onnx.cpp 62.9 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
58
        add_generic_op("Sign", op::sign{});
Paul's avatar
Paul committed
59

Khalique's avatar
Khalique committed
60
61
62
63
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
64
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
65

Khalique's avatar
Khalique committed
66
67
68
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
69

70
71
        add_mem_op("ArgMax", &onnx_parser::parse_arg_op<op::argmax>);
        add_mem_op("ArgMin", &onnx_parser::parse_arg_op<op::argmin>);
72
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
73
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
74
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
75
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
76
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
77
        add_mem_op("Elu", &onnx_parser::parse_elu);
78
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
79
80
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
81
82
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
83
84
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
85
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
86
87
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
88
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
89
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
90
91
        add_mem_op("Softmax", &onnx_parser::parse_softmax<op::softmax>);
        add_mem_op("LogSoftmax", &onnx_parser::parse_softmax<op::logsoftmax>);
92
93
94
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
95
        add_mem_op("Concat", &onnx_parser::parse_concat);
96
97
98
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
99
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
100
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
101
        add_mem_op("RNN", &onnx_parser::parse_rnn);
102
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
103
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
104
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
105
106
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
107
108
109
110
111
112
113

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
114
115
116
117
118
119
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
120
121
122
123
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
124
125
126
127
128
129
130
131
132
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
133
134
135
136
137
138
139
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
140
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
141
142
143
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
144

145
    template <class T>
Khalique's avatar
Khalique committed
146
    void add_binary_op(std::string name, T x)
147
    {
Paul's avatar
Paul committed
148
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
149
            if(args.size() != 2)
Paul's avatar
Paul committed
150
                MIGRAPHX_THROW("binary operators should have 2 operands");
151
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
152
153
154
155
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
156
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
157
158
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
159
160
                    return prog.add_instruction(x, args[0], l);
                }
161
                return prog.add_instruction(x, args);
162
            }
Paul's avatar
Paul committed
163
            else
164
            {
Khalique's avatar
Khalique committed
165
                return add_broadcastable_binary_op(args[0], args[1], x);
166
167
168
169
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
170
171
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
172
173
174
175
176
177
178
179
180
181
182
183
184
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
185
        if(s0.size() > s1.size())
186
187
188
189
190
191
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
192
193
194
195
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
196
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
197
                           if(a != b and a != 1 and b != 1)
198
                           {
Shucai Xiao's avatar
Shucai Xiao committed
199
200
201
202
203
204
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
205
206
207
208

        return out_lens;
    }

Shucai Xiao's avatar
Shucai Xiao committed
209
210
    instruction_ref make_contiguous(instruction_ref ins)
    {
Shucai Xiao's avatar
Shucai Xiao committed
211
        if(ins->get_shape().standard())
Shucai Xiao's avatar
Shucai Xiao committed
212
213
214
215
216
217
218
        {
            return ins;
        }

        return prog.add_instruction(op::contiguous{}, ins);
    }

Khalique's avatar
Khalique committed
219
220
221
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
222
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
223
224
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
225
226
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
227
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
228
229
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
230
231
232
233
234
235
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
236
237
    }

Paul's avatar
Paul committed
238
    template <class T>
Paul's avatar
Paul committed
239
240
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
241
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
242
243
244
245
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
246
    template <class T>
Khalique's avatar
Khalique committed
247
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
248
    {
Paul's avatar
Paul committed
249
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
250
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
251
252
253
254
255
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
256
        });
Khalique's avatar
Khalique committed
257
258
    }

Khalique's avatar
Khalique committed
259
260
261
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
262
263
264
265
266
267
268
269
270
271
272
273
274
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Shucai Xiao's avatar
Shucai Xiao committed
275
    template <class Op>
276
    instruction_ref parse_softmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
277
278
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
279
    {
280
281
282
283
284
285
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

286
        return prog.add_instruction(Op{axis}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
287
288
    }

Shucai Xiao's avatar
Shucai Xiao committed
289
    template <class Op>
290
    instruction_ref parse_arg_op(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
291
292
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
293
    {
294
        int64_t axis = 0;
295
296
        if(contains(attributes, "axis"))
        {
297
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
298
299
        }

