onnx.cpp 64.9 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
225
226
    }

Paul's avatar
Paul committed
227
    template <class T>
Paul's avatar
Paul committed
228
229
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
230
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
231
232
233
234
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
235
    template <class T>
Khalique's avatar
Khalique committed
236
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
239
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
240
241
242
243
244
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
245
        });
Khalique's avatar
Khalique committed
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
264
265
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
266
    {
Shucai Xiao's avatar
Shucai Xiao committed
267
268
        auto dims = args.front()->get_shape().lens();
        auto r =
Shucai Xiao's avatar
Shucai Xiao committed
269
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
Shucai Xiao's avatar
Shucai Xiao committed
270
271
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
272
273
    }

Shucai Xiao's avatar
Shucai Xiao committed
274
275
276
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
277
278
279
280
281
282
283
284
285
286
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

287
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
288
289
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
290
    {
291
        int64_t axis = 0;
292
293
        if(contains(attributes, "axis"))
        {
294
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
295
296
        }

Shucai Xiao's avatar
Shucai Xiao committed
297
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
298
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
299
300
301
302
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
303
        if(keep_dims == 0)
304
305
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
306
            return prog.add_instruction(op::squeeze{{axis}}, ins);
307
308
309
310
311
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
312
313
314
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
315
316
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
317
    {
318
        int64_t axis = 0;
319
320
        if(contains(attributes, "axis"))
        {
321
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
322
323
        }

Shucai Xiao's avatar
Shucai Xiao committed
324
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
325
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
326
327
328
329
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
330
        if(keep_dims == 0)
331
332
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
333
            return prog.add_instruction(op::squeeze{{axis}}, ins);
334
335
336
337
338
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
339
340
    }

Paul's avatar
Paul committed
341
    instruction_ref
Paul's avatar
Paul committed
342
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
343
    {
344
        op::convolution op;
345
        auto l0 = args[0];
Paul's avatar
Paul committed
346
347
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
348
            if(contains(attributes, "auto_pad"))
349
            {
Paul's avatar
Paul committed
350
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
351
            }
352
353
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
354
            if(padding.size() != 4)
355
            {
Paul's avatar
Paul committed
356
                MIGRAPHX_THROW("padding should have 4 values");
357
            }
Scott Thornton's avatar
Scott Thornton committed
358
            if(padding[0] != padding[2] || padding[1] != padding[3])
359
            {
360
361
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
362
                l0      = prog.add_instruction(op::pad{padding}, l0);
363
            }
364
365
366
367
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
368
            }
Paul's avatar
Paul committed
369
        }
Paul's avatar
Paul committed
370
371
372
373
374
375
376
377
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
378
        if(contains(attributes, "auto_pad"))
379
380
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
381
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
382
            {
Paul's avatar
Paul committed
383
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
384
385
            }

wsttiger's avatar
fixes  
wsttiger committed
386
            if(s.find("SAME") != std::string::npos)
387
            {
388
                op.padding_mode = op::padding_mode_t::same;
389
390
            }
        }
Khalique's avatar
Khalique committed
391
392
393
394
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
395
396
397
398
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
399
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
400
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
401
        }
402
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
403
    }
Paul's avatar
Paul committed
404

Paul's avatar
Paul committed
405
406
407
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
408
    {
Khalique's avatar
Khalique committed
409
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
410
        auto l0 = args[0];
Khalique's avatar
Khalique committed
411
        if(starts_with(name, "Global"))
412
        {
Khalique's avatar
Khalique committed
413
414
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
415
        }
Paul's avatar
Paul committed
416
417
        if(contains(attributes, "pads"))
        {
418
419
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
420
            if(padding.size() != 4)
421
            {
Paul's avatar
Paul committed
422
                MIGRAPHX_THROW("padding should have 4 values");
423
            }
Scott Thornton's avatar
Scott Thornton committed
424
            if(padding[0] != padding[2] || padding[1] != padding[3])
425
            {
426
427
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
428
429
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
430
431
432
433
434
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
435
            }
Paul's avatar
Paul committed
436
437
438
439
440
441
442
443
444
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
445
        if(contains(attributes, "auto_pad"))
446
447
        {
            auto s = attributes["auto_pad"].s();
448
            if(s.find("SAME_UPPER") == std::string::npos)
449
            {
450
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
451
            }
452
            op.padding_mode = op::padding_mode_t::same;
453
454
        }

