onnx.cpp 63.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
225
226
    }

Paul's avatar
Paul committed
227
    template <class T>
Paul's avatar
Paul committed
228
229
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
230
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
231
232
233
234
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
235
    template <class T>
Khalique's avatar
Khalique committed
236
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
239
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
240
241
242
243
244
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
245
        });
Khalique's avatar
Khalique committed
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
264
    instruction_ref
Paul's avatar
Paul committed
265
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
266
267
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
268
269
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
270
271
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
272
273
    }

Shucai Xiao's avatar
Shucai Xiao committed
274
275
276
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
277
278
279
280
281
282
283
284
285
286
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

287
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
288
289
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
290
    {
291
        int64_t axis = 0;
292
293
        if(contains(attributes, "axis"))
        {
294
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
295
296
        }

Shucai Xiao's avatar
Shucai Xiao committed
297
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
298
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
299
300
301
302
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
303
        if(keep_dims == 0)
304
305
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
306
            return prog.add_instruction(op::squeeze{{axis}}, ins);
307
308
309
310
311
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
312
313
314
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
315
316
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
317
    {
318
        int64_t axis = 0;
319
320
        if(contains(attributes, "axis"))
        {
321
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
322
323
        }

Shucai Xiao's avatar
Shucai Xiao committed
324
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
325
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
326
327
328
329
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
330
        if(keep_dims == 0)
331
332
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
333
            return prog.add_instruction(op::squeeze{{axis}}, ins);
334
335
336
337
338
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
339
340
    }

Paul's avatar
Paul committed
341
    instruction_ref
Paul's avatar
Paul committed
342
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
343
    {
344
        op::convolution op;
345
        auto l0 = args[0];
Paul's avatar
Paul committed
346
347
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
348
            if(contains(attributes, "auto_pad"))
349
            {
Paul's avatar
Paul committed
350
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
351
            }
352
353
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
354
            if(padding.size() != 4)
355
            {
Paul's avatar
Paul committed
356
                MIGRAPHX_THROW("padding should have 4 values");
357
            }
Scott Thornton's avatar
Scott Thornton committed
358
            if(padding[0] != padding[2] || padding[1] != padding[3])
359
            {
360
361
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
362
                l0      = prog.add_instruction(op::pad{padding}, l0);
363
            }
364
365
366
367
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
368
            }
Paul's avatar
Paul committed
369
        }
Paul's avatar
Paul committed
370
371
372
373
374
375
376
377
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
378
        if(contains(attributes, "auto_pad"))
379
380
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
381
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
382
            {
Paul's avatar
Paul committed
383
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
384
385
            }

wsttiger's avatar
fixes  
wsttiger committed
386
            if(s.find("SAME") != std::string::npos)
387
            {
388
                op.padding_mode = op::padding_mode_t::same;
389
390
            }
        }
Khalique's avatar
Khalique committed
391
392
393
394
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
395
396
397
398
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
399
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
400
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
401
        }
402
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
403
    }
Paul's avatar
Paul committed
404

Paul's avatar
Paul committed
405
406
407
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
408
    {
Khalique's avatar
Khalique committed
409
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
410
        auto l0 = args[0];
Khalique's avatar
Khalique committed
411
        if(starts_with(name, "Global"))
412
        {
Khalique's avatar
Khalique committed
413
414
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
415
        }
Paul's avatar
Paul committed
416
417
        if(contains(attributes, "pads"))
        {
418
419
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
420
            if(padding.size() != 4)
421
            {
Paul's avatar
Paul committed
422
                MIGRAPHX_THROW("padding should have 4 values");
423
            }
Scott Thornton's avatar
Scott Thornton committed
424
            if(padding[0] != padding[2] || padding[1] != padding[3])
425
            {
426
427
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
428
429
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
430
431
432
433
434
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
435
            }
Paul's avatar
Paul committed
436
437
438
439
440
441
442
443
444
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
445
        if(contains(attributes, "auto_pad"))
446
447
        {
            auto s = attributes["auto_pad"].s();
448
            if(s.find("SAME_UPPER") == std::string::npos)
449
            {
450
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
451
            }
452
            op.padding_mode = op::padding_mode_t::same;
453
454
        }

455
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
456
457
    }

Paul's avatar
Paul committed
458
    instruction_ref
Paul's avatar
Paul committed
459
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
460
    {
461
        op::reshape op;
Paul's avatar
Paul committed
462
463
464
465
466
467
468
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
469
            auto s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
470
            check_arg_empty(s, "Reshape: dynamic shape is not supported");
Paul's avatar
Paul committed
471
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
472
        }
Paul's avatar
Paul committed
473
474
475
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
476
    instruction_ref
Paul's avatar
Paul committed
477
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
478
    {
479
        uint64_t axis = 1;
Paul's avatar
Paul committed
480
481
482
483
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
484
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
485
486
    }