Shucai Xiao's avatar
Shucai Xiao committed
300
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
301
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
302
303
304
305
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
306
        if(keep_dims == 0)
307
        {
308
            auto ins = prog.add_instruction(Op{axis}, std::move(args));
309
            return prog.add_instruction(op::squeeze{{axis}}, ins);
310
311
312
        }
        else
        {
313
            return prog.add_instruction(Op{axis}, std::move(args));
314
        }
315
316
    }

Paul's avatar
Paul committed
317
    instruction_ref
Paul's avatar
Paul committed
318
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
319
    {
320
        op::convolution op;
321
        auto l0 = args[0];
Paul's avatar
Paul committed
322
323
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
324
            if(contains(attributes, "auto_pad"))
325
            {
Paul's avatar
Paul committed
326
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
327
            }
328
329
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
330
            if(padding.size() != 4)
331
            {
Paul's avatar
Paul committed
332
                MIGRAPHX_THROW("padding should have 4 values");
333
            }
Scott Thornton's avatar
Scott Thornton committed
334
            if(padding[0] != padding[2] || padding[1] != padding[3])
335
            {
336
337
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
338
                l0      = prog.add_instruction(op::pad{padding}, l0);
339
            }
340
341
342
343
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
344
            }
Paul's avatar
Paul committed
345
        }
Paul's avatar
Paul committed
346
347
348
349
350
351
352
353
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
354
        if(contains(attributes, "auto_pad"))
355
356
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
357
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
358
            {
Paul's avatar
Paul committed
359
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
360
361
            }

wsttiger's avatar
fixes  
wsttiger committed
362
            if(s.find("SAME") != std::string::npos)
363
            {
364
                op.padding_mode = op::padding_mode_t::same;
365
366
            }
        }
Khalique's avatar
Khalique committed
367
368
369
370
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
371
372
373
374
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
375
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
376
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
377
        }
378
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
379
    }
Paul's avatar
Paul committed
380

Paul's avatar
Paul committed
381
382
383
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
384
    {
Khalique's avatar
Khalique committed
385
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
386
        auto l0 = args[0];
Khalique's avatar
Khalique committed
387
        if(starts_with(name, "Global"))
388
        {
Khalique's avatar
Khalique committed
389
390
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
391
        }
Paul's avatar
Paul committed
392
393
        if(contains(attributes, "pads"))
        {
394
395
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
396
            if(padding.size() != 4)
397
            {
Paul's avatar
Paul committed
398
                MIGRAPHX_THROW("padding should have 4 values");
399
            }
Scott Thornton's avatar
Scott Thornton committed
400
            if(padding[0] != padding[2] || padding[1] != padding[3])
401
            {
402
403
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
404
405
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
406
407
408
409
410
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
411
            }
Paul's avatar
Paul committed
412
413
414
415
416
417
418
419
420
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
421
        if(contains(attributes, "auto_pad"))
422
423
        {
            auto s = attributes["auto_pad"].s();
424
            if(s.find("SAME_UPPER") == std::string::npos)
425
            {
426
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
427
            }
428
            op.padding_mode = op::padding_mode_t::same;
429
430
        }

431
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
432
433
    }

Paul's avatar
Paul committed
434
    instruction_ref
Paul's avatar
Paul committed
435
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
436
    {
437
        op::reshape op;
Paul's avatar
Paul committed
438
439
        if(args.size() == 1)
        {
440
441
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
442
443
444
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
445
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
446
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
447
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
448
        }
449

Shucai Xiao's avatar
Shucai Xiao committed
450
        return prog.add_instruction(op, make_contiguous(args[0]));
Paul's avatar
Paul committed
451
452
    }

Paul's avatar
Paul committed
453
    instruction_ref
Paul's avatar
Paul committed
454
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
455
    {
456
        uint64_t axis = 1;
Paul's avatar
Paul committed
457
458
459
460
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
461
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
462
463
    }

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
482
483
484
485
486
487
488
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
489

490
491
492
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
493
        int axis = 0;
494
495
496
497
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
498

499
        op::gather op{axis};
Shucai Xiao's avatar
Shucai Xiao committed
500
        return prog.add_instruction(op, make_contiguous(args[0]), make_contiguous(args[1]));
501
502
    }

