onnx.cpp 63.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
225
226
    }

Paul's avatar
Paul committed
227
    template <class T>
Paul's avatar
Paul committed
228
229
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
230
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
231
232
233
234
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
235
    template <class T>
Khalique's avatar
Khalique committed
236
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
239
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
240
241
242
243
244
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
245
        });
Khalique's avatar
Khalique committed
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
264
265
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
266
    {
Shucai Xiao's avatar
Shucai Xiao committed
267
268
        auto dims = args.front()->get_shape().lens();
        auto r =
Shucai Xiao's avatar
Shucai Xiao committed
269
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
Shucai Xiao's avatar
Shucai Xiao committed
270
271
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
272
273
    }

Shucai Xiao's avatar
Shucai Xiao committed
274
275
276
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
277
278
279
280
281
282
283
284
285
286
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

287
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
288
289
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
290
    {
291
        int64_t axis = 0;
292
293
        if(contains(attributes, "axis"))
        {
294
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
295
296
        }

Shucai Xiao's avatar
Shucai Xiao committed
297
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
298
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
299
300
301
302
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
303
        if(keep_dims == 0)
304
305
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
306
            return prog.add_instruction(op::squeeze{{axis}}, ins);
307
308
309
310
311
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
312
313
314
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
315
316
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
317
    {
318
        int64_t axis = 0;
319
320
        if(contains(attributes, "axis"))
        {
321
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
322
323
        }

Shucai Xiao's avatar
Shucai Xiao committed
324
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
325
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
326
327
328
329
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
330
        if(keep_dims == 0)
331
332
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
333
            return prog.add_instruction(op::squeeze{{axis}}, ins);
334
335
336
337
338
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
339
340
    }

Paul's avatar
Paul committed
341
    instruction_ref
Paul's avatar
Paul committed
342
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
343
    {
344
        op::convolution op;
345
        auto l0 = args[0];
Paul's avatar
Paul committed
346
347
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
348
            if(contains(attributes, "auto_pad"))
349
            {
Paul's avatar
Paul committed
350
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
351
            }
352
353
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
354
            if(padding.size() != 4)
355
            {
Paul's avatar
Paul committed
356
                MIGRAPHX_THROW("padding should have 4 values");
357
            }
Scott Thornton's avatar
Scott Thornton committed
358
            if(padding[0] != padding[2] || padding[1] != padding[3])
359
            {
360
361
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
362
                l0      = prog.add_instruction(op::pad{padding}, l0);
363
            }
364
365
366
367
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
368
            }
Paul's avatar
Paul committed
369
        }
Paul's avatar
Paul committed
370
371
372
373
374
375
376
377
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
378
        if(contains(attributes, "auto_pad"))
379
380
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
381
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
382
            {
Paul's avatar
Paul committed
383
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
384
385
            }

wsttiger's avatar
fixes  
wsttiger committed
386
            if(s.find("SAME") != std::string::npos)
387
            {
388
                op.padding_mode = op::padding_mode_t::same;
389
390
            }
        }
Khalique's avatar
Khalique committed
391
392
393
394
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
395
396
397
398
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
399
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
400
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
401
        }
402
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
403
    }
Paul's avatar
Paul committed
404

Paul's avatar
Paul committed
405
406
407
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
408
    {
Khalique's avatar
Khalique committed
409
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
410
        auto l0 = args[0];
Khalique's avatar
Khalique committed
411
        if(starts_with(name, "Global"))
412
        {
Khalique's avatar
Khalique committed
413
414
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
415
        }
Paul's avatar
Paul committed
416
417
        if(contains(attributes, "pads"))
        {
418
419
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
420
            if(padding.size() != 4)
421
            {
Paul's avatar
Paul committed
422
                MIGRAPHX_THROW("padding should have 4 values");
423
            }
Scott Thornton's avatar
Scott Thornton committed
424
            if(padding[0] != padding[2] || padding[1] != padding[3])
425
            {
426
427
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
428
429
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
430
431
432
433
434
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
435
            }
Paul's avatar
Paul committed
436
437
438
439
440
441
442
443
444
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
445
        if(contains(attributes, "auto_pad"))
446
447
        {
            auto s = attributes["auto_pad"].s();
448
            if(s.find("SAME_UPPER") == std::string::npos)
449
            {
450
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
451
            }
452
            op.padding_mode = op::padding_mode_t::same;
453
454
        }