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
505
506
507
508
509
510
511
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
512

513
514
515
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
516
        int axis = 0;
517
518
519
520
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
521
        op::gather op{axis};
522
523
524
        return prog.add_instruction(op, std::move(args));
    }

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
545
546
547
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
548
    {
Shucai Xiao's avatar
Shucai Xiao committed
549
        literal v = parse_value(attributes.at("value"));
550
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
551
        if(v.get_shape().elements() == 0)
552
553
554
555
        {
            return prog.add_literal(literal{});
        }

556
557
558
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
559
        {
560
            migraphx::shape scalar_shape{v.get_shape().type()};
561
562
563
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
564
565
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
566

Paul's avatar
Paul committed
567
    instruction_ref
Paul's avatar
Paul committed
568
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
569
570
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
571
        float beta  = 1.0f;
Paul's avatar
Paul committed
572
573
574
575
576
577
578
579
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
580
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
581
582
583
584
585
586
587
588
589
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
590
591
592
593
594
595

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

596
597
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
598
599
        if(args.size() == 3)
        {
600
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
601
            {
Shucai Xiao's avatar
Shucai Xiao committed
602
                auto out_lens   = l1->get_shape().lens();
603
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
604
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
605
606
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
607
                {
608
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
609
                }
610
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
611
            }
Paul's avatar
Paul committed
612
        }
613
614

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
615
616
    }

617
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
618
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
619
    {
Shucai Xiao's avatar
Shucai Xiao committed
620
621
        auto l0      = args[0];
        auto l1      = args[1];
622
623
624
625
626
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
627
        if(l0_lens.size() == 1)
628
629
630
631
632
633
634
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
635
        if(l1_lens.size() == 1)
636
637
638
639
640
641
642
643
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
644
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
645
646
647
648
649
650
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
651
            l0_broadcasted_lens = output_lens;
652
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
653
            l1_broadcasted_lens = output_lens;
654
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
655
            if(l0_lens != l0_broadcasted_lens)
656
657
658
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
659
            if(l1_lens != l1_broadcasted_lens)
660
661
662
663
664
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
665
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
666
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
667
        if(is_a_prepended)
668
669
670
671
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
672
        if(is_b_appended)
673
674
675
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
676

677
678
679
        return dot_res;
    }

680
    instruction_ref
Paul's avatar
Paul committed
681
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
682
    {
Scott Thornton's avatar
Scott Thornton committed
683
684
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
685
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
686
        bool is_test                                      = false;
687
688
689
690
691
692
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
693
            momentum = parse_value(attributes.at("momentum")).at<float>();
694
695
696
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
697
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
698
699
700
        }
        if(contains(attributes, "spatial"))
        {
701
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
702
703
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
704
        }
Paul's avatar
Paul committed
705
        (void)is_test;
Paul's avatar
Paul committed
706
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
707
        return prog.add_instruction(op, std::move(args));
708
709
    }

710
711
712
713
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
714
        float alpha = 0.01; // default alpha val for leaky relu
715
716
717
718
719
720
721
722
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
723
724
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
725
726
727
728
729
730
731
732
733
734
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
735
736
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
737
738
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
739
740
741
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
742
743
744
745
746
747
748
749
750
751
752
753
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
770
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
771

Khalique's avatar
Khalique committed
772
773
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
774
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
775

776
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
777
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
778
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
779
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
780
    }
Khalique's avatar
Khalique committed
781

Khalique's avatar
Khalique committed
782
783
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
784
785
786
787
788
789
790
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
791
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
792
793
    }

Khalique's avatar
Khalique committed
794
795
796
797
798
799
800
801
802
803
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
804
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
805
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
806
807
808
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
809
810
811
812
813
814
815
816
817
818
819
820
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
821
822
823
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
824
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
825
826
    {
        if(args.size() != 1)
827
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
864
865
        if(contains(attributes, "extra_shape"))
        {
866
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
867
868
        }

869
870
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
871
            if(args.size() != 1)
872
            {
873
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
874
875
            }

Shucai Xiao's avatar
Shucai Xiao committed
876
877
            if(contains(attributes, "shape"))
            {
878
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
879
                               "at the same time");
880
881
            }

882
            migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
883
            check_arg_empty(in, "ConstantFill: dynamic shape is not supported");
884