503
504
505
506
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
Khalique's avatar
Khalique committed
507
        std::vector<size_t> dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
508
        size_t num_dims          = dims.size();
509
510
511
512
513
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
Khalique's avatar
Khalique committed
514
515
516
517
518
        else
        {
            op.axes = std::vector<int64_t>(num_dims);
            std::iota(op.axes.begin(), op.axes.end(), 0);
        }
Khalique's avatar
Khalique committed
519

Khalique's avatar
Khalique committed
520
        if(contains(attributes, "ends"))
521
522
523
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
Khalique's avatar
Khalique committed
524
            for(size_t i = 0; i < num_dims; i++)
Khalique's avatar
Khalique committed
525
526
527
528
529
530
            {
                if(static_cast<size_t>(op.ends[i]) > dims[i])
                {
                    op.ends[i] = dims[i];
                }
            }
531
        }
Khalique's avatar
Khalique committed
532
        if(contains(attributes, "starts"))
533
534
535
536
537
538
539
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
540
541
542
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
543
    {
Shucai Xiao's avatar
Shucai Xiao committed
544
        literal v = parse_value(attributes.at("value"));
545
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
546
        if(v.get_shape().elements() == 0)
547
548
549
550
        {
            return prog.add_literal(literal{});
        }

551
552
553
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
554
        {
555
            migraphx::shape scalar_shape{v.get_shape().type()};
556
557
558
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
559
560
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
561

Paul's avatar
Paul committed
562
    instruction_ref
Paul's avatar
Paul committed
563
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
564
565
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
566
        float beta  = 1.0f;
Paul's avatar
Paul committed
567
568
569
570
571
572
573
574
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
575
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
576
577
578
579
580
581
582
583
584
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
585
586
587
588
589
590

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

591
592
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
593
594
        if(args.size() == 3)
        {
595
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
596
            {
Shucai Xiao's avatar
Shucai Xiao committed
597
                auto out_lens   = l1->get_shape().lens();
598
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
599
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
600
601
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
602
                {
603
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
604
                }
605
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
606
            }
Paul's avatar
Paul committed
607
        }
608
609

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
610
611
    }

612
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
613
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
614
    {
Shucai Xiao's avatar
Shucai Xiao committed
615
616
        auto l0      = args[0];
        auto l1      = args[1];
617
618
619
620
621
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
622
        if(l0_lens.size() == 1)
623
624
625
626
627
628
629
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
630
        if(l1_lens.size() == 1)
631
632
633
634
635
636
637
638
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
639
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
640
641
642
643
644
645
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
646
            l0_broadcasted_lens = output_lens;
647
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
648
            l1_broadcasted_lens = output_lens;
649
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
650
            if(l0_lens != l0_broadcasted_lens)
651
652
653
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
654
            if(l1_lens != l1_broadcasted_lens)
655
656
657
658
659
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
660
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
661
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
662
        if(is_a_prepended)
663
664
665
666
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
667
        if(is_b_appended)
668
669
670
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
671

672
673
674
        return dot_res;
    }

675
    instruction_ref
Paul's avatar
Paul committed
676
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
677
    {
Scott Thornton's avatar
Scott Thornton committed
678
679
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
680
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
681
        bool is_test                                      = false;
682
683
684
685
686
687
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
688
            momentum = parse_value(attributes.at("momentum")).at<float>();
689
690
691
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
692
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
693
694
695
        }
        if(contains(attributes, "spatial"))
        {
696
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
697
698
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
699
        }
Paul's avatar
Paul committed
700
        (void)is_test;
Paul's avatar
Paul committed
701
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
702
        return prog.add_instruction(op, std::move(args));
703
704
    }

705
706
707
708
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
709
        float alpha = 0.01; // default alpha val for leaky relu
710
711
712
713
714
715
716
717
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
718
719
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
720
721
722
723
724
725
726
727
728
729
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
730
731
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
732
733
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
734
735
736
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
737
738
739
740
741
742
743
744
745
746
747
748
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
765
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
766

Khalique's avatar
Khalique committed
767
768
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
769
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
770

771
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
772
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
773
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
774
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
775
    }
Khalique's avatar
Khalique committed
776

Khalique's avatar
Khalique committed
777
778
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
779
780
781
782
783
784
785
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
786
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
787
788
    }