455
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
456
457
    }

Paul's avatar
Paul committed
458
    instruction_ref
Paul's avatar
Paul committed
459
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
460
    {
461
        op::reshape op;
Paul's avatar
Paul committed
462
463
        if(args.size() == 1)
        {
464
465
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
466
467
468
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
469
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
470
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
471
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
472
        }
473

Shucai Xiao's avatar
Shucai Xiao committed
474
        if(!args[0]->get_shape().standard())
475
476
477
478
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }

Paul's avatar
Paul committed
479
480
481
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
482
    instruction_ref
Paul's avatar
Paul committed
483
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
484
    {
485
        uint64_t axis = 1;
Paul's avatar
Paul committed
486
487
488
489
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
490
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
491
492
    }

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
511
512
513
514
515
516
517
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
518

519
520
521
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
522
        int axis = 0;
523
524
525
526
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
527
        op::gather op{axis};
528
529
530
        return prog.add_instruction(op, std::move(args));
    }

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
551
552
553
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
554
    {
Shucai Xiao's avatar
Shucai Xiao committed
555
        literal v = parse_value(attributes.at("value"));
556
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
557
        if(v.get_shape().elements() == 0)
558
559
560
561
        {
            return prog.add_literal(literal{});
        }

562
563
564
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
565
        {
566
            migraphx::shape scalar_shape{v.get_shape().type()};
567
568
569
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
570
571
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
572

Paul's avatar
Paul committed
573
    instruction_ref
Paul's avatar
Paul committed
574
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
575
576
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
577
        float beta  = 1.0f;
Paul's avatar
Paul committed
578
579
580
581
582
583
584
585
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
586
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
587
588
589
590
591
592
593
594
595
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
596
597
598
599
600
601

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

602
603
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
604
605
        if(args.size() == 3)
        {
606
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
607
            {
Shucai Xiao's avatar
Shucai Xiao committed
608
                auto out_lens   = l1->get_shape().lens();
609
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
610
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
611
612
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
613
                {
614
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
615
                }
616
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
617
            }
Paul's avatar
Paul committed
618
        }
619
620

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
621
622
    }

623
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
624
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
625
    {
Shucai Xiao's avatar
Shucai Xiao committed
626
627
        auto l0      = args[0];
        auto l1      = args[1];
628
629
630
631
632
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
633
        if(l0_lens.size() == 1)
634
635
636
637
638
639
640
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
641
        if(l1_lens.size() == 1)
642
643
644
645
646
647
648
649
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
650
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
651
652
653
654
655
656
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
657
            l0_broadcasted_lens = output_lens;
658
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
659
            l1_broadcasted_lens = output_lens;
660
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
661
            if(l0_lens != l0_broadcasted_lens)
662
663
664
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
665
            if(l1_lens != l1_broadcasted_lens)
666
667
668
669
670
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
671
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
672
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
673
        if(is_a_prepended)
674
675
676
677
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
678
        if(is_b_appended)
679
680
681
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
682

683
684
685
        return dot_res;
    }

686
    instruction_ref
Paul's avatar
Paul committed
687
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
688
    {
Scott Thornton's avatar
Scott Thornton committed
689
690
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
691
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
692
        bool is_test                                      = false;
693
694
695
696
697
698
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
699
            momentum = parse_value(attributes.at("momentum")).at<float>();
700
701
702
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
703
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
704
705
706
        }
        if(contains(attributes, "spatial"))
        {
707
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
708
709
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
710
        }
Paul's avatar
Paul committed
711
        (void)is_test;
Paul's avatar
Paul committed
712
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
713
        return prog.add_instruction(op, std::move(args));
714
715
    }