885
886
887
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
888
889
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
890
891
892
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
893
894
            if(!contains(attributes, "shape"))
            {
895
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
896
897
898
            }

            literal ls = parse_value(attributes.at("shape"));
899
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
900
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
901
            migraphx::shape s{type, dims};
902
903
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
904
905
906
        }
        else
        {
907
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
908
909
910
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
911
912
913
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
914
915
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
916
        if(contains(attributes, "value"))
917
918
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
919
            if(l_val.get_shape().elements() != 1)
920
921
922
923
924
925
926
927
928
929
930
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
931

Shucai Xiao's avatar
Shucai Xiao committed
932
        if(args.empty())
933
        {
Shucai Xiao's avatar
Shucai Xiao committed
934
            MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
935
936
937
        }
        else
        {
938
939
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
940
            if(args[0]->get_shape().elements() == 0)
941
            {
942
                s = migraphx::shape{type, {1}, {0}};
943
            }
944
945
946
            else
            {
                migraphx::argument in = args[0]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
947
                check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
948

949
950
951
952
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
953

Shucai Xiao's avatar
Shucai Xiao committed
954
            literal l_out{};
955
            l_val.visit([&](auto val) {
Shucai Xiao's avatar
Shucai Xiao committed
956
                using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
957
                // l_val contains only one element
Shucai Xiao's avatar
Shucai Xiao committed
958
                std::vector<val_type> out_vec(s.elements(), *val.begin());
959
960
961
962
963
964
965
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
966
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
967
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
968
    {
Shucai Xiao's avatar
Shucai Xiao committed
969
        auto in_lens             = args[0]->get_shape().lens();
970
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
971
        check_arg_empty(arg_s, "Expand: dynamic shape is not supported");
972
973
974
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
975

Shucai Xiao's avatar
Shucai Xiao committed
976
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
977
978
    }

Shucai Xiao's avatar
Shucai Xiao committed
979
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
980
981
982
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
983
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
984
985
986

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
987
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
988
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
989
990
991
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
992
993
994
995
996
997
998
999
1000
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1001
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1002
1003
        if(direction == "bidirectional")
        {
1004
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1005
1006
1007
        }
        else if(direction == "reverse")
        {
1008
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1009
1010
        }

1011
        std::vector<std::string> vec_names{"tanh"};
1012
1013
1014
1015
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1016
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1017
1018
1019
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1020
1021
        }

1022
1023
1024
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1025
        if(name_it != vec_names.end())
1026
1027
1028
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1029

Shucai Xiao's avatar
Shucai Xiao committed
1030
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1031
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1032
        // if only one actv function is provided, we use it in both
1033
        // forward and reverse direction
1034
        if(dirct == op::rnn_direction::bidirectional)
1035
        {
Shucai Xiao's avatar
Shucai Xiao committed
1036
            if(vec_names.size() == 1)
1037
1038
1039
1040
1041
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1042
1043
1044
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1045
        });
Shucai Xiao's avatar
Shucai Xiao committed
1046

Shucai Xiao's avatar
Shucai Xiao committed
1047
1048
1049
1050
1051
1052
1053
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1054
1055
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1056
        if(args.size() < 6)
1057
1058
1059
1060
1061
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1062
1063
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1064
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1065

1066
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1067
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1068

Shucai Xiao's avatar
Shucai Xiao committed
1069
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1070
1071
    }

1072
    std::vector<instruction_ref>
1073
1074
1075
1076
1077
1078
1079
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1080
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1081
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1082
1083
1084
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1085
1086
1087
1088
1089
1090
1091
1092
1093
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1094
        op::rnn_direction dirct = op::rnn_direction::forward;
1095
1096
        if(direction == "bidirectional")
        {
1097
            dirct = op::rnn_direction::bidirectional;
1098
1099
1100
        }
        else if(direction == "reverse")
        {
1101
            dirct = op::rnn_direction::reverse;
1102
1103
        }

1104
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1105
1106
        if(contains(attributes, "activations"))
        {
1107
            auto names = attributes.at("activations").strings();
1108
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1109
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1110
1111
1112
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1113
1114
        }

1115
        // need 4 activation functions
1116
        if(dirct == op::rnn_direction::bidirectional)
1117
        {
Shucai Xiao's avatar
Shucai Xiao committed
1118
            // 4 activation functions are used in the bidirectional
1119
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1122
1123
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1124
1125
1126
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1127
            if(vec_names.size() == 1)
1128
            {
1129
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1130
            }
1131
            else if(vec_names.size() == 2)
1132
            {
1133
1134
1135
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1136
            }
1137
            else if(vec_names.size() == 3)
1138
            {
1139
                vec_names.push_back(vec_names.at(2));
1140
1141
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1142
        else
1143
        {
1144
            if(vec_names.size() == 1)
1145
            {
1146
                vec_names.push_back(vec_names.at(0));
1147
1148
1149
            }
        }

