onnx.cpp 66.5 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
217
218
219
220
221
222
223
224
225
226
227
            if(!arg0->get_shape().standard())
            {
                arg0 = prog.add_instruction(op::contiguous{}, arg0);
            }
            if(!arg1->get_shape().standard())
            {
                arg1 = prog.add_instruction(op::contiguous{}, arg1);
            }

            auto l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
228
229
230
231
232
233
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
234
235
    }

Paul's avatar
Paul committed
236
    template <class T>
Paul's avatar
Paul committed
237
238
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
239
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
240
241
242
243
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
244
    template <class T>
Khalique's avatar
Khalique committed
245
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
246
    {
Paul's avatar
Paul committed
247
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
248
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
249
250
251
252
253
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
254
        });
Khalique's avatar
Khalique committed
255
256
    }

Khalique's avatar
Khalique committed
257
258
259
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
260
261
262
263
264
265
266
267
268
269
270
271
272
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
273
274
275
276
277
278
279
280
281
282
    //    instruction_ref
    //    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    //    {
    //        auto dims = args.front()->get_shape().lens();
    //        auto r =
    //            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}},
    //            args.front());
    //        auto s = prog.add_instruction(op::softmax{}, r);
    //        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    //    }
283
284

    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
285
286
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
287
    {
288
289
290
291
292
293
294
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::softmax{axis}, std::move(args));
Paul's avatar
Paul committed
295
296
    }

Shucai Xiao's avatar
Shucai Xiao committed
297
298
299
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
300
301
302
303
304
305
306
307
308
309
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

310
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
311
312
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
313
    {
314
        int64_t axis = 0;
315
316
        if(contains(attributes, "axis"))
        {
317
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
318
319
        }

Shucai Xiao's avatar
Shucai Xiao committed
320
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
321
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
322
323
324
325
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
326
        if(keep_dims == 0)
327
328
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
329
            return prog.add_instruction(op::squeeze{{axis}}, ins);
330
331
332
333
334
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
335
336
337
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
338
339
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
340
    {
341
        int64_t axis = 0;
342
343
        if(contains(attributes, "axis"))
        {
344
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
345
346
        }

Shucai Xiao's avatar
Shucai Xiao committed
347
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
348
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
349
350
351
352
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
353
        if(keep_dims == 0)
354
355
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
356
            return prog.add_instruction(op::squeeze{{axis}}, ins);
357
358
359
360
361
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
362
363
    }

Paul's avatar
Paul committed
364
    instruction_ref
Paul's avatar
Paul committed
365
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
366
    {
367
        op::convolution op;
368
        auto l0 = args[0];
Paul's avatar
Paul committed
369
370
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
371
            if(contains(attributes, "auto_pad"))
372
            {
Paul's avatar
Paul committed
373
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
374
            }
375
376
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
377
            if(padding.size() != 4)
378
            {
Paul's avatar
Paul committed
379
                MIGRAPHX_THROW("padding should have 4 values");
380
            }
Scott Thornton's avatar
Scott Thornton committed
381
            if(padding[0] != padding[2] || padding[1] != padding[3])
382
            {
383
384
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
385
                l0      = prog.add_instruction(op::pad{padding}, l0);
386
            }
387
388
389
390
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
391
            }
Paul's avatar
Paul committed
392
        }
Paul's avatar
Paul committed
393
394
395
396
397
398
399
400
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
401
        if(contains(attributes, "auto_pad"))
402
403
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
404
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
405
            {
Paul's avatar
Paul committed
406
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
407
408
            }

wsttiger's avatar
fixes  
wsttiger committed
409
            if(s.find("SAME") != std::string::npos)
410
            {
411
                op.padding_mode = op::padding_mode_t::same;
412
413
            }
        }
Khalique's avatar
Khalique committed
414
415
416
417
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
418
419
420
421
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
422
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
423
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
424
        }
425
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
426
    }
Paul's avatar
Paul committed
427

Paul's avatar
Paul committed
428
429
430
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
431
    {
Khalique's avatar
Khalique committed
432
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
433
        auto l0 = args[0];
Khalique's avatar
Khalique committed
434
        if(starts_with(name, "Global"))
435
        {
Khalique's avatar
Khalique committed
436
437
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
438
        }
Paul's avatar
Paul committed
439
440
        if(contains(attributes, "pads"))
        {
441
442
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
443
            if(padding.size() != 4)
444
            {
Paul's avatar
Paul committed
445
                MIGRAPHX_THROW("padding should have 4 values");
446
            }
Scott Thornton's avatar
Scott Thornton committed
447
            if(padding[0] != padding[2] || padding[1] != padding[3])
448
            {
449
450
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
451
452
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
453
454
455
456
457
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
458
            }
Paul's avatar
Paul committed
459
460
461
462
463
464
465
466
467
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
468
        if(contains(attributes, "auto_pad"))
469
470
        {
            auto s = attributes["auto_pad"].s();
471
            if(s.find("SAME_UPPER") == std::string::npos)
472
            {
473
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
474
            }
475
            op.padding_mode = op::padding_mode_t::same;
476
477
        }

