onnx.cpp 63.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
61
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
62

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

67
68
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
69
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
70
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
71
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
72
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
73
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
74
        add_mem_op("Elu", &onnx_parser::parse_elu);
75
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
76
77
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
78
79
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
80
81
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
82
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
83
84
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
85
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
86
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
87
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
88
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
89
90
91
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
92
        add_mem_op("Concat", &onnx_parser::parse_concat);
93
94
95
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
96
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
97
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
98
        add_mem_op("RNN", &onnx_parser::parse_rnn);
99
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
101
        add_mem_op("Pad", &onnx_parser::parse_pad);
102
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_sum);
103
104
105
106
107
108
109

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
110
111
112
113
114
115
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
116
117
118
119
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
120
121
122
123
124
125
126
127
128
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
129
130
131
132
133
134
135
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
136
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
137
138
139
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
140

141
    template <class T>
Khalique's avatar
Khalique committed
142
    void add_binary_op(std::string name, T x)
143
    {
Paul's avatar
Paul committed
144
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
145
            if(args.size() != 2)
Paul's avatar
Paul committed
146
                MIGRAPHX_THROW("binary operators should have 2 operands");
147
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
148
149
150
151
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
152
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
153
154
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
155
156
                    return prog.add_instruction(x, args[0], l);
                }
157
                return prog.add_instruction(x, args);
158
            }
Paul's avatar
Paul committed
159
            else
160
            {
Khalique's avatar
Khalique committed
161
                return add_broadcastable_binary_op(args[0], args[1], x);
162
163
164
165
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
166
167
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
168
169
170
171
172
173
174
175
176
177
178
179
180
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
181
        if(s0.size() > s1.size())
182
183
184
185
186
187
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
192
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
193
                           if(a != b and a != 1 and b != 1)
194
                           {
Shucai Xiao's avatar
Shucai Xiao committed
195
196
197
198
199
200
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
201
202
203
204

        return out_lens;
    }

Khalique's avatar
Khalique committed
205
206
207
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
208
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
209
210
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
211
212
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
213
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
216
217
218
219
220
221
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
222
223
    }

Paul's avatar
Paul committed
224
    template <class T>
Paul's avatar
Paul committed
225
226
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
227
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
228
229
230
231
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
232
    template <class T>
Khalique's avatar
Khalique committed
233
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
234
    {
Paul's avatar
Paul committed
235
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
236
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
237
238
239
240
241
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
242
        });
Khalique's avatar
Khalique committed
243
244
    }

Khalique's avatar
Khalique committed
245
246
247
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
248
249
250
251
252
253
254
255
256
257
258
259
260
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
261
    instruction_ref
Paul's avatar
Paul committed
262
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
263
264
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
265
266
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
267
268
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
269
270
    }

Shucai Xiao's avatar
Shucai Xiao committed
271
272
273
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
274
275
276
277
278
279
280
281
282
283
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

284
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
285
286
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
287
288
289
290
291
292
293
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
294
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
295
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
296
297
298
299
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
300
        if(keep_dims == 0)
301
302
303
304
305
306
307
308
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
            return prog.add_instruction(op::squeeze{{static_cast<int64_t>(axis)}}, ins);
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
309
310
311
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
312
313
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
314
315
316
317
318
319
320
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
321
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
322
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
323
324
325
326
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
327
        if(keep_dims == 0)
328
329
330
331
332
333
334
335
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
            return prog.add_instruction(op::squeeze{{static_cast<int64_t>(axis)}}, ins);
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
336
337
    }

Paul's avatar
Paul committed
338
    instruction_ref
Paul's avatar
Paul committed
339
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
340
    {
341
        op::convolution op;
342
        auto l0 = args[0];
Paul's avatar
Paul committed
343
344
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
345
            if(contains(attributes, "auto_pad"))
346
            {
Paul's avatar
Paul committed
347
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
348
            }
349
350
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
351
            if(padding.size() != 4)
352
            {
Paul's avatar
Paul committed
353
                MIGRAPHX_THROW("padding should have 4 values");
354
            }
Scott Thornton's avatar
Scott Thornton committed
355
            if(padding[0] != padding[2] || padding[1] != padding[3])
356
            {
357
358
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
359
                l0      = prog.add_instruction(op::pad{padding}, l0);
360
            }
361
362
363
364
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
365
            }
Paul's avatar
Paul committed
366
        }
Paul's avatar
Paul committed
367
368
369
370
371
372
373
374
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
375
        if(contains(attributes, "auto_pad"))
376
377
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
378
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
379
            {
Paul's avatar
Paul committed
380
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
381
382
            }

wsttiger's avatar
fixes  
wsttiger committed
383
            if(s.find("SAME") != std::string::npos)
384
            {
385
                op.padding_mode = op::padding_mode_t::same;
386
387
            }
        }
Khalique's avatar
Khalique committed
388
389
390
391
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
392
393
394
395
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
396
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
397
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
398
        }
399
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
400
    }
Paul's avatar
Paul committed
401

