onnx.cpp 65.6 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
225
226
    }

Paul's avatar
Paul committed
227
    template <class T>
Paul's avatar
Paul committed
228
229
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
230
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
231
232
233
234
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
235
    template <class T>
Khalique's avatar
Khalique committed
236
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
239
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
240
241
242
243
244
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
245
        });
Khalique's avatar
Khalique committed
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
264
265
266
267
268
269
270
271
272
273
    //    instruction_ref
    //    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    //    {
    //        auto dims = args.front()->get_shape().lens();
    //        auto r =
    //            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}},
    //            args.front());
    //        auto s = prog.add_instruction(op::softmax{}, r);
    //        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    //    }
274
275

    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
276
277
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
278
    {
279
280
281
282
283
284
285
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::softmax{axis}, std::move(args));
Paul's avatar
Paul committed
286
287
    }

Shucai Xiao's avatar
Shucai Xiao committed
288
289
290
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
291
292
293
294
295
296
297
298
299
300
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

301
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
302
303
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
304
    {
305
        int64_t axis = 0;
306
307
        if(contains(attributes, "axis"))
        {
308
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
309
310
        }

Shucai Xiao's avatar
Shucai Xiao committed
311
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
312
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
313
314
315
316
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
317
        if(keep_dims == 0)
318
319
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
320
            return prog.add_instruction(op::squeeze{{axis}}, ins);
321
322
323
324
325
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
326
327
328
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
329
330
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
331
    {
332
        int64_t axis = 0;
333
334
        if(contains(attributes, "axis"))
        {
335
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
336
337
        }

Shucai Xiao's avatar
Shucai Xiao committed
338
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
339
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
340
341
342
343
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
344
        if(keep_dims == 0)
345
346
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
347
            return prog.add_instruction(op::squeeze{{axis}}, ins);
348
349
350
351
352
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
353
354
    }

Paul's avatar
Paul committed
355
    instruction_ref
Paul's avatar
Paul committed
356
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
357
    {
358
        op::convolution op;
359
        auto l0 = args[0];
Paul's avatar
Paul committed
360
361
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
362
            if(contains(attributes, "auto_pad"))
363
            {
Paul's avatar
Paul committed
364
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
365
            }
366
367
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
368
            if(padding.size() != 4)
369
            {
Paul's avatar
Paul committed
370
                MIGRAPHX_THROW("padding should have 4 values");
371
            }
Scott Thornton's avatar
Scott Thornton committed
372
            if(padding[0] != padding[2] || padding[1] != padding[3])
373
            {
374
375
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
376
                l0      = prog.add_instruction(op::pad{padding}, l0);
377
            }
378
379
380
381
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
382
            }
Paul's avatar
Paul committed
383
        }
Paul's avatar
Paul committed
384
385
386
387
388
389
390
391
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
392
        if(contains(attributes, "auto_pad"))
393
394
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
395
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
396
            {
Paul's avatar
Paul committed
397
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
398
399
            }

wsttiger's avatar
fixes  
wsttiger committed
400
            if(s.find("SAME") != std::string::npos)
401
            {
402
                op.padding_mode = op::padding_mode_t::same;
403
404
            }
        }
Khalique's avatar
Khalique committed
405
406
407
408
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
409
410
411
412
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
413
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
414
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
415
        }
416
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
417
    }
Paul's avatar
Paul committed
418

Paul's avatar
Paul committed
419
420
421
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
422
    {
Khalique's avatar
Khalique committed
423
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
424
        auto l0 = args[0];
Khalique's avatar
Khalique committed
425
        if(starts_with(name, "Global"))
426
        {
Khalique's avatar
Khalique committed
427
428
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
429
        }
Paul's avatar
Paul committed
430
431
        if(contains(attributes, "pads"))
        {
432
433
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
434
            if(padding.size() != 4)
435
            {
Paul's avatar
Paul committed
436
                MIGRAPHX_THROW("padding should have 4 values");
437
            }
Scott Thornton's avatar
Scott Thornton committed
438
            if(padding[0] != padding[2] || padding[1] != padding[3])
439
            {
440
441
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
442
443
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
444
445
446
447
448
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
449
            }
Paul's avatar
Paul committed
450
451
452
453
454
455
456
457
458
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
459
        if(contains(attributes, "auto_pad"))
460
461
        {
            auto s = attributes["auto_pad"].s();
462
            if(s.find("SAME_UPPER") == std::string::npos)
463
            {
464
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
465
            }
466
            op.padding_mode = op::padding_mode_t::same;
467
468
        }

