284
1285
1286
1287
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1288
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1289
1290
1291

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1292
1293
1294
1295
1296
1297
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1298
1299
1300
1301
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1302
1303
1304
1305
1306
1307
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1308
1309
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1310
1311
1312
1313
1314
1315
1316
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1317
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1318

Shucai Xiao's avatar
Shucai Xiao committed
1319
1320
1321
1322
1323
1324
1325
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1326
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1327

Shucai Xiao's avatar
Shucai Xiao committed
1328
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1329
1330
1331
1332
1333
1334
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1335
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1336
1337
1338

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1339
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1340
1341
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1342
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1343
1344
1345
            }
        }

1346
1347
1348
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1349
        if(name_it != vec_names.end())
1350
1351
1352
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1375
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1376
1377
1378
1379
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1380
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1381
1382

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1383
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1384
1385
1386
1387
1388
1389

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1390

Shucai Xiao's avatar
Shucai Xiao committed
1391
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1392
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1393
1394
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1395
1396
1397
1398
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1399
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1400
1401
1402
1403
1404
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1405
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1416
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1417
1418
1419
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1420
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1421
            return prog.add_instruction(op::squeeze{axes}, ins);
1422
1423
        }
    }
1424

Shucai Xiao's avatar
Shucai Xiao committed
1425
1426
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1427
    {
Shucai Xiao's avatar
Shucai Xiao committed
1428
        if(!contains(attributes, "to"))
1429
1430
1431
1432
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1433
        int to_type        = parse_value(attributes.at("to")).at<int>();
1434
1435
1436
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1437

Paul's avatar
Paul committed
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1450
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1451
1452
1453
1454
1455
1456
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1457
1458
1459
1460
1461
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1462
1463
1464
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1477
        }
Paul's avatar
Paul committed
1478
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1479
        {
Paul's avatar
Paul committed
1480
            this->parse_node(output.name());
Paul's avatar
Paul committed
1481
1482
1483
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1484
    void parse_undefined(const std::string& name)
1485
    {
Shucai Xiao's avatar
Shucai Xiao committed
1486
        auto ins           = prog.add_instruction(op::undefined{});
1487
1488
1489
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1490
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1491
    {
Paul's avatar
Paul committed
1492
        if(name.empty())
Paul's avatar
Paul committed
1493
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1494
1495
1496
1497
1498
1499
1500
1501
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1502
1503
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1504
                }
Shucai Xiao's avatar
Shucai Xiao committed
1505
                else if(input.empty())
Paul's avatar
Paul committed
1506
                {
1507
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1508
                }
1509
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1510
            }
Paul's avatar
Paul committed
1511
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1512
1513
            if(ops.count(node.op_type()) == 0)
            {
1514
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1515
1516
1517
            }
            else
            {
Paul's avatar
Paul committed
1518
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1519
            }
Paul's avatar
Paul committed
1520
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1521
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1522
1523
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1524
1525
1526
            }
            else
            {
Paul's avatar
Paul committed
1527
1528
1529
1530
1531
1532
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1550
        std::size_t n = 0;
Paul's avatar
Paul committed
1551
1552
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1553
            if(node.output().empty())
Paul's avatar
Paul committed
1554
            {
Paul's avatar
Paul committed
1555
                if(node.name().empty())
Paul's avatar
Paul committed
1556
1557
1558
1559
1560
1561
1562
1563
1564
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1590
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1591
1592
1593
1594
1595
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1596
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1597
1598
1599
1600
1601
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1602
1603
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1604
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1605
1606
1607
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1608
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1609
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1610
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1611
1612
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1613
1614
1615
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1616
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1617
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1618
1619
1620
1621
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1622
1623
1624
1625
1626
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1627
            MIGRAPHX_THROW("Invalid tensor type");
1628
        }
Paul's avatar
Paul committed
1629
1630
1631
1632
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1633
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1634
1635
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1636
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1637
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1638
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1639
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1640
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1641
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1642
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1643
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1644
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1645
1646
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1647
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1648
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1649
        {
Khalique's avatar
Khalique committed
1650
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1651
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1652
1653
1654
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1655
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1656
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1657
        }
Paul's avatar
Paul committed
1658
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1659
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1660
1661
1662
1663
1664
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1665
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1666
1667
    }

Khalique's avatar
Khalique committed
1668
    static literal
1669
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1670
    {
Khalique's avatar
Khalique committed
1671
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1672
        if(dims.empty())
1673
            return literal{{shape_type}, data};
1674
1675
1676
        return literal{{shape_type, dims}, data};
    }

1677
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1678
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1679
1680
    {
        if(dims.empty())
1681
            return literal{{shape_type}, data.begin(), data.end()};
1682
        return literal{{shape_type, dims}, data.begin(), data.end()};
1683
1684
    }

Paul's avatar
Paul committed
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1704
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1705
1706
1707
1708
1709
1710
1711
1712
1713
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1714
        auto&& tensor_dims = t.tensor_type().shape().dim();
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1726
1727
        return {shape_type, dims};
    }
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1773
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1774
} // namespace migraphx