Paul's avatar
Paul committed
402
403
404
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
405
    {
Khalique's avatar
Khalique committed
406
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
407
        auto l0 = args[0];
Khalique's avatar
Khalique committed
408
        if(starts_with(name, "Global"))
409
        {
Khalique's avatar
Khalique committed
410
411
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
412
        }
Paul's avatar
Paul committed
413
414
        if(contains(attributes, "pads"))
        {
415
416
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
417
            if(padding.size() != 4)
418
            {
Paul's avatar
Paul committed
419
                MIGRAPHX_THROW("padding should have 4 values");
420
            }
Scott Thornton's avatar
Scott Thornton committed
421
            if(padding[0] != padding[2] || padding[1] != padding[3])
422
            {
423
424
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
425
426
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
427
428
429
430
431
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
432
            }
Paul's avatar
Paul committed
433
434
435
436
437
438
439
440
441
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
442
        if(contains(attributes, "auto_pad"))
443
444
        {
            auto s = attributes["auto_pad"].s();
445
            if(s.find("SAME_UPPER") == std::string::npos)
446
            {
447
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
448
            }
449
            op.padding_mode = op::padding_mode_t::same;
450
451
        }

452
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
453
454
    }

Paul's avatar
Paul committed
455
    instruction_ref
Paul's avatar
Paul committed
456
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
457
    {
458
        op::reshape op;
Paul's avatar
Paul committed
459
460
461
462
463
464
465
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
466
            auto s = args[1]->eval();
Paul's avatar
Paul committed
467
            if(s.empty())
Paul's avatar
Paul committed
468
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
469
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
470
        }
Paul's avatar
Paul committed
471
472
473
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
474
    instruction_ref
Paul's avatar
Paul committed
475
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
476
    {
477
        uint64_t axis = 1;
Paul's avatar
Paul committed
478
479
480
481
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
482
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
483
484
    }

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
503
504
505
506
507
508
509
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
510

511
512
513
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
514
        int axis = 0;
515
516
517
518
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
519
        op::gather op{axis};
520
521
522
        return prog.add_instruction(op, std::move(args));
    }

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
543
544
545
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
546
    {
Shucai Xiao's avatar
Shucai Xiao committed
547
        literal v     = parse_value(attributes.at("value"));
548
549
550
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
551
        {
552
            migraphx::shape scalar_shape{v.get_shape().type()};
553
554
555
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
556
557
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
558

Paul's avatar
Paul committed
559
    instruction_ref
Paul's avatar
Paul committed
560
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
561
562
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
563
        float beta  = 1.0f;
Paul's avatar
Paul committed
564
565
566
567
568
569
570
571
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
572
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
573
574
575
576
577
578
579
580
581
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
582
583
584
585
586
587

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

588
589
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
590
591
        if(args.size() == 3)
        {
592
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
593
            {
Shucai Xiao's avatar
Shucai Xiao committed
594
                auto out_lens   = l1->get_shape().lens();
595
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
596
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
597
598
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
599
                {
600
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
601
                }
602
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
603
            }
Paul's avatar
Paul committed
604
        }
605
606

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
607
608
    }

609
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
610
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
611
    {
Shucai Xiao's avatar
Shucai Xiao committed
612
613
        auto l0      = args[0];
        auto l1      = args[1];
614
615
616
617
618
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
619
        if(l0_lens.size() == 1)
620
621
622
623
624
625
626
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
627
        if(l1_lens.size() == 1)
628
629
630
631
632
633
634
635
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
636
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
637
638
639
640
641
642
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
643
            l0_broadcasted_lens = output_lens;
644
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
645
            l1_broadcasted_lens = output_lens;
646
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
647
            if(l0_lens != l0_broadcasted_lens)
648
649
650
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
651
            if(l1_lens != l1_broadcasted_lens)
652
653
654
655
656
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
657
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
658
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
659
        if(is_a_prepended)
660
661
662
663
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
664
        if(is_b_appended)
665
666
667
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
668