469
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
470
471
    }

Paul's avatar
Paul committed
472
    instruction_ref
Paul's avatar
Paul committed
473
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
474
    {
475
        op::reshape op;
Paul's avatar
Paul committed
476
477
        if(args.size() == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
478
            if(contains(attributes, "shape"))
479
480
481
482
483
484
            {
                literal s = parse_value(attributes.at("shape"));
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
485
486
487
                MIGRAPHX_THROW(
                    "Parse_reshape: shape attribute is needed when only one argument is provided!");
            }
Paul's avatar
Paul committed
488
489
490
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
491
            auto s = args[1]->eval();
Paul's avatar
Paul committed
492
            if(s.empty())
Paul's avatar
Paul committed
493
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
494
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
495
        }
496

Shucai Xiao's avatar
Shucai Xiao committed
497
        if(!args[0]->get_shape().standard())
498
499
500
501
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }

Paul's avatar
Paul committed
502
503
504
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
505
    instruction_ref
Paul's avatar
Paul committed
506
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
507
    {
508
        uint64_t axis = 1;
Paul's avatar
Paul committed
509
510
511
512
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
513
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
514
515
    }

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
534
535
536
537
538
539
540
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
541

542
543
544
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
545
        int axis = 0;
546
547
548
549
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
550
        op::gather op{axis};
551
552
553
        return prog.add_instruction(op, std::move(args));
    }

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
574
575
576
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
577
    {
Shucai Xiao's avatar
Shucai Xiao committed
578
        literal v = parse_value(attributes.at("value"));
579
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
580
        if(v.get_shape().elements() == 0)
581
582
583
584
        {
            return prog.add_literal(literal{});
        }

585
586
587
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
588
        {
589
            migraphx::shape scalar_shape{v.get_shape().type()};
590
591
592
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
593
594
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
595

Paul's avatar
Paul committed
596
    instruction_ref
Paul's avatar
Paul committed
597
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
598
599
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
600
        float beta  = 1.0f;
Paul's avatar
Paul committed
601
602
603
604
605
606
607
608
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
609
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
610
611
612
613
614
615
616
617
618
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
619
620
621
622
623
624

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

625
626
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
627
628
        if(args.size() == 3)
        {
629
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
630
            {
Shucai Xiao's avatar
Shucai Xiao committed
631
                auto out_lens   = l1->get_shape().lens();
632
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
633
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
634
635
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
636
                {
637
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
638
                }
639
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
640
            }
Paul's avatar
Paul committed
641
        }
642
643

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
644
645
    }

646
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
647
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
648
    {
Shucai Xiao's avatar
Shucai Xiao committed
649
650
        auto l0      = args[0];
        auto l1      = args[1];
651
652
653
654
655
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
656
        if(l0_lens.size() == 1)
657
658
659
660
661
662
663
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
664
        if(l1_lens.size() == 1)
665
666
667
668
669
670
671
672
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
673
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
674
675
676
677
678
679
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
680
            l0_broadcasted_lens = output_lens;
681
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
682
            l1_broadcasted_lens = output_lens;
683
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
684
            if(l0_lens != l0_broadcasted_lens)
685
686
687
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
688
            if(l1_lens != l1_broadcasted_lens)
689
690
691
692
693
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

694
695
696
697
698
699
700
701
        if(!bl1->get_shape().standard())
        {
            bl1 = prog.add_instruction(op::contiguous{}, bl1);
        }
        if(!bl0->get_shape().standard())
        {
            bl0 = prog.add_instruction(op::contiguous{}, bl0);
        }
Shucai Xiao's avatar
Shucai Xiao committed
702
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
703
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
704
        if(is_a_prepended)
705
706
707
708
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
709
        if(is_b_appended)
710
711
712
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
713