478
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
479
480
    }

Paul's avatar
Paul committed
481
    instruction_ref
Paul's avatar
Paul committed
482
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
483
    {
484
        op::reshape op;
Paul's avatar
Paul committed
485
486
        if(args.size() == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
487
            if(contains(attributes, "shape"))
488
489
490
491
492
493
            {
                literal s = parse_value(attributes.at("shape"));
                s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
494
495
496
                MIGRAPHX_THROW(
                    "Parse_reshape: shape attribute is needed when only one argument is provided!");
            }
Paul's avatar
Paul committed
497
498
499
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
500
            auto s = args[1]->eval();
Paul's avatar
Paul committed
501
            if(s.empty())
Paul's avatar
Paul committed
502
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
503
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
504
        }
505

Shucai Xiao's avatar
Shucai Xiao committed
506
        if(!args[0]->get_shape().standard())
507
508
509
510
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }

Paul's avatar
Paul committed
511
512
513
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
514
    instruction_ref
Paul's avatar
Paul committed
515
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
516
    {
517
        uint64_t axis = 1;
Paul's avatar
Paul committed
518
519
520
521
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
522
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
523
524
    }

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
543
544
545
546
547
548
549
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
550

551
552
553
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
554
        int axis = 0;
555
556
557
558
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
559
        op::gather op{axis};
560
561
562
        return prog.add_instruction(op, std::move(args));
    }

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
583
584
585
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
586
    {
Shucai Xiao's avatar
Shucai Xiao committed
587
        literal v = parse_value(attributes.at("value"));
588
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
589
        if(v.get_shape().elements() == 0)
590
591
592
593
        {
            return prog.add_literal(literal{});
        }

594
595
596
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
597
        {
598
            migraphx::shape scalar_shape{v.get_shape().type()};
599
600
601
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
602
603
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
604

Paul's avatar
Paul committed
605
    instruction_ref
Paul's avatar
Paul committed
606
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
607
608
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
609
        float beta  = 1.0f;
Paul's avatar
Paul committed
610
611
612
613
614
615
616
617
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
618
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
619
620
621
622
623
624
625
626
627
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
628
629
630
631
632
633

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

634
635
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
636
637
        if(args.size() == 3)
        {
638
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
639
            {
Shucai Xiao's avatar
Shucai Xiao committed
640
                auto out_lens   = l1->get_shape().lens();
641
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
642
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
643
644
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
645
                {
646
647
648
649
                    if(!args[2]->get_shape().standard())
                    {
                        args[2] = prog.add_instruction(op::contiguous{}, args[2]);
                    }
650
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
651
                }
652
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
653
            }
Paul's avatar
Paul committed
654
        }
655
656

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
657
658
    }

659
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
660
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
661
    {
Shucai Xiao's avatar
Shucai Xiao committed
662
663
        auto l0      = args[0];
        auto l1      = args[1];
664
665
666
667
668
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
669
        if(l0_lens.size() == 1)
670
671
672
673
674
675
676
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
677
        if(l1_lens.size() == 1)
678
679
680
681
682
683
684
685
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
686
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
687
688
689
690
691
692
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
693
            l0_broadcasted_lens = output_lens;
694
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
695
            l1_broadcasted_lens = output_lens;
696
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
697
            if(l0_lens != l0_broadcasted_lens)
698
            {
699
700
701
702
                if(!l0->get_shape().standard())
                {
                    l0 = prog.add_instruction(op::contiguous{}, l0);
                }
703
704
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
705
            if(l1_lens != l1_broadcasted_lens)
706
            {
707
708
709
710
                if(!l1->get_shape().standard())
                {
                    l1 = prog.add_instruction(op::contiguous{}, l1);
                }
711
712
713
714
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