669
670
671
        return dot_res;
    }

672
    instruction_ref
Paul's avatar
Paul committed
673
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
674
    {
Scott Thornton's avatar
Scott Thornton committed
675
676
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
677
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
678
        bool is_test                                      = false;
679
680
681
682
683
684
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
685
            momentum = parse_value(attributes.at("momentum")).at<float>();
686
687
688
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
689
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
690
691
692
        }
        if(contains(attributes, "spatial"))
        {
693
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
694
695
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
696
        }
Paul's avatar
Paul committed
697
        (void)is_test;
Paul's avatar
Paul committed
698
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
699
        return prog.add_instruction(op, std::move(args));
700
701
    }

702
703
704
705
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
706
        float alpha = 0.01; // default alpha val for leaky relu
707
708
709
710
711
712
713
714
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
715
716
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
717
718
719
720
721
722
723
724
725
726
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
727
728
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
729
730
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
731
732
733
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
734
735
736
737
738
739
740
741
742
743
744
745
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
762
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
763

Khalique's avatar
Khalique committed
764
765
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
766
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
767

768
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
769
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
770
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
771
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
772
    }
Khalique's avatar
Khalique committed
773

Khalique's avatar
Khalique committed
774
775
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
776
777
778
779
780
781
782
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
783
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
784
785
    }

Khalique's avatar
Khalique committed
786
787
788
789
790
791
792
793
794
795
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
796
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
797
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
798
799
800
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
801
802
803
804
805
806
807
808
809
810
811
812
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
813
814
815
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
816
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
817
818
    {
        if(args.size() != 1)
819
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
856
857
        if(contains(attributes, "extra_shape"))
        {
858
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
859
860
        }

861
862
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
863
            if(args.size() != 1)
864
            {
865
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
866
867
            }

Shucai Xiao's avatar
Shucai Xiao committed
868
869
            if(contains(attributes, "shape"))
            {
870
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
871
                               "at the same time");
872
873
            }

874
875
876
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
877
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
878
            }
879

880
881
882
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
883
884
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
885
886
887
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
888
889
            if(!contains(attributes, "shape"))
            {
890
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
891
892
893
            }

            literal ls = parse_value(attributes.at("shape"));
894
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
895
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
896
            migraphx::shape s{type, dims};
897
898
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
899
900
901
        }
        else
        {
902
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
903
904
905
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
906
907
908
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
909
910
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
911
        if(contains(attributes, "value"))
912
913
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
914
            if(l_val.get_shape().elements() != 1)
915
916
917
918
919
920
921
922
923
924
925
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
926
        if(args.size() == 0)
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
        {
            return prog.add_literal(literal({type, {1}, {0}}, l_val.data()));
        }
        else
        {
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
                MIGRAPHX_THROW("ConstantOfShape: cannot handle dynamic shape as input");
            }

            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
954
955
    instruction_ref
    parse_expand(const std::string&, attribute_map, std::vector<instruction_ref> args)
956
    {
Shucai Xiao's avatar
Shucai Xiao committed
957
958
        auto in_lens  = args[0]->get_shape().lens();
        auto ex_lens  = args[1]->get_shape().lens();
959
960
961
962
963
        auto out_lens = compute_broadcasted_lens(in_lens, ex_lens);

        return prog.add_instruction(op::multibroadcast{out_lens}, std::move(args[0]));
    }

Shucai Xiao's avatar
Shucai Xiao committed
964
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
965
966
967
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
968
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
969
970
971

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
972
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
973
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
974
975
976
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
977
978
979
980
981
982
983
984
985
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

986
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
987
988
        if(direction == "bidirectional")
        {
989
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
990
991
992
        }
        else if(direction == "reverse")
        {
993
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
994
995
        }

996
        std::vector<std::string> vec_names{"tanh"};
997
998
999
1000
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1001
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1002
1003
1004
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1005
1006
        }

1007
1008
1009
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1010
        if(name_it != vec_names.end())
1011
1012
1013
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1014

Shucai Xiao's avatar
Shucai Xiao committed
1015
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1016
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1017
        // if only one actv function is provided, we use it in both
1018
        // forward and reverse direction
1019
        if(dirct == op::rnn_direction::bidirectional)
1020
        {
Shucai Xiao's avatar
Shucai Xiao committed
1021
            if(vec_names.size() == 1)
1022
1023
1024
1025
1026
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1027
1028
1029
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1030
        });
Shucai Xiao's avatar
Shucai Xiao committed
1031