714
715
716
        return dot_res;
    }

717
    instruction_ref
Paul's avatar
Paul committed
718
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
719
    {
Scott Thornton's avatar
Scott Thornton committed
720
721
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
722
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
723
        bool is_test                                      = false;
724
725
726
727
728
729
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
730
            momentum = parse_value(attributes.at("momentum")).at<float>();
731
732
733
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
734
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
735
736
737
        }
        if(contains(attributes, "spatial"))
        {
738
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
739
740
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
741
        }
Paul's avatar
Paul committed
742
        (void)is_test;
Paul's avatar
Paul committed
743
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
744
        return prog.add_instruction(op, std::move(args));
745
746
    }

747
748
749
750
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
751
        float alpha = 0.01; // default alpha val for leaky relu
752
753
754
755
756
757
758
759
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
760
761
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
762
763
764
765
766
767
768
769
770
771
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
772
773
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
774
775
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
776
777
778
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
779
780
781
782
783
784
785
786
787
788
789
790
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
807
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
808

Khalique's avatar
Khalique committed
809
810
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
811
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
812

813
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
814
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
815
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
816
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
817
    }
Khalique's avatar
Khalique committed
818

Khalique's avatar
Khalique committed
819
820
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
821
822
823
824
825
826
827
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
828
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
829
830
    }

Khalique's avatar
Khalique committed
831
832
833
834
835
836
837
838
839
840
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
841
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
842
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
843
844
845
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
846
847
848
849
850
851
852
853
854
855
856
857
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
858
859
860
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
861
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
862
863
    {
        if(args.size() != 1)
864
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
901
902
        if(contains(attributes, "extra_shape"))
        {
903
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
904
905
        }

906
907
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
908
            if(args.size() != 1)
909
            {
910
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
911
912
            }

Shucai Xiao's avatar
Shucai Xiao committed
913
914
            if(contains(attributes, "shape"))
            {
915
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
916
                               "at the same time");
917
918
            }

919
920
921
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
922
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
923
            }
924

925
926
927
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
928
929
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
930
931
932
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
933
934
            if(!contains(attributes, "shape"))
            {
935
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
936
937
938
            }

            literal ls = parse_value(attributes.at("shape"));
939
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
940
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
941
            migraphx::shape s{type, dims};
942
943
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
944
945
946
        }
        else
        {
947
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
948
949
950
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
951
952
953
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
954
955
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
956
        if(contains(attributes, "value"))
957
958
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
959
            if(l_val.get_shape().elements() != 1)
960
961
962
963
964
965
966
967
968
969
970
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
971

Shucai Xiao's avatar
Shucai Xiao committed
972
        if(args.empty())
973
        {
974
            MIGRAPHX_THROW("Parse ConstantOfShape : must have 1 input!");
975
976
977
        }
        else
        {
978
979
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
980
            if(args[0]->get_shape().elements() == 0)
981
            {
982
                s = migraphx::shape{type, {1}, {0}};
983
            }
984
985
986
987
988
989
990
            else
            {
                migraphx::argument in = args[0]->eval();
                if(in.empty())
                {
                    MIGRAPHX_THROW("Parse ConstantOfShape: cannot handle dynamic shape as input");
                }
991

992
993
994
995
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1009
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1010
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1011
    {
Shucai Xiao's avatar
Shucai Xiao committed
1012
        auto in_lens             = args[0]->get_shape().lens();
1013
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1014
        if(arg_s.empty())
1015
1016
1017
1018
1019
1020
        {
            MIGRAPHX_THROW("Parse Expand: cannot handle dynamic shape as input");
        }
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
1021
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1022
1023
    }

Shucai Xiao's avatar
Shucai Xiao committed
1024
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1025
1026
1027
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1028
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1029
1030
1031

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1032
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1033
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1034
1035
1036
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1046
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1047
1048
        if(direction == "bidirectional")
        {
1049
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1050
1051
1052
        }
        else if(direction == "reverse")
        {
1053
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1054
1055
        }

1056
        std::vector<std::string> vec_names{"tanh"};
1057
1058
1059
1060
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1061
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1062
1063
1064
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1065
1066
        }

1067
1068
1069
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1070
        if(name_it != vec_names.end())
1071
1072
1073
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1074