Khalique's avatar
Khalique committed
789
790
791
792
793
794
795
796
797
798
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
799
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
800
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
801
802
803
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
804
805
806
807
808
809
810
811
812
813
814
815
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
816
817
818
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
819
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
820
821
    {
        if(args.size() != 1)
822
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
Shucai Xiao's avatar
Shucai Xiao committed
847
        shape::type_t type = get_type(dtype);
848
849
850
851
852
853
854
855
856
857
858

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
859
860
        if(contains(attributes, "extra_shape"))
        {
861
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
862
863
        }

864
865
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
866
            if(args.size() != 1)
867
            {
868
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
869
870
            }

Shucai Xiao's avatar
Shucai Xiao committed
871
872
            if(contains(attributes, "shape"))
            {
873
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
874
                               "at the same time");
875
876
            }

877
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
878
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
879

880
881
882
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
883
884
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
885
886
887
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
888
889
            if(!contains(attributes, "shape"))
            {
890
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
891
892
893
            }

            literal ls = parse_value(attributes.at("shape"));
894
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
895
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
896
            migraphx::shape s{type, dims};
897
898
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
899
900
901
        }
        else
        {
902
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
903
904
905
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
906
907
908
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
909
910
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
911
        if(contains(attributes, "value"))
912
913
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
914
            if(l_val.get_shape().elements() != 1)
915
916
917
918
919
920
921
922
923
924
925
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
926

Shucai Xiao's avatar
Shucai Xiao committed
927
        if(args.empty())
928
        {
Shucai Xiao's avatar
Shucai Xiao committed
929
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
930
931
932
        }
        else
        {
933
934
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
935
            if(args[0]->get_shape().elements() == 0)
936
            {
937
                s = migraphx::shape{type, {1}, {0}};
938
            }
939
940
941
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
942
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
943

944
945
946
947
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
948

Shucai Xiao's avatar
Shucai Xiao committed
949
            literal l_out{};
950
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
951
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
952
                // l_val contains only one element
Shucai Xiao's avatar
Shucai Xiao committed
953
                std::vector<val_type> out_vec(s.elements(), *val.begin());
954
955
956
957
958
959
960
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
961
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
962
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
963
    {
Shucai Xiao's avatar
Shucai Xiao committed
964
        auto in_lens             = args[0]->get_shape().lens();
965
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
966
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
967
968
969
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
Shucai Xiao's avatar
Shucai Xiao committed
970
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
971
972
    }

Shucai Xiao's avatar
Shucai Xiao committed
973
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
974
975
976
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
977
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
978
979
980

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
981
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
982
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
983
984
985
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
986
987
988
989
990
991
992
993
994
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

995
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
996
997
        if(direction == "bidirectional")
        {
998
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
999
1000
1001
        }
        else if(direction == "reverse")
        {
1002
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1003
1004
        }

1005
        std::vector<std::string> vec_names{"tanh"};
1006
1007
1008
1009
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1010
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1011
1012
1013
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1014
1015
        }

1016
1017
1018
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1019
        if(name_it != vec_names.end())
1020
1021
1022
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1023

Shucai Xiao's avatar
Shucai Xiao committed
1024
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1025
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1026
        // if only one actv function is provided, we use it in both
1027
        // forward and reverse direction
1028
        if(dirct == op::rnn_direction::bidirectional)
1029
        {
Shucai Xiao's avatar
Shucai Xiao committed
1030
            if(vec_names.size() == 1)
1031
1032
1033
1034
1035
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1036
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1037
1038
1039
1040
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& fn) { return map_actv_funcs[fn]; });
Shucai Xiao's avatar
Shucai Xiao committed
1041

Shucai Xiao's avatar
Shucai Xiao committed
1042
1043
1044
1045
1046
1047
1048
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1049
1050
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1051
        if(args.size() < 6)
1052
1053
1054
1055
1056
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1057
1058
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1059
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1060

1061
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1062
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1063

Shucai Xiao's avatar
Shucai Xiao committed
1064
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1065
1066
    }

1067
    std::vector<instruction_ref>
1068
1069
1070
1071
1072
1073
1074
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1075
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1076
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1077
1078
1079
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1080
1081
1082
1083
1084
1085
1086
1087
1088
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1089
        op::rnn_direction dirct = op::rnn_direction::forward;
1090
1091
        if(direction == "bidirectional")
        {
1092
            dirct = op::rnn_direction::bidirectional;
1093
1094
1095
        }
        else if(direction == "reverse")
        {
1096
            dirct = op::rnn_direction::reverse;
1097
1098
        }