716
717
718
719
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
720
        float alpha = 0.01; // default alpha val for leaky relu
721
722
723
724
725
726
727
728
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
729
730
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
731
732
733
734
735
736
737
738
739
740
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
741
742
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
743
744
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
745
746
747
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
748
749
750
751
752
753
754
755
756
757
758
759
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
776
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
777

Khalique's avatar
Khalique committed
778
779
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
780
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
781

782
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
783
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
784
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
785
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
786
    }
Khalique's avatar
Khalique committed
787

Khalique's avatar
Khalique committed
788
789
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
790
791
792
793
794
795
796
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
797
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
798
799
    }

Khalique's avatar
Khalique committed
800
801
802
803
804
805
806
807
808
809
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
810
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
811
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
812
813
814
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
815
816
817
818
819
820
821
822
823
824
825
826
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
827
828
829
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
830
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
831
832
    {
        if(args.size() != 1)
833
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
870
871
        if(contains(attributes, "extra_shape"))
        {
872
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
873
874
        }

875
876
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
877
            if(args.size() != 1)
878
            {
879
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
880
881
            }

Shucai Xiao's avatar
Shucai Xiao committed
882
883
            if(contains(attributes, "shape"))
            {
884
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
885
                               "at the same time");
886
887
            }

888
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
889
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
890

891
892
893
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
894
895
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
896
897
898
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
899
900
            if(!contains(attributes, "shape"))
            {
901
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
902
903
904
            }

            literal ls = parse_value(attributes.at("shape"));
905
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
906
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
907
            migraphx::shape s{type, dims};
908
909
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
910
911
912
        }
        else
        {
913
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
914
915
916
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
917
918
919
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
920
921
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
922
        if(contains(attributes, "value"))
923
924
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
925
            if(l_val.get_shape().elements() != 1)
926
927
928
929
930
931
932
933
934
935
936
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
937

Shucai Xiao's avatar
Shucai Xiao committed
938
        if(args.empty())
939
        {
Shucai Xiao's avatar
Shucai Xiao committed
940
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
941
942
943
        }
        else
        {
944
945
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
946
            if(args[0]->get_shape().elements() == 0)
947
            {
948
                s = migraphx::shape{type, {1}, {0}};
949
            }
950
951
952
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
953
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
954

955
956
957
958
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
959

Shucai Xiao's avatar
Shucai Xiao committed
960
            literal l_out{};
961
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
962
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
963
                // l_val contains only one element
Shucai Xiao's avatar
Shucai Xiao committed
964
                std::vector<val_type> out_vec(s.elements(), *val.begin());
965
966
967
968
969
970
971
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
972
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
973
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
974
    {
Shucai Xiao's avatar
Shucai Xiao committed
975
        auto in_lens             = args[0]->get_shape().lens();
976
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
977
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
978
979
980
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
981
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
982
983
    }

Shucai Xiao's avatar
Shucai Xiao committed
984
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
985
986
987
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
988
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
989
990
991

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
992
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
993
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
994
995
996
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
997
998
999
1000
1001
1002
1003
1004
1005
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1006
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1007
1008
        if(direction == "bidirectional")
        {
1009
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1010
1011
1012
        }
        else if(direction == "reverse")
        {
1013
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1014
1015
        }

1016
        std::vector<std::string> vec_names{"tanh"};
1017
1018
1019
1020
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1021
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1022
1023
1024
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1025
1026
        }

1027
1028
1029
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1030
        if(name_it != vec_names.end())
1031
1032
1033
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1034

Shucai Xiao's avatar
Shucai Xiao committed
1035
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1036
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1037
        // if only one actv function is provided, we use it in both
1038
        // forward and reverse direction
1039
        if(dirct == op::rnn_direction::bidirectional)
1040
        {
Shucai Xiao's avatar
Shucai Xiao committed
1041
            if(vec_names.size() == 1)
1042
1043
1044
1045
1046
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1047
1048
1049
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1050
        });
Shucai Xiao's avatar
Shucai Xiao committed
1051

Shucai Xiao's avatar
Shucai Xiao committed
1052
1053
1054
1055
1056
1057
1058
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1059
1060
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1061
        if(args.size() < 6)
1062
1063
1064
1065
1066
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1067
1068
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1069
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1070