1150
1151
1152
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1153
        if(name_it != vec_names.end())
1154
1155
1156
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1157

Shucai Xiao's avatar
Shucai Xiao committed
1158
1159
1160
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1161
        });
1162
1163
1164
1165
1166
1167
1168
1169

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1170
        if(contains(attributes, "linear_before_reset"))
1171
1172
1173
1174
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1175
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1176
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1177
1178
1179
1180
1181
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1182
1183
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1184
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1185
            std::move(args));
1186
1187

        // second output for last gru output
1188
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1189

Shucai Xiao's avatar
Shucai Xiao committed
1190
        return {hidden_states, last_output};
1191
1192
    }

Shucai Xiao's avatar
Shucai Xiao committed
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1215
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1216
1217
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1218
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1219
1220
1221
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1222
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1223
        }
Shucai Xiao's avatar
Shucai Xiao committed
1224
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1225
        {
Shucai Xiao's avatar
Shucai Xiao committed
1226
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1227
1228
1229
1230
1231
1232
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1233
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1234
1235
1236
1237
1238
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1239
1240
1241
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1242
1243
1244
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1245
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1246
1247
1248
1249
1250
1251
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1252
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1253
1254
1255
1256
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1257
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1258
1259
1260
1261
1262
1263
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1264
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1265
1266
1267

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1268
1269
1270
1271
1272
1273
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1274
1275
1276
1277
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1278
1279
1280
1281
1282
1283
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1284
1285
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1286
1287
1288
1289
1290
1291
1292
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1293
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1294

Shucai Xiao's avatar
Shucai Xiao committed
1295
1296
1297
1298
1299
1300
1301
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1302
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1303

Shucai Xiao's avatar
Shucai Xiao committed
1304
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1305
1306
1307
1308
1309
1310
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1311
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1312
1313
1314

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1315
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1316
1317
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1318
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1319
1320
1321
            }
        }

1322
1323
1324
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1325
        if(name_it != vec_names.end())
1326
1327
1328
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1351
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1352
1353
1354
1355
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1356
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1357
1358

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1359
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1360
1361
1362
1363
1364
1365

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1366

Shucai Xiao's avatar
Shucai Xiao committed
1367
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1368
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1369
1370
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
1371
1372
1373
1374
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1375
        std::vector<int64_t> axes(n_dim);
1376
1377
1378
1379
1380
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1381
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
1382
1383
1384
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1385
        if(contains(attributes, "keepdims"))
1386
1387
1388
1389
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1390
        if(keep_dims == 1)
1391
        {
Shucai Xiao's avatar
Shucai Xiao committed
1392
            return prog.add_instruction(T{axes}, std::move(args));
1393
1394
1395
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1396
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1397
            return prog.add_instruction(op::squeeze{axes}, ins);
Shucai Xiao's avatar
Shucai Xiao committed
1398
1399
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1400

Shucai Xiao's avatar
Shucai Xiao committed
1401
1402
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1403
    {
Shucai Xiao's avatar
Shucai Xiao committed
1404
        if(!contains(attributes, "to"))
1405
1406
1407
1408
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1409
        int to_type        = parse_value(attributes.at("to")).at<int>();
1410
1411
1412
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1413