455
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
456
457
    }

Paul's avatar
Paul committed
458
    instruction_ref
Paul's avatar
Paul committed
459
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
460
    {
461
        op::reshape op;
Paul's avatar
Paul committed
462
463
        if(args.size() == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
464
            if(contains(attributes, "shape"))
465
466
467
468
469
470
            {
                literal s = parse_value(attributes.at("shape"));
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
471
472
473
                MIGRAPHX_THROW(
                    "Parse_reshape: shape attribute is needed when only one argument is provided!");
            }
Paul's avatar
Paul committed
474
475
476
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
477
            auto s = args[1]->eval();
Paul's avatar
Paul committed
478
            if(s.empty())
Paul's avatar
Paul committed
479
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
480
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
481
        }
482

Shucai Xiao's avatar
Shucai Xiao committed
483
        if(!args[0]->get_shape().standard())
484
485
486
487
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }

Paul's avatar
Paul committed
488
489
490
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
491
    instruction_ref
Paul's avatar
Paul committed
492
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
493
    {
494
        uint64_t axis = 1;
Paul's avatar
Paul committed
495
496
497
498
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
499
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
500
501
    }

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
520
521
522
523
524
525
526
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
527

528
529
530
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
531
        int axis = 0;
532
533
534
535
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
536
        op::gather op{axis};
537
538
539
        return prog.add_instruction(op, std::move(args));
    }

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
560
561
562
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
563
    {
Shucai Xiao's avatar
Shucai Xiao committed
564
        literal v = parse_value(attributes.at("value"));
565
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
566
        if(v.get_shape().elements() == 0)
567
568
569
570
        {
            return prog.add_literal(literal{});
        }

571
572
573
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
574
        {
575
            migraphx::shape scalar_shape{v.get_shape().type()};
576
577
578
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
579
580
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
581

Paul's avatar
Paul committed
582
    instruction_ref
Paul's avatar
Paul committed
583
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
584
585
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
586
        float beta  = 1.0f;
Paul's avatar
Paul committed
587
588
589
590
591
592
593
594
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
595
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
596
597
598
599
600
601
602
603
604
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
605
606
607
608
609
610

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

611
612
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
613
614
        if(args.size() == 3)
        {
615
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
616
            {
Shucai Xiao's avatar
Shucai Xiao committed
617
                auto out_lens   = l1->get_shape().lens();
618
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
619
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
620
621
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
622
                {
623
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
624
                }
625
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
626
            }
Paul's avatar
Paul committed
627
        }
628
629

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
630
631
    }

632
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
633
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
634
    {
Shucai Xiao's avatar
Shucai Xiao committed
635
636
        auto l0      = args[0];
        auto l1      = args[1];
637
638
639
640
641
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
642
        if(l0_lens.size() == 1)
643
644
645
646
647
648
649
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
650
        if(l1_lens.size() == 1)
651
652
653
654
655
656
657
658
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
659
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
660
661
662
663
664
665
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
666
            l0_broadcasted_lens = output_lens;
667
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
668
            l1_broadcasted_lens = output_lens;
669
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
670
            if(l0_lens != l0_broadcasted_lens)
671
672
673
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
674
            if(l1_lens != l1_broadcasted_lens)
675
676
677
678
679
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
680
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
681
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
682
        if(is_a_prepended)
683
684
685
686
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
687
        if(is_b_appended)
688
689
690
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
691

692
693
694
        return dot_res;
    }

695
    instruction_ref
Paul's avatar
Paul committed
696
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
697
    {
Scott Thornton's avatar
Scott Thornton committed
698
699
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
700
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
701
        bool is_test                                      = false;
702
703
704
705
706
707
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
708
            momentum = parse_value(attributes.at("momentum")).at<float>();
709
710
711
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
712
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
713
714
715
        }
        if(contains(attributes, "spatial"))
        {
716
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
717
718
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
719
        }
Paul's avatar
Paul committed
720
        (void)is_test;
Paul's avatar
Paul committed
721
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
722
        return prog.add_instruction(op, std::move(args));
723
724
    }