1071
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1072
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1073

Shucai Xiao's avatar
Shucai Xiao committed
1074
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1075
1076
    }

1077
    std::vector<instruction_ref>
1078
1079
1080
1081
1082
1083
1084
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1085
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1086
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1087
1088
1089
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1090
1091
1092
1093
1094
1095
1096
1097
1098
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1099
        op::rnn_direction dirct = op::rnn_direction::forward;
1100
1101
        if(direction == "bidirectional")
        {
1102
            dirct = op::rnn_direction::bidirectional;
1103
1104
1105
        }
        else if(direction == "reverse")
        {
1106
            dirct = op::rnn_direction::reverse;
1107
1108
        }

1109
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1110
1111
        if(contains(attributes, "activations"))
        {
1112
            auto names = attributes.at("activations").strings();
1113
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1114
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1115
1116
1117
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1118
1119
        }

1120
        // need 4 activation functions
1121
        if(dirct == op::rnn_direction::bidirectional)
1122
        {
Shucai Xiao's avatar
Shucai Xiao committed
1123
            // 4 activation functions are used in the bidirectional
1124
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1125
1126
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1127
1128
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1129
1130
1131
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1132
            if(vec_names.size() == 1)
1133
            {
1134
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1135
            }
1136
            else if(vec_names.size() == 2)
1137
            {
1138
1139
1140
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1141
            }
1142
            else if(vec_names.size() == 3)
1143
            {
1144
                vec_names.push_back(vec_names.at(2));
1145
1146
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1147
        else
1148
        {
1149
            if(vec_names.size() == 1)
1150
            {
1151
                vec_names.push_back(vec_names.at(0));
1152
1153
1154
            }
        }

1155
1156
1157
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1158
        if(name_it != vec_names.end())
1159
1160
1161
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1162

Shucai Xiao's avatar
Shucai Xiao committed
1163
1164
1165
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1166
        });
1167
1168
1169
1170
1171
1172
1173
1174

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1175
        if(contains(attributes, "linear_before_reset"))
1176
1177
1178
1179
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1180
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1181
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1182
1183
1184
1185
1186
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1187
1188
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1189
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1190
            std::move(args));
1191
1192

        // second output for last gru output
1193
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1194

Shucai Xiao's avatar
Shucai Xiao committed
1195
        return {hidden_states, last_output};
1196
1197
    }

Shucai Xiao's avatar
Shucai Xiao committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1220
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1221
1222
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1223
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1224
1225
1226
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1227
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1228
        }
Shucai Xiao's avatar
Shucai Xiao committed
1229
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1230
        {
Shucai Xiao's avatar
Shucai Xiao committed
1231
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1232
1233
1234
1235
1236
1237
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1238
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1239
1240
1241
1242
1243
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1244
1245
1246
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1247
1248
1249
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1250
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1251
1252
1253
1254
1255
1256
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1257
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1258
1259
1260
1261
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1262
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1263
1264
1265
1266
1267
1268
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1269
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1270
1271
1272

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1273
1274
1275
1276
1277
1278
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1279
1280
1281
1282
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1283
1284
1285
1286
1287
1288
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1289
1290
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1291
1292
1293
1294
1295
1296
1297
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1298
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1299

Shucai Xiao's avatar
Shucai Xiao committed
1300
1301
1302
1303
1304
1305
1306
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1307
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1308

Shucai Xiao's avatar
Shucai Xiao committed
1309
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1310
1311
1312
1313
1314
1315
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1316
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1317
1318
1319

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1320
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1321
1322
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1323
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1324
1325
1326
            }
        }

1327
1328
1329
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1330
        if(name_it != vec_names.end())
1331
1332
1333
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1356
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1357
1358
1359
1360
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1361
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1362
1363

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1364
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1365
1366
1367
1368
1369
1370

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1371

Shucai Xiao's avatar
Shucai Xiao committed
1372
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1373
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1374
1375
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1376
1377
1378
1379
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1380
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1381
1382
1383
1384
1385
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1386
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1397
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1398
1399
1400
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1401
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1402
            return prog.add_instruction(op::squeeze{axes}, ins);
1403
1404
        }
    }
1405