Shucai Xiao's avatar
Shucai Xiao committed
1032
1033
1034
1035
1036
1037
1038
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1039
1040
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1041
        if(args.size() < 6)
1042
1043
1044
1045
1046
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1047
1048
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1049
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1050

1051
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1052
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1053

Shucai Xiao's avatar
Shucai Xiao committed
1054
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1055
1056
    }

1057
    std::vector<instruction_ref>
1058
1059
1060
1061
1062
1063
1064
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1065
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1066
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1067
1068
1069
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1070
1071
1072
1073
1074
1075
1076
1077
1078
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1079
        op::rnn_direction dirct = op::rnn_direction::forward;
1080
1081
        if(direction == "bidirectional")
        {
1082
            dirct = op::rnn_direction::bidirectional;
1083
1084
1085
        }
        else if(direction == "reverse")
        {
1086
            dirct = op::rnn_direction::reverse;
1087
1088
        }

1089
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1090
1091
        if(contains(attributes, "activations"))
        {
1092
            auto names = attributes.at("activations").strings();
1093
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1094
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1095
1096
1097
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1098
1099
        }

1100
        // need 4 activation functions
1101
        if(dirct == op::rnn_direction::bidirectional)
1102
        {
Shucai Xiao's avatar
Shucai Xiao committed
1103
            // 4 activation functions are used in the bidirectional
1104
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1107
1108
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1109
1110
1111
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1112
            if(vec_names.size() == 1)
1113
            {
1114
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1115
            }
1116
            else if(vec_names.size() == 2)
1117
            {
1118
1119
1120
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1121
            }
1122
            else if(vec_names.size() == 3)
1123
            {
1124
                vec_names.push_back(vec_names.at(2));
1125
1126
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1127
        else
1128
        {
1129
            if(vec_names.size() == 1)
1130
            {
1131
                vec_names.push_back(vec_names.at(0));
1132
1133
1134
            }
        }

1135
1136
1137
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1138
        if(name_it != vec_names.end())
1139
1140
1141
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1142

Shucai Xiao's avatar
Shucai Xiao committed
1143
1144
1145
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1146
        });
1147
1148
1149
1150
1151
1152
1153
1154

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1155
        if(contains(attributes, "linear_before_reset"))
1156
1157
1158
1159
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1160
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1161
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1162
1163
1164
1165
1166
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1167
1168
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1169
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1170
            std::move(args));
1171
1172

        // second output for last gru output
1173
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1174

Shucai Xiao's avatar
Shucai Xiao committed
1175
        return {hidden_states, last_output};
1176
1177
    }

Shucai Xiao's avatar
Shucai Xiao committed
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1200
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1201
1202
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1203
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1204
1205
1206
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1207
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1208
        }
Shucai Xiao's avatar
Shucai Xiao committed
1209
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1210
        {
Shucai Xiao's avatar
Shucai Xiao committed
1211
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1212
1213
1214
1215
1216
1217
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1218
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1219
1220
1221
1222
1223
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1224
1225
1226
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1227
1228
1229
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1230
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1231
1232
1233
1234
1235
1236
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1237
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1238
1239
1240
1241
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1242
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1243
1244
1245
1246
1247
1248
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1249
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1250
1251
1252

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1253
1254
1255
1256
1257
1258
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1259
1260
1261
1262
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1263
1264
1265
1266
1267
1268
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1269
1270
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1271
1272
1273
1274
1275
1276
1277
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1278
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1279

Shucai Xiao's avatar
Shucai Xiao committed
1280
1281
1282
1283
1284
1285
1286
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1287
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1288

Shucai Xiao's avatar
Shucai Xiao committed
1289
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1290
1291
1292
1293
1294
1295
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1296
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1297
1298
1299

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1300
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1301
1302
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1303
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1304
1305
1306
            }
        }

1307
1308
1309
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1310
        if(name_it != vec_names.end())
1311
1312
1313
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1336
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1337
1338
1339
1340
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1341
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1342
1343

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1344
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1345
1346
1347
1348
1349
1350