725
726
727
728
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
729
        float alpha = 0.01; // default alpha val for leaky relu
730
731
732
733
734
735
736
737
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
738
739
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
740
741
742
743
744
745
746
747
748
749
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
750
751
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
752
753
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
754
755
756
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
757
758
759
760
761
762
763
764
765
766
767
768
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
785
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
786

Khalique's avatar
Khalique committed
787
788
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
789
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
790

791
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
792
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
793
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
794
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
795
    }
Khalique's avatar
Khalique committed
796

Khalique's avatar
Khalique committed
797
798
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
799
800
801
802
803
804
805
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
806
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
807
808
    }

Khalique's avatar
Khalique committed
809
810
811
812
813
814
815
816
817
818
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
819
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
820
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
821
822
823
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
824
825
826
827
828
829
830
831
832
833
834
835
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
836
837
838
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
839
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
840
841
    {
        if(args.size() != 1)
842
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
879
880
        if(contains(attributes, "extra_shape"))
        {
881
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
882
883
        }

884
885
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
886
            if(args.size() != 1)
887
            {
888
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
889
890
            }

Shucai Xiao's avatar
Shucai Xiao committed
891
892
            if(contains(attributes, "shape"))
            {
893
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
894
                               "at the same time");
895
896
            }

897
898
899
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
900
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
901
            }
902

903
904
905
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
906
907
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
908
909
910
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
911
912
            if(!contains(attributes, "shape"))
            {
913
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
914
915
916
            }

            literal ls = parse_value(attributes.at("shape"));
917
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
918
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
919
            migraphx::shape s{type, dims};
920
921
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
922
923
924
        }
        else
        {
925
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
926
927
928
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
929
930
931
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
932
933
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
934
        if(contains(attributes, "value"))
935
936
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
937
            if(l_val.get_shape().elements() != 1)
938
939
940
941
942
943
944
945
946
947
948
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
949

Shucai Xiao's avatar
Shucai Xiao committed
950
        if(args.empty())
951
        {
952
            MIGRAPHX_THROW("Parse ConstantOfShape : must have 1 input!");
953
954
955
        }
        else
        {
956
957
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
958
            if(args[0]->get_shape().elements() == 0)
959
            {
960
                s = migraphx::shape{type, {1}, {0}};
961
            }
962
963
964
965
966
967
968
            else
            {
                migraphx::argument in = args[0]->eval();
                if(in.empty())
                {
                    MIGRAPHX_THROW("Parse ConstantOfShape: cannot handle dynamic shape as input");
                }
969

970
971
972
973
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
974
975
976
977
978
979
980
981
982
983
984
985
986

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
987
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
988
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
989
    {
Shucai Xiao's avatar
Shucai Xiao committed
990
        auto in_lens             = args[0]->get_shape().lens();
991
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
992
        if(arg_s.empty())
993
994
995
996
997
998
        {
            MIGRAPHX_THROW("Parse Expand: cannot handle dynamic shape as input");
        }
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
999
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1000
1001
    }

Shucai Xiao's avatar
Shucai Xiao committed
1002
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1003
1004
1005
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1006
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1007
1008
1009

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1010
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1011
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1012
1013
1014
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1024
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1025
1026
        if(direction == "bidirectional")
        {
1027
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1028
1029
1030
        }
        else if(direction == "reverse")
        {
1031
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1032
1033
        }

1034
        std::vector<std::string> vec_names{"tanh"};
1035
1036
1037
1038
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1039
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1040
1041
1042
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1043
1044
        }

1045
1046
1047
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1048
        if(name_it != vec_names.end())
1049
1050
1051
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1052

Shucai Xiao's avatar
Shucai Xiao committed
1053
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1054
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1055
        // if only one actv function is provided, we use it in both
1056
        // forward and reverse direction
1057
        if(dirct == op::rnn_direction::bidirectional)
1058
        {
Shucai Xiao's avatar
Shucai Xiao committed
1059
            if(vec_names.size() == 1)
1060
1061
1062
1063
1064
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1065
1066
1067
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1068
        });
Shucai Xiao's avatar
Shucai Xiao committed
1069