Shucai Xiao's avatar
Shucai Xiao committed
1406
1407
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1408
    {
Shucai Xiao's avatar
Shucai Xiao committed
1409
        if(!contains(attributes, "to"))
1410
1411
1412
1413
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1414
        int to_type        = parse_value(attributes.at("to")).at<int>();
1415
1416
1417
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1418

Paul's avatar
Paul committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1431
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1432
1433
1434
1435
1436
1437
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1438
1439
1440
1441
1442
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1443
1444
1445
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1458
        }
Paul's avatar
Paul committed
1459
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1460
        {
Paul's avatar
Paul committed
1461
            this->parse_node(output.name());
Paul's avatar
Paul committed
1462
1463
1464
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1465
    void parse_undefined(const std::string& name)
1466
    {
Shucai Xiao's avatar
Shucai Xiao committed
1467
        auto ins           = prog.add_instruction(op::undefined{});
1468
1469
1470
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1471
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1472
    {
Paul's avatar
Paul committed
1473
        if(name.empty())
Paul's avatar
Paul committed
1474
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1475
1476
1477
1478
1479
1480
1481
1482
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1483
1484
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1485
                }
Shucai Xiao's avatar
Shucai Xiao committed
1486
                else if(input.empty())
Paul's avatar
Paul committed
1487
                {
1488
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1489
                }
1490
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1491
            }
Paul's avatar
Paul committed
1492
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1493
1494
            if(ops.count(node.op_type()) == 0)
            {
1495
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1496
1497
1498
            }
            else
            {
Paul's avatar
Paul committed
1499
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1500
            }
Paul's avatar
Paul committed
1501
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1502
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1503
1504
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1505
1506
1507
            }
            else
            {
Paul's avatar
Paul committed
1508
1509
1510
1511
1512
1513
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1531
        std::size_t n = 0;
Paul's avatar
Paul committed
1532
1533
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1534
            if(node.output().empty())
Paul's avatar
Paul committed
1535
            {
Paul's avatar
Paul committed
1536
                if(node.name().empty())
Paul's avatar
Paul committed
1537
1538
1539
1540
1541
1542
1543
1544
1545
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1568
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1569
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1570
1571
1572
1573
1574
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
Paul's avatar
Paul committed
1575
1576
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1577
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1578
1579
1580
1581
1582
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1583
1584
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1585
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1586
1587
            switch(t.data_type())
            {
1588
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
1589
1590
1591
1592
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1593
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1594
1595
1596
1597
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1598
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1599
1600
1601
1602
1603
1604
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1605
1606
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1607
            MIGRAPHX_THROW("Invalid tensor type");
1608
        }
Paul's avatar
Paul committed
1609
1610
1611
1612
1613
1614
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1615
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1616
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1617
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1618
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1619
1620
1621
1622
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1623
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1624
        {
Khalique's avatar
Khalique committed
1625
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1626
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1627
1628
1629
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1630
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1631
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1632
        }
Paul's avatar
Paul committed
1633
1634
1635
1636
1637
1638
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1639
1640
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1641
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1642
1643
    }

Khalique's avatar
Khalique committed
1644
    static literal
1645
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1646
    {
Khalique's avatar
Khalique committed
1647
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1648
        if(dims.empty())
1649
            return literal{{shape_type}, data};
1650
1651
1652
        return literal{{shape_type, dims}, data};
    }

1653
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1654
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1655
1656
    {
        if(dims.empty())
1657
            return literal{{shape_type}, data.begin(), data.end()};
1658
        return literal{{shape_type, dims}, data.begin(), data.end()};
1659
1660
    }

Paul's avatar
Paul committed
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
1672
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1673
1674
1675
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1676
1677
1678
1679
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
1680
1681
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
1682
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
1683
1684
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1685
        auto&& tensor_dims = t.tensor_type().shape().dim();
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1697
1698
        return {shape_type, dims};
    }
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1721
1722
1723

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
1724
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
1725
1726
1727
1728
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1752
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1753
} // namespace migraphx