1099
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1100
1101
        if(contains(attributes, "activations"))
        {
1102
            auto names = attributes.at("activations").strings();
1103
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1104
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
1107
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1108
1109
        }

1110
        // need 4 activation functions
1111
        if(dirct == op::rnn_direction::bidirectional)
1112
        {
Shucai Xiao's avatar
Shucai Xiao committed
1113
            // 4 activation functions are used in the bidirectional
1114
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1115
1116
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1117
1118
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1119
1120
1121
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1122
            if(vec_names.size() == 1)
1123
            {
1124
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1125
            }
1126
            else if(vec_names.size() == 2)
1127
            {
1128
1129
1130
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1131
            }
1132
            else if(vec_names.size() == 3)
1133
            {
1134
                vec_names.push_back(vec_names.at(2));
1135
1136
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1137
        else
1138
        {
1139
            if(vec_names.size() == 1)
1140
            {
1141
                vec_names.push_back(vec_names.at(0));
1142
1143
1144
            }
        }

1145
1146
1147
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1148
        if(name_it != vec_names.end())
1149
1150
1151
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1152

Shucai Xiao's avatar
Shucai Xiao committed
1153
        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1154
1155
1156
1157
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
1158
1159
1160
1161
1162
1163
1164
1165

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1166
        if(contains(attributes, "linear_before_reset"))
1167
1168
1169
1170
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1171
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1172
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1173
1174
1175
1176
1177
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1178
1179
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1180
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1181
            std::move(args));
1182
1183

        // second output for last gru output
1184
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1185

Shucai Xiao's avatar
Shucai Xiao committed
1186
        return {hidden_states, last_output};
1187
1188
    }

Shucai Xiao's avatar
Shucai Xiao committed
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1211
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1212
1213
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1214
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1215
1216
1217
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1218
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1219
        }
Shucai Xiao's avatar
Shucai Xiao committed
1220
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1221
        {
Shucai Xiao's avatar
Shucai Xiao committed
1222
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1223
1224
1225
1226
1227
1228
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1229
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1230
1231
1232
1233
1234
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1235
1236
1237
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1238
1239
1240
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1241
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1242
1243
1244
1245
1246
1247
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1248
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1249
1250
1251
1252
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1253
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1254
1255
1256
1257
1258
1259
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1260
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1261
1262
1263

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1264
1265
1266
1267
1268
1269
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1270
1271
1272
1273
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1274
1275
1276
1277
1278
1279
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1280
1281
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1282
1283
1284
1285
1286
1287
1288
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1289
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1290

Shucai Xiao's avatar
Shucai Xiao committed
1291
1292
1293
1294
1295
1296
1297
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1298
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1299

Shucai Xiao's avatar
Shucai Xiao committed
1300
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1301
1302
1303
1304
1305
1306
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1307
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1308
1309
1310

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1311
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1312
1313
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1314
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1315
1316
1317
            }
        }

1318
1319
1320
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1321
        if(name_it != vec_names.end())
1322
1323
1324
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1325
1326

        std::vector<operation> vec_actv_funcs(vec_names.size());
Paul's avatar
Paul committed
1327
1328
1329
1330
        std::transform(vec_names.begin(),
                       vec_names.end(),
                       vec_actv_funcs.begin(),
                       [&](const auto& name) { return map_actv_funcs[name]; });
Shucai Xiao's avatar
Shucai Xiao committed
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1348
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1349
1350
1351
1352
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1353
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1354
1355

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1356
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1357
1358
1359
1360
1361
1362

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1363

Shucai Xiao's avatar
Shucai Xiao committed
1364
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1365
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1366
1367
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
1368
1369
1370
1371
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1372
        std::vector<int64_t> axes(n_dim);
Shucai Xiao's avatar
Shucai Xiao committed
1373
1374
1375
1376
1377
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1378
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
Shucai Xiao's avatar
Shucai Xiao committed
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
        }

        int keep_dims = 1;
        if(contains(attributes, "keepdims"))
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

        if(keep_dims == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
1389
            return prog.add_instruction(T{axes}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1390
1391
1392
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1393
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1394
            return prog.add_instruction(op::squeeze{axes}, ins);
1395
1396
        }
    }
1397