Shucai Xiao's avatar
Shucai Xiao committed
1075
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1076
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1077
        // if only one actv function is provided, we use it in both
1078
        // forward and reverse direction
1079
        if(dirct == op::rnn_direction::bidirectional)
1080
        {
Shucai Xiao's avatar
Shucai Xiao committed
1081
            if(vec_names.size() == 1)
1082
1083
1084
1085
1086
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1087
1088
1089
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1090
        });
Shucai Xiao's avatar
Shucai Xiao committed
1091

Shucai Xiao's avatar
Shucai Xiao committed
1092
1093
1094
1095
1096
1097
1098
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1099
1100
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1101
        if(args.size() < 6)
1102
1103
1104
1105
1106
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1107
1108
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1109
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1110

1111
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1112
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1113

Shucai Xiao's avatar
Shucai Xiao committed
1114
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1115
1116
    }

1117
    std::vector<instruction_ref>
1118
1119
1120
1121
1122
1123
1124
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1125
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1126
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1127
1128
1129
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1130
1131
1132
1133
1134
1135
1136
1137
1138
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1139
        op::rnn_direction dirct = op::rnn_direction::forward;
1140
1141
        if(direction == "bidirectional")
        {
1142
            dirct = op::rnn_direction::bidirectional;
1143
1144
1145
        }
        else if(direction == "reverse")
        {
1146
            dirct = op::rnn_direction::reverse;
1147
1148
        }

1149
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1150
1151
        if(contains(attributes, "activations"))
        {
1152
            auto names = attributes.at("activations").strings();
1153
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1154
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1155
1156
1157
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1158
1159
        }

1160
        // need 4 activation functions
1161
        if(dirct == op::rnn_direction::bidirectional)
1162
        {
Shucai Xiao's avatar
Shucai Xiao committed
1163
            // 4 activation functions are used in the bidirectional
1164
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1165
1166
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1167
1168
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1169
1170
1171
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1172
            if(vec_names.size() == 1)
1173
            {
1174
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1175
            }
1176
            else if(vec_names.size() == 2)
1177
            {
1178
1179
1180
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1181
            }
1182
            else if(vec_names.size() == 3)
1183
            {
1184
                vec_names.push_back(vec_names.at(2));
1185
1186
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1187
        else
1188
        {
1189
            if(vec_names.size() == 1)
1190
            {
1191
                vec_names.push_back(vec_names.at(0));
1192
1193
1194
            }
        }

1195
1196
1197
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1198
        if(name_it != vec_names.end())
1199
1200
1201
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1202

Shucai Xiao's avatar
Shucai Xiao committed
1203
1204
1205
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1206
        });
1207
1208
1209
1210
1211
1212
1213
1214

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1215
        if(contains(attributes, "linear_before_reset"))
1216
1217
1218
1219
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1220
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1221
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1222
1223
1224
1225
1226
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1227
1228
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1229
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1230
            std::move(args));
1231
1232

        // second output for last gru output
1233
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1234

Shucai Xiao's avatar
Shucai Xiao committed
1235
        return {hidden_states, last_output};
1236
1237
    }

Shucai Xiao's avatar
Shucai Xiao committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1260
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1261
1262
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1263
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1264
1265
1266
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1267
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1268
        }
Shucai Xiao's avatar
Shucai Xiao committed
1269
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1270
        {
Shucai Xiao's avatar
Shucai Xiao committed
1271
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1272
1273
1274
1275
1276
1277
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1278
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1279
1280
1281
1282
1283
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1284
1285
1286
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1287
1288
1289
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1290
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1291
1292
1293
1294
1295
1296
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1297
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1298
1299
1300
1301
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1302
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1303
1304
1305
1306
1307
1308
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1309
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1310
1311
1312

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1313
1314
1315
1316
1317
1318
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1319
1320
1321
1322
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1323
1324
1325
1326
1327
1328
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1329
1330
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1331
1332
1333
1334
1335
1336
1337
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1338
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1339

Shucai Xiao's avatar
Shucai Xiao committed
1340
1341
1342
1343
1344
1345
1346
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1347
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1348

Shucai Xiao's avatar
Shucai Xiao committed
1349
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1350
1351
1352
1353
1354
1355
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1356
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1357
1358
1359

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1360
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1361
1362
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1363
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1364
1365
1366
            }
        }

1367
1368
1369
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1370
        if(name_it != vec_names.end())
1371
1372
1373
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1396
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1397
1398
1399
1400
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1401
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1402
1403