Shucai Xiao's avatar
Shucai Xiao committed
1070
1071
1072
1073
1074
1075
1076
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1077
1078
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1079
        if(args.size() < 6)
1080
1081
1082
1083
1084
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1085
1086
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1087
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1088

1089
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1090
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1091

Shucai Xiao's avatar
Shucai Xiao committed
1092
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1093
1094
    }

1095
    std::vector<instruction_ref>
1096
1097
1098
1099
1100
1101
1102
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1103
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1104
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
1107
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1108
1109
1110
1111
1112
1113
1114
1115
1116
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1117
        op::rnn_direction dirct = op::rnn_direction::forward;
1118
1119
        if(direction == "bidirectional")
        {
1120
            dirct = op::rnn_direction::bidirectional;
1121
1122
1123
        }
        else if(direction == "reverse")
        {
1124
            dirct = op::rnn_direction::reverse;
1125
1126
        }

1127
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1128
1129
        if(contains(attributes, "activations"))
        {
1130
            auto names = attributes.at("activations").strings();
1131
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1132
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
1135
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1136
1137
        }

1138
        // need 4 activation functions
1139
        if(dirct == op::rnn_direction::bidirectional)
1140
        {
Shucai Xiao's avatar
Shucai Xiao committed
1141
            // 4 activation functions are used in the bidirectional
1142
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1143
1144
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1145
1146
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1147
1148
1149
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1150
            if(vec_names.size() == 1)
1151
            {
1152
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1153
            }
1154
            else if(vec_names.size() == 2)
1155
            {
1156
1157
1158
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1159
            }
1160
            else if(vec_names.size() == 3)
1161
            {
1162
                vec_names.push_back(vec_names.at(2));
1163
1164
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1165
        else
1166
        {
1167
            if(vec_names.size() == 1)
1168
            {
1169
                vec_names.push_back(vec_names.at(0));
1170
1171
1172
            }
        }

1173
1174
1175
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1176
        if(name_it != vec_names.end())
1177
1178
1179
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1180

Shucai Xiao's avatar
Shucai Xiao committed
1181
1182
1183
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1184
        });
1185
1186
1187
1188
1189
1190
1191
1192

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1193
        if(contains(attributes, "linear_before_reset"))
1194
1195
1196
1197
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1198
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1199
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1200
1201
1202
1203
1204
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1205
1206
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1207
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1208
            std::move(args));
1209
1210

        // second output for last gru output
1211
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1212

Shucai Xiao's avatar
Shucai Xiao committed
1213
        return {hidden_states, last_output};
1214
1215
    }

Shucai Xiao's avatar
Shucai Xiao committed
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1238
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1239
1240
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1241
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1242
1243
1244
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1245
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1246
        }
Shucai Xiao's avatar
Shucai Xiao committed
1247
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1248
        {
Shucai Xiao's avatar
Shucai Xiao committed
1249
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1250
1251
1252
1253
1254
1255
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1256
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1257
1258
1259
1260
1261
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1262
1263
1264
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1265
1266
1267
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1268
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1269
1270
1271
1272
1273
1274
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1275
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1276
1277
1278
1279
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1280
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1281
1282
1283
1284
1285
1286
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1287
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1288
1289
1290

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1291
1292
1293
1294
1295
1296
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1297
1298
1299
1300
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1301
1302
1303
1304
1305
1306
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1307
1308
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1309
1310
1311
1312
1313
1314
1315
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1316
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1317

Shucai Xiao's avatar
Shucai Xiao committed
1318
1319
1320
1321
1322
1323
1324
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1325
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1326

Shucai Xiao's avatar
Shucai Xiao committed
1327
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1328
1329
1330
1331
1332
1333
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1334
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1335
1336
1337

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1338
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1339
1340
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1341
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1342
1343
1344
            }
        }

1345
1346
1347
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1348
        if(name_it != vec_names.end())
1349
1350
1351
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1374
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1375
1376
1377
1378
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1379
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1380
1381

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1382
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1383
1384
1385
1386
1387
1388