715
716
717
718
719
720
721
722
        if(!bl1->get_shape().standard())
        {
            bl1 = prog.add_instruction(op::contiguous{}, bl1);
        }
        if(!bl0->get_shape().standard())
        {
            bl0 = prog.add_instruction(op::contiguous{}, bl0);
        }
Shucai Xiao's avatar
Shucai Xiao committed
723
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
724
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
725
        if(is_a_prepended)
726
727
728
729
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
730
        if(is_b_appended)
731
732
733
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
734

735
736
737
        return dot_res;
    }

738
    instruction_ref
Paul's avatar
Paul committed
739
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
740
    {
Scott Thornton's avatar
Scott Thornton committed
741
742
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
743
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
744
        bool is_test                                      = false;
745
746
747
748
749
750
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
751
            momentum = parse_value(attributes.at("momentum")).at<float>();
752
753
754
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
755
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
756
757
758
        }
        if(contains(attributes, "spatial"))
        {
759
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
760
761
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
762
        }
Paul's avatar
Paul committed
763
        (void)is_test;
Paul's avatar
Paul committed
764
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
765
        return prog.add_instruction(op, std::move(args));
766
767
    }

768
769
770
771
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
772
        float alpha = 0.01; // default alpha val for leaky relu
773
774
775
776
777
778
779
780
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
781
782
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
783
784
785
786
787
788
789
790
791
792
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
793
794
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
795
796
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
797
798
799
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
800
801
802
803
804
805
806
807
808
809
810
811
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
828
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
829

Khalique's avatar
Khalique committed
830
831
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
832
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
833

834
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
835
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
836
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
837
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
838
    }
Khalique's avatar
Khalique committed
839

Khalique's avatar
Khalique committed
840
841
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
842
843
844
845
846
847
848
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
849
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
850
851
    }

Khalique's avatar
Khalique committed
852
853
854
855
856
857
858
859
860
861
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
862
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
863
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
864
865
866
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
867
868
869
870
871
872
873
874
875
876
877
878
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
879
880
881
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
882
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
883
884
    {
        if(args.size() != 1)
885
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
922
923
        if(contains(attributes, "extra_shape"))
        {
924
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
925
926
        }

927
928
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
929
            if(args.size() != 1)
930
            {
931
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
932
933
            }

Shucai Xiao's avatar
Shucai Xiao committed
934
935
            if(contains(attributes, "shape"))
            {
936
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
937
                               "at the same time");
938
939
            }

940
941
942
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
943
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
944
            }
945

946
947
948
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
949
950
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
951
952
953
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
954
955
            if(!contains(attributes, "shape"))
            {
956
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
957
958
959
            }

            literal ls = parse_value(attributes.at("shape"));
960
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
961
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
962
            migraphx::shape s{type, dims};
963
964
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
965
966
967
        }
        else
        {
968
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
969
970
971
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
972
973
974
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
975
976
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
977
        if(contains(attributes, "value"))
978
979
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
980
            if(l_val.get_shape().elements() != 1)
981
982
983
984
985
986
987
988
989
990
991
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
992

Shucai Xiao's avatar
Shucai Xiao committed
993
        if(args.empty())
994
        {
995
            MIGRAPHX_THROW("Parse ConstantOfShape : must have 1 input!");
996
997
998
        }
        else
        {
999
1000
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
1001
            if(args[0]->get_shape().elements() == 0)
1002
            {
1003
                s = migraphx::shape{type, {1}, {0}};
1004
            }
1005
1006
1007
1008
1009
1010
1011
            else
            {
                migraphx::argument in = args[0]->eval();
                if(in.empty())
                {
                    MIGRAPHX_THROW("Parse ConstantOfShape: cannot handle dynamic shape as input");
                }
1012

1013
1014
1015
1016
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1030
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
1031
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
1032
    {
Shucai Xiao's avatar
Shucai Xiao committed
1033
        auto in_lens             = args[0]->get_shape().lens();
1034
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
1035
        if(arg_s.empty())
1036
1037
1038
1039
1040
1041
        {
            MIGRAPHX_THROW("Parse Expand: cannot handle dynamic shape as input");
        }
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
1042

1043
1044
1045
1046
        if(!args[0]->get_shape().standard())
        {
            args[0] = prog.add_instruction(op::contiguous{}, args[0]);
        }
Shucai Xiao's avatar
Shucai Xiao committed
1047
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
1048
1049
    }

Shucai Xiao's avatar
Shucai Xiao committed
1050
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
1051
1052
1053
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
1054
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
1055
1056
1057

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1058
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1059
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1060
1061
1062
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1072
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1073
1074
        if(direction == "bidirectional")
        {
1075
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1076
1077
1078
        }
        else if(direction == "reverse")
        {
1079
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1080
1081
        }