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1404
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1405
1406
1407
1408
1409
1410

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1411

Shucai Xiao's avatar
Shucai Xiao committed
1412
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1413
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1414
1415
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1416
1417
1418
1419
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1420
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1421
1422
1423
1424
1425
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1426
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1437
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1438
1439
1440
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1441
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1442
            return prog.add_instruction(op::squeeze{axes}, ins);
1443
1444
        }
    }
1445

Shucai Xiao's avatar
Shucai Xiao committed
1446
1447
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1448
    {
Shucai Xiao's avatar
Shucai Xiao committed
1449
        if(!contains(attributes, "to"))
1450
1451
1452
1453
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1454
        int to_type        = parse_value(attributes.at("to")).at<int>();
1455
1456
1457
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1458

Paul's avatar
Paul committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1471
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1472
1473
1474
1475
1476
1477
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1478
1479
1480
1481
1482
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1483
1484
1485
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1498
        }
Paul's avatar
Paul committed
1499
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1500
        {
Paul's avatar
Paul committed
1501
            this->parse_node(output.name());
Paul's avatar
Paul committed
1502
1503
1504
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1505
    void parse_undefined(const std::string& name)
1506
    {
Shucai Xiao's avatar
Shucai Xiao committed
1507
        auto ins           = prog.add_instruction(op::undefined{});
1508
1509
1510
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1511
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1512
    {
Paul's avatar
Paul committed
1513
        if(name.empty())
Paul's avatar
Paul committed
1514
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1515
1516
1517
1518
1519
1520
1521
1522
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1523
1524
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1525
                }
Shucai Xiao's avatar
Shucai Xiao committed
1526
                else if(input.empty())
Paul's avatar
Paul committed
1527
                {
1528
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1529
                }
1530
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1531
            }
Paul's avatar
Paul committed
1532
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1533
1534
            if(ops.count(node.op_type()) == 0)
            {
1535
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1536
1537
1538
            }
            else
            {
Paul's avatar
Paul committed
1539
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1540
            }
Paul's avatar
Paul committed
1541
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1542
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1543
1544
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1545
1546
1547
            }
            else
            {
Paul's avatar
Paul committed
1548
1549
1550
1551
1552
1553
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1571
        std::size_t n = 0;
Paul's avatar
Paul committed
1572
1573
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1574
            if(node.output().empty())
Paul's avatar
Paul committed
1575
            {
Paul's avatar
Paul committed
1576
                if(node.name().empty())
Paul's avatar
Paul committed
1577
1578
1579
1580
1581
1582
1583
1584
1585
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1611
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1612
1613
1614
1615
1616
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1617
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1618
1619
1620
1621
1622
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1623
1624
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1625
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1626
1627
1628
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1629
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1630
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1631
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1632
1633
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1634
1635
1636
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1637
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1638
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1639
1640
1641
1642
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1643
1644
1645
1646
1647
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1648
            MIGRAPHX_THROW("Invalid tensor type");
1649
        }
Paul's avatar
Paul committed
1650
1651
1652
1653
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1654
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1655
1656
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1657
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1658
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1659
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1660
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1661
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1662
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1663
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1664
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1665
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1666
1667
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1668
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1669
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1670
        {
Khalique's avatar
Khalique committed
1671
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1672
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1673
1674
1675
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1676
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1677
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1678
        }
Paul's avatar
Paul committed
1679
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1680
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1681
1682
1683
1684
1685
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1686
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1687
1688
    }

Khalique's avatar
Khalique committed
1689
    static literal
1690
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1691
    {
Khalique's avatar
Khalique committed
1692
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1693
        if(dims.empty())
1694
            return literal{{shape_type}, data};
1695
1696
1697
        return literal{{shape_type, dims}, data};
    }

1698
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1699
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1700
1701
    {
        if(dims.empty())
1702
            return literal{{shape_type}, data.begin(), data.end()};
1703
        return literal{{shape_type, dims}, data.begin(), data.end()};
1704
1705
    }

Paul's avatar
Paul committed
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1725
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1726
1727
1728
1729
1730
1731
1732
1733
1734
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1735
        auto&& tensor_dims = t.tensor_type().shape().dim();
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1747
1748
        return {shape_type, dims};
    }
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1794
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1795
} // namespace migraphx