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1389

Shucai Xiao's avatar
Shucai Xiao committed
1390
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1391
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1392
1393
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1394
1395
1396
1397
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1398
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1399
1400
1401
1402
1403
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1404
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1415
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1416
1417
1418
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1419
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1420
            return prog.add_instruction(op::squeeze{axes}, ins);
1421
1422
        }
    }
1423

Shucai Xiao's avatar
Shucai Xiao committed
1424
1425
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1426
    {
Shucai Xiao's avatar
Shucai Xiao committed
1427
        if(!contains(attributes, "to"))
1428
1429
1430
1431
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1432
        int to_type        = parse_value(attributes.at("to")).at<int>();
1433
1434
1435
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1436

Paul's avatar
Paul committed
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1449
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1450
1451
1452
1453
1454
1455
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1456
1457
1458
1459
1460
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1461
1462
1463
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1476
        }
Paul's avatar
Paul committed
1477
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1478
        {
Paul's avatar
Paul committed
1479
            this->parse_node(output.name());
Paul's avatar
Paul committed
1480
1481
1482
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1483
    void parse_undefined(const std::string& name)
1484
    {
Shucai Xiao's avatar
Shucai Xiao committed
1485
        auto ins           = prog.add_instruction(op::undefined{});
1486
1487
1488
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1489
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1490
    {
Paul's avatar
Paul committed
1491
        if(name.empty())
Paul's avatar
Paul committed
1492
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1493
1494
1495
1496
1497
1498
1499
1500
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1501
1502
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1503
                }
Shucai Xiao's avatar
Shucai Xiao committed
1504
                else if(input.empty())
Paul's avatar
Paul committed
1505
                {
1506
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1507
                }
1508
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1509
            }
Paul's avatar
Paul committed
1510
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1511
1512
            if(ops.count(node.op_type()) == 0)
            {
1513
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1514
1515
1516
            }
            else
            {
Paul's avatar
Paul committed
1517
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1518
            }
Paul's avatar
Paul committed
1519
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1520
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1521
1522
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1523
1524
1525
            }
            else
            {
Paul's avatar
Paul committed
1526
1527
1528
1529
1530
1531
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1549
        std::size_t n = 0;
Paul's avatar
Paul committed
1550
1551
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1552
            if(node.output().empty())
Paul's avatar
Paul committed
1553
            {
Paul's avatar
Paul committed
1554
                if(node.name().empty())
Paul's avatar
Paul committed
1555
1556
1557
1558
1559
1560
1561
1562
1563
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1589
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1590
1591
1592
1593
1594
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1595
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1596
1597
1598
1599
1600
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1601
1602
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1603
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1604
1605
1606
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1607
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1608
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1609
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1610
1611
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1612
1613
1614
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1615
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1616
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1617
1618
1619
1620
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1621
1622
1623
1624
1625
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1626
            MIGRAPHX_THROW("Invalid tensor type");
1627
        }
Paul's avatar
Paul committed
1628
1629
1630
1631
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1632
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1633
1634
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1635
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1636
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1637
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1638
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1639
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1640
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1641
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1642
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1643
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1644
1645
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1646
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1647
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1648
        {
Khalique's avatar
Khalique committed
1649
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1650
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1651
1652
1653
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1654
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1655
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1656
        }
Paul's avatar
Paul committed
1657
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1658
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1659
1660
1661
1662
1663
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1664
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1665
1666
    }

Khalique's avatar
Khalique committed
1667
    static literal
1668
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1669
    {
Khalique's avatar
Khalique committed
1670
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1671
        if(dims.empty())
1672
            return literal{{shape_type}, data};
1673
1674
1675
        return literal{{shape_type, dims}, data};
    }

1676
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1677
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1678
1679
    {
        if(dims.empty())
1680
            return literal{{shape_type}, data.begin(), data.end()};
1681
        return literal{{shape_type, dims}, data.begin(), data.end()};
1682
1683
    }

Paul's avatar
Paul committed
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1703
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1704
1705
1706
1707
1708
1709
1710
1711
1712
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1713
        auto&& tensor_dims = t.tensor_type().shape().dim();
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1725
1726
        return {shape_type, dims};
    }
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1772
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1773
} // namespace migraphx