Paul's avatar
Paul committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1426
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1427
1428
1429
1430
1431
1432
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1433
1434
1435
1436
1437
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1438
1439
1440
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1453
        }
Paul's avatar
Paul committed
1454
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1455
        {
Paul's avatar
Paul committed
1456
            this->parse_node(output.name());
Paul's avatar
Paul committed
1457
1458
1459
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1460
    void parse_undefined(const std::string& name)
1461
    {
Shucai Xiao's avatar
Shucai Xiao committed
1462
        auto ins           = prog.add_instruction(op::undefined{});
1463
1464
1465
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1466
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1467
    {
Paul's avatar
Paul committed
1468
        if(name.empty())
Paul's avatar
Paul committed
1469
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1470
1471
1472
1473
1474
1475
1476
1477
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1478
1479
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1480
                }
Shucai Xiao's avatar
Shucai Xiao committed
1481
                else if(input.empty())
Paul's avatar
Paul committed
1482
                {
1483
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1484
                }
1485
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1486
            }
Paul's avatar
Paul committed
1487
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1488
1489
            if(ops.count(node.op_type()) == 0)
            {
1490
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1491
1492
1493
            }
            else
            {
Paul's avatar
Paul committed
1494
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1495
            }
Paul's avatar
Paul committed
1496
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1497
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1498
1499
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1500
1501
1502
            }
            else
            {
Paul's avatar
Paul committed
1503
1504
1505
1506
1507
1508
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1526
        std::size_t n = 0;
Paul's avatar
Paul committed
1527
1528
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1529
            if(node.output().empty())
Paul's avatar
Paul committed
1530
            {
Paul's avatar
Paul committed
1531
                if(node.name().empty())
Paul's avatar
Paul committed
1532
1533
1534
1535
1536
1537
1538
1539
1540
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
Paul's avatar
Paul committed
1563
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1564
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
Paul's avatar
Paul committed
1565
1566
1567
1568
1569
        case onnx::AttributeProto::UNDEFINED:
        case onnx::AttributeProto::GRAPH:
        case onnx::AttributeProto::STRING:
        case onnx::AttributeProto::STRINGS:
        case onnx::AttributeProto::TENSORS:
Paul's avatar
Paul committed
1570
1571
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1572
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1573
1574
1575
1576
1577
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1578
1579
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1580
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1581
1582
            switch(t.data_type())
            {
1583
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Paul's avatar
Paul committed
1584
1585
1586
1587
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
1588
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Paul's avatar
Paul committed
1589
1590
1591
1592
            case onnx::TensorProto::INT8:
            case onnx::TensorProto::UINT16:
            case onnx::TensorProto::INT16:
            case onnx::TensorProto::INT32:
1593
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Paul's avatar
Paul committed
1594
1595
1596
1597
1598
1599
            case onnx::TensorProto::UINT8:
            case onnx::TensorProto::STRING:
            case onnx::TensorProto::UNDEFINED:
            case onnx::TensorProto::UINT32:
            case onnx::TensorProto::UINT64:
            case onnx::TensorProto::COMPLEX64:
Scott Thornton's avatar
Scott Thornton committed
1600
1601
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1602
            MIGRAPHX_THROW("Invalid tensor type");
1603
        }
Paul's avatar
Paul committed
1604
1605
1606
1607
1608
1609
        switch(t.data_type())
        {
        case onnx::TensorProto::INT8:
        case onnx::TensorProto::UINT16:
        case onnx::TensorProto::INT16:
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
1610
1611
1612
1613
1614
1615
1616
1617
        case onnx::TensorProto::BOOL:
            return create_literal(shape::int32_type, dims, t.int32_data());
        case onnx::TensorProto::INT64:
            return create_literal(shape::int64_type, dims, t.int64_data());
        case onnx::TensorProto::DOUBLE:
            return create_literal(shape::double_type, dims, t.double_data());
        case onnx::TensorProto::FLOAT:
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1618
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1619
        {
Khalique's avatar
Khalique committed
1620
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1621
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1622
1623
1624
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1625
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1626
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1627
        }
Paul's avatar
Paul committed
1628
1629
1630
1631
1632
1633
        case onnx::TensorProto::UNDEFINED:
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::UINT32:
        case onnx::TensorProto::UINT64:
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1634
1635
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1636
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1637
1638
    }

Khalique's avatar
Khalique committed
1639
    static literal
1640
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1641
    {
Khalique's avatar
Khalique committed
1642
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1643
        if(dims.empty())
1644
            return literal{{shape_type}, data};
1645
1646
1647
        return literal{{shape_type, dims}, data};
    }

1648
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1649
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1650
1651
    {
        if(dims.empty())
1652
            return literal{{shape_type}, data.begin(), data.end()};
1653
        return literal{{shape_type, dims}, data.begin(), data.end()};
1654
1655
    }

Paul's avatar
Paul committed
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
Paul's avatar
Paul committed
1667
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1668
1669
1670
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1671
1672
1673
1674
        case onnx::TensorProto::UINT8:
        case onnx::TensorProto::STRING:
        case onnx::TensorProto::BOOL:
        case onnx::TensorProto::UNDEFINED:
Paul's avatar
Paul committed
1675
        case onnx::TensorProto::COMPLEX64:
Paul's avatar
Paul committed
1676
1677
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type");
Paul's avatar
Paul committed
1678
1679
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1680
        auto&& tensor_dims = t.tensor_type().shape().dim();
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1692
1693
        return {shape_type, dims};
    }
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1716
1717
1718

    void check_arg_empty(const argument& arg, const std::string& msg)
    {
Shucai Xiao's avatar
Shucai Xiao committed
1719
        if(arg.empty())
Shucai Xiao's avatar
Shucai Xiao committed
1720
1721
1722
1723
        {
            MIGRAPHX_THROW(msg);
        }
    }
Paul's avatar
Paul committed
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1747
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1748
} // namespace migraphx