1082
        std::vector<std::string> vec_names{"tanh"};
1083
1084
1085
1086
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1087
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1088
1089
1090
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1091
1092
        }

1093
1094
1095
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1096
        if(name_it != vec_names.end())
1097
1098
1099
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1100

Shucai Xiao's avatar
Shucai Xiao committed
1101
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1102
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1103
        // if only one actv function is provided, we use it in both
1104
        // forward and reverse direction
1105
        if(dirct == op::rnn_direction::bidirectional)
1106
        {
Shucai Xiao's avatar
Shucai Xiao committed
1107
            if(vec_names.size() == 1)
1108
1109
1110
1111
1112
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1113
1114
1115
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1116
        });
Shucai Xiao's avatar
Shucai Xiao committed
1117

Shucai Xiao's avatar
Shucai Xiao committed
1118
1119
1120
1121
1122
1123
1124
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1125
1126
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1127
        if(args.size() < 6)
1128
1129
1130
1131
1132
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1133
1134
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1135
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1136

1137
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1138
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1139

Shucai Xiao's avatar
Shucai Xiao committed
1140
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1141
1142
    }

1143
    std::vector<instruction_ref>
1144
1145
1146
1147
1148
1149
1150
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1151
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1152
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1153
1154
1155
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1156
1157
1158
1159
1160
1161
1162
1163
1164
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1165
        op::rnn_direction dirct = op::rnn_direction::forward;
1166
1167
        if(direction == "bidirectional")
        {
1168
            dirct = op::rnn_direction::bidirectional;
1169
1170
1171
        }
        else if(direction == "reverse")
        {
1172
            dirct = op::rnn_direction::reverse;
1173
1174
        }

1175
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1176
1177
        if(contains(attributes, "activations"))
        {
1178
            auto names = attributes.at("activations").strings();
1179
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1180
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1181
1182
1183
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1184
1185
        }

1186
        // need 4 activation functions
1187
        if(dirct == op::rnn_direction::bidirectional)
1188
        {
Shucai Xiao's avatar
Shucai Xiao committed
1189
            // 4 activation functions are used in the bidirectional
1190
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1191
1192
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1193
1194
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1195
1196
1197
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1198
            if(vec_names.size() == 1)
1199
            {
1200
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1201
            }
1202
            else if(vec_names.size() == 2)
1203
            {
1204
1205
1206
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1207
            }
1208
            else if(vec_names.size() == 3)
1209
            {
1210
                vec_names.push_back(vec_names.at(2));
1211
1212
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1213
        else
1214
        {
1215
            if(vec_names.size() == 1)
1216
            {
1217
                vec_names.push_back(vec_names.at(0));
1218
1219
1220
            }
        }

1221
1222
1223
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1224
        if(name_it != vec_names.end())
1225
1226
1227
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1228

Shucai Xiao's avatar
Shucai Xiao committed
1229
1230
1231
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1232
        });
1233
1234
1235
1236
1237
1238
1239
1240

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1241
        if(contains(attributes, "linear_before_reset"))
1242
1243
1244
1245
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1246
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1247
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1248
1249
1250
1251
1252
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1253
1254
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1255
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1256
            std::move(args));
1257
1258

        // second output for last gru output
1259
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1260

Shucai Xiao's avatar
Shucai Xiao committed
1261
        return {hidden_states, last_output};
1262
1263
    }

Shucai Xiao's avatar
Shucai Xiao committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1286
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1287
1288
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1289
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1290
1291
1292
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1293
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1294
        }
Shucai Xiao's avatar
Shucai Xiao committed
1295
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1296
        {
Shucai Xiao's avatar
Shucai Xiao committed
1297
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1298
1299
1300
1301
1302
1303
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1304
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1305
1306
1307
1308
1309
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1310
1311
1312
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1313
1314
1315
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1316
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1317
1318
1319
1320
1321
1322
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1323
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1324
1325
1326
1327
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1328
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1329
1330
1331
1332
1333
1334
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1335
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1336
1337
1338

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1339
1340
1341
1342
1343
1344
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1345
1346
1347
1348
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1349
1350
1351
1352
1353
1354
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1355
1356
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1357
1358
1359
1360
1361
1362
1363
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1364
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1365

Shucai Xiao's avatar
Shucai Xiao committed
1366
1367
1368
1369
1370
1371
1372
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1373
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1374

Shucai Xiao's avatar
Shucai Xiao committed
1375
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1376
1377
1378
1379
1380
1381
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1382
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1383
1384
1385