Shucai Xiao's avatar
Shucai Xiao committed
1398
1399
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1400
    {
Shucai Xiao's avatar
Shucai Xiao committed
1401
        if(!contains(attributes, "to"))
1402
1403
1404
1405
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1406
        int to_type        = parse_value(attributes.at("to")).at<int>();
1407
1408
1409
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1410

Paul's avatar
Paul committed
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1423
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1424
1425
1426
1427
1428
1429
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1430
1431
1432
1433
1434
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1435
1436
1437
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1450
        }
Paul's avatar
Paul committed
1451
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1452
        {
Paul's avatar
Paul committed
1453
            this->parse_node(output.name());
Paul's avatar
Paul committed
1454
1455
1456
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1457
    void parse_undefined(const std::string& name)
1458
    {
Shucai Xiao's avatar
Shucai Xiao committed
1459
        auto ins           = prog.add_instruction(op::undefined{});
1460
1461
1462
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1463
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1464
    {
Paul's avatar
Paul committed
1465
        if(name.empty())
Paul's avatar
Paul committed
1466
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1467
1468
1469
1470
1471
1472
1473
1474
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1475
1476
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1477
                }
Shucai Xiao's avatar
Shucai Xiao committed
1478
                else if(input.empty())
Paul's avatar
Paul committed
1479
                {
1480
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1481
                }
1482
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1483
            }
Paul's avatar
Paul committed
1484
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1485
1486
            if(ops.count(node.op_type()) == 0)
            {
1487
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1488
1489
1490
            }
            else
            {
Paul's avatar
Paul committed
1491
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1492
            }
Paul's avatar
Paul committed
1493
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1494
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1495
1496
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1497
1498
1499
            }
            else
            {
Paul's avatar
Paul committed
1500
1501
1502
1503
1504
1505
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1523
        std::size_t n = 0;
Paul's avatar
Paul committed
1524
1525
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1526
            if(node.output().empty())
Paul's avatar
Paul committed
1527
            {
Paul's avatar
Paul committed
1528
                if(node.name().empty())
Paul's avatar
Paul committed
1529
1530
1531
1532
1533
1534
1535
1536
1537
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1560
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1561
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1562
1563
1564
1565
1566
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
Paul's avatar
Paul committed
1567
1568
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1569
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1570
1571
1572
1573
1574
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1575
1576
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1577
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1578
1579
            switch(t.data_type())
            {
1580
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Khalique's avatar
Khalique committed
1581
1582
1583
1584
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1585
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1586
1587
1588
1589
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1590
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1591
1592
1593
1594
1595
1596
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1597
1598
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1599
            MIGRAPHX_THROW("Invalid tensor type");
1600
        }
Paul's avatar
Paul committed
1601
1602
1603
1604
1605
1606
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1607
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1608
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1609
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1610
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1611
1612
1613
1614
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1615
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1616
        {
Khalique's avatar
Khalique committed
1617
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1618
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1619
1620
1621
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1622
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1623
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1624
        }
Paul's avatar
Paul committed
1625
1626
1627
1628
1629
1630
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1631
1632
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1633
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1634
1635
    }

Khalique's avatar
Khalique committed
1636
    static literal
1637
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1638
    {
Khalique's avatar
Khalique committed
1639
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1640
        if(dims.empty())
1641
            return literal{{shape_type}, data};
1642
1643
1644
        return literal{{shape_type, dims}, data};
    }

1645
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1646
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1647
1648
    {
        if(dims.empty())
1649
            return literal{{shape_type}, data.begin(), data.end()};
1650
        return literal{{shape_type, dims}, data.begin(), data.end()};
1651
1652
    }

Paul's avatar
Paul committed
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
1664
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1665
1666
1667
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1668
1669
1670
1671
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
1672
1673
        case onnx::TensorProto::COMPLEX64:
        case onnx::TensorProto::COMPLEX128:
Paul's avatar
Paul committed
1674
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
1675
1676
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1677
        auto&& tensor_dims = t.tensor_type().shape().dim();
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1689
1690
        return {shape_type, dims};
    }
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1713
1714
1715

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
1716
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
1717
1718
1719
1720
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1744
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1745
} // namespace migraphx