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1351

Shucai Xiao's avatar
Shucai Xiao committed
1352
1353
1354
    instruction_ref parse_reduce_sum(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
        std::vector<std::size_t> axes(n_dim);
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
Shucai Xiao's avatar
Shucai Xiao committed
1365
            axes             = std::vector<std::size_t>(attr_axes.begin(), attr_axes.end());
1366
1367
1368
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1369
        if(contains(attributes, "keepdims"))
1370
1371
1372
1373
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1374
        if(keep_dims == 1)
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
        {
            return prog.add_instruction(op::reduce_sum{axes}, std::move(args));
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_sum{axes}, std::move(args));
            std::vector<int64_t> squeeze_axes{axes.begin(), axes.end()};
            return prog.add_instruction(op::squeeze{squeeze_axes}, ins);
        }
    }
1385

Shucai Xiao's avatar
Shucai Xiao committed
1386
1387
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1388
    {
Shucai Xiao's avatar
Shucai Xiao committed
1389
        if(!contains(attributes, "to"))
1390
1391
1392
1393
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1394
        int to_type        = parse_value(attributes.at("to")).at<int>();
1395
1396
1397
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1398

Paul's avatar
Paul committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1411
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1412
1413
1414
1415
1416
1417
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1418
1419
1420
1421
1422
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1423
1424
1425
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1438
        }
Paul's avatar
Paul committed
1439
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1440
        {
Paul's avatar
Paul committed
1441
            this->parse_node(output.name());
Paul's avatar
Paul committed
1442
1443
1444
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1445
    void parse_undefined(const std::string& name)
1446
    {
Shucai Xiao's avatar
Shucai Xiao committed
1447
        auto ins           = prog.add_instruction(op::undefined{});
1448
1449
1450
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1451
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1452
    {
Paul's avatar
Paul committed
1453
        if(name.empty())
Paul's avatar
Paul committed
1454
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1455
1456
1457
1458
1459
1460
1461
1462
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1463
1464
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1465
                }
Shucai Xiao's avatar
Shucai Xiao committed
1466
                else if(input.empty())
Paul's avatar
Paul committed
1467
                {
1468
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1469
                }
1470
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1471
            }
Paul's avatar
Paul committed
1472
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1473
1474
            if(ops.count(node.op_type()) == 0)
            {
1475
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1476
1477
1478
            }
            else
            {
Paul's avatar
Paul committed
1479
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1480
            }
Paul's avatar
Paul committed
1481
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1482
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1483
1484
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1485
1486
1487
            }
            else
            {
Paul's avatar
Paul committed
1488
1489
1490
1491
1492
1493
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1511
        std::size_t n = 0;
Paul's avatar
Paul committed
1512
1513
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1514
            if(node.output().empty())
Paul's avatar
Paul committed
1515
            {
Paul's avatar
Paul committed
1516
                if(node.name().empty())
Paul's avatar
Paul committed
1517
1518
1519
1520
1521
1522
1523
1524
1525
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1551
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1552
1553
1554
1555
1556
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1557
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1558
1559
1560
1561
1562
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1563
1564
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1565
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1566
1567
1568
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1569
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1570
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1571
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1572
1573
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1574
1575
1576
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1577
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1578
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1579
1580
1581
1582
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1583
1584
1585
1586
1587
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1588
            MIGRAPHX_THROW("Invalid tensor type");
1589
        }
Paul's avatar
Paul committed
1590
1591
1592
1593
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1594
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1595
1596
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1597
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1598
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1599
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1600
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1601
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1602
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1603
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1604
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1605
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1606
1607
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1608
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1609
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1610
        {
Khalique's avatar
Khalique committed
1611
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1612
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1613
1614
1615
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1616
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1617
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1618
        }
Paul's avatar
Paul committed
1619
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1620
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1621
1622
1623
1624
1625
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1626
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1627
1628
    }

Khalique's avatar
Khalique committed
1629
    static literal
1630
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1631
    {
Khalique's avatar
Khalique committed
1632
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1633
        if(dims.empty())
1634
            return literal{{shape_type}, data};
1635
1636
1637
        return literal{{shape_type, dims}, data};
    }

1638
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1639
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1640
1641
    {
        if(dims.empty())
1642
            return literal{{shape_type}, data.begin(), data.end()};
1643
        return literal{{shape_type, dims}, data.begin(), data.end()};
1644
1645
    }

Paul's avatar
Paul committed
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1665
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1666
1667
1668
1669
1670
1671
1672
1673
1674
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1675
        auto&& tensor_dims = t.tensor_type().shape().dim();
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1687
1688
        return {shape_type, dims};
    }
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1734
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1735
} // namespace migraphx