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1386
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1387
1388
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1389
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1390
1391
1392
            }
        }

1393
1394
1395
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1396
        if(name_it != vec_names.end())
1397
1398
1399
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1422
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1423
1424
1425
1426
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1427
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1428
1429

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1430
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1431
1432
1433
1434
1435
1436

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1437

Shucai Xiao's avatar
Shucai Xiao committed
1438
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1439
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1440
1441
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1442
1443
1444
1445
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1446
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1447
1448
1449
1450
1451
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1452
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1463
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1464
1465
1466
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1467
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1468
            return prog.add_instruction(op::squeeze{axes}, ins);
1469
1470
        }
    }
1471

Shucai Xiao's avatar
Shucai Xiao committed
1472
1473
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1474
    {
Shucai Xiao's avatar
Shucai Xiao committed
1475
        if(!contains(attributes, "to"))
1476
1477
1478
1479
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1480
        int to_type        = parse_value(attributes.at("to")).at<int>();
1481
1482
1483
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1484

Paul's avatar
Paul committed
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1497
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1498
1499
1500
1501
1502
1503
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1504
1505
1506
1507
1508
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1509
1510
1511
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1524
        }
Paul's avatar
Paul committed
1525
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1526
        {
Paul's avatar
Paul committed
1527
            this->parse_node(output.name());
Paul's avatar
Paul committed
1528
1529
1530
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1531
    void parse_undefined(const std::string& name)
1532
    {
Shucai Xiao's avatar
Shucai Xiao committed
1533
        auto ins           = prog.add_instruction(op::undefined{});
1534
1535
1536
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1537
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1538
    {
Paul's avatar
Paul committed
1539
        if(name.empty())
Paul's avatar
Paul committed
1540
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1541
1542
1543
1544
1545
1546
1547
1548
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1549
1550
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1551
                }
Shucai Xiao's avatar
Shucai Xiao committed
1552
                else if(input.empty())
Paul's avatar
Paul committed
1553
                {
1554
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1555
                }
1556
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1557
            }
Paul's avatar
Paul committed
1558
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1559
1560
            if(ops.count(node.op_type()) == 0)
            {
1561
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1562
1563
1564
            }
            else
            {
Paul's avatar
Paul committed
1565
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1566
            }
Paul's avatar
Paul committed
1567
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1568
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1569
1570
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1571
1572
1573
            }
            else
            {
Paul's avatar
Paul committed
1574
1575
1576
1577
1578
1579
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1597
        std::size_t n = 0;
Paul's avatar
Paul committed
1598
1599
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1600
            if(node.output().empty())
Paul's avatar
Paul committed
1601
            {
Paul's avatar
Paul committed
1602
                if(node.name().empty())
Paul's avatar
Paul committed
1603
1604
1605
1606
1607
1608
1609
1610
1611
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1637
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1638
1639
1640
1641
1642
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1643
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1644
1645
1646
1647
1648
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1649
1650
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1651
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1652
1653
1654
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1655
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1656
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1657
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1658
1659
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1660
1661
1662
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1663
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1664
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1665
1666
1667
1668
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1669
1670
1671
1672
1673
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1674
            MIGRAPHX_THROW("Invalid tensor type");
1675
        }
Paul's avatar
Paul committed
1676
1677
1678
1679
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1680
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1681
1682
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1683
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1684
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1685
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1686
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1687
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1688
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1689
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1690
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1691
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1692
1693
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1694
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1695
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1696
        {
Khalique's avatar
Khalique committed
1697
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1698
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1699
1700
1701
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1702
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1703
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1704
        }
Paul's avatar
Paul committed
1705
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1706
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1707
1708
1709
1710
1711
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1712
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1713
1714
    }

Khalique's avatar
Khalique committed
1715
    static literal
1716
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1717
    {
Khalique's avatar
Khalique committed
1718
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1719
        if(dims.empty())
1720
            return literal{{shape_type}, data};
1721
1722
1723
        return literal{{shape_type, dims}, data};
    }

1724
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1725
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1726
1727
    {
        if(dims.empty())
1728
            return literal{{shape_type}, data.begin(), data.end()};
1729
        return literal{{shape_type, dims}, data.begin(), data.end()};
1730
1731
    }

Paul's avatar
Paul committed
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1751
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1752
1753
1754
1755
1756
1757
1758
1759
1760
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1761
        auto&& tensor_dims = t.tensor_type().shape().dim();
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1773
1774
        return {shape_type, dims};
    }
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1820
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1821
} // namespace migraphx