onnx.cpp 61.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
Khalique's avatar
Khalique committed
71
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
72
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
73
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
74
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
75
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
76
77
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
78
79
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
80
81
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
82
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
83
84
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
85
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
86
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
87
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
88
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
89
90
91
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
92
        add_mem_op("Concat", &onnx_parser::parse_concat);
93
94
95
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
96
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
97
        add_mem_op("RNN", &onnx_parser::parse_rnn);
98
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
99
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
100
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
101
102
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
103
104
105
106
107
108
109

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
110
111
112
113
114
115
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
116
117
118
119
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
120
121
122
123
124
125
126
127
128
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
129
130
131
132
133
134
135
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
136
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
137
138
139
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
140

141
    template <class T>
Khalique's avatar
Khalique committed
142
    void add_binary_op(std::string name, T x)
143
    {
Paul's avatar
Paul committed
144
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
145
            if(args.size() != 2)
Paul's avatar
Paul committed
146
                MIGRAPHX_THROW("binary operators should have 2 operands");
147
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
148
149
150
151
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
152
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
153
154
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
155
156
                    return prog.add_instruction(x, args[0], l);
                }
157
                return prog.add_instruction(x, args);
158
            }
Paul's avatar
Paul committed
159
            else
160
            {
Khalique's avatar
Khalique committed
161
                return add_broadcastable_binary_op(args[0], args[1], x);
162
163
164
165
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
166
167
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
168
169
170
171
172
173
174
175
176
177
178
179
180
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
181
        if(s0.size() > s1.size())
182
183
184
185
186
187
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
192
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
193
                           if(a != b and a != 1 and b != 1)
194
                           {
Shucai Xiao's avatar
Shucai Xiao committed
195
196
197
198
199
200
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
201
202
203
204

        return out_lens;
    }

Khalique's avatar
Khalique committed
205
206
207
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
208
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
209
210
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
211
212
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
213
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
216
217
218
219
220
221
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
222
223
    }

Paul's avatar
Paul committed
224
    template <class T>
Paul's avatar
Paul committed
225
226
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
227
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
228
229
230
231
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
232
    template <class T>
Khalique's avatar
Khalique committed
233
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
234
    {
Paul's avatar
Paul committed
235
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
236
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
237
238
239
240
241
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
242
        });
Khalique's avatar
Khalique committed
243
244
    }

Khalique's avatar
Khalique committed
245
246
247
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
248
249
250
251
252
253
254
255
256
257
258
259
260
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
261
    instruction_ref
Paul's avatar
Paul committed
262
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
263
264
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
265
266
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
267
268
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
269
270
    }

Shucai Xiao's avatar
Shucai Xiao committed
271
272
273
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
274
275
276
277
278
279
280
281
282
283
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

284
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
285
286
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
287
    {
288
        int64_t axis = 0;
289
290
        if(contains(attributes, "axis"))
        {
291
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
292
293
        }

Shucai Xiao's avatar
Shucai Xiao committed
294
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
295
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
296
297
298
299
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
300
        if(keep_dims == 0)
301
302
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
303
            return prog.add_instruction(op::squeeze{{axis}}, ins);
304
305
306
307
308
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
309
310
311
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
312
313
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
314
    {
315
        int64_t axis = 0;
316
317
        if(contains(attributes, "axis"))
        {
318
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
319
320
        }

Shucai Xiao's avatar
Shucai Xiao committed
321
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
322
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
323
324
325
326
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
327
        if(keep_dims == 0)
328
329
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
330
            return prog.add_instruction(op::squeeze{{axis}}, ins);
331
332
333
334
335
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
336
337
    }

Paul's avatar
Paul committed
338
    instruction_ref
Paul's avatar
Paul committed
339
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
340
    {
341
        op::convolution op;
342
        auto l0 = args[0];
Paul's avatar
Paul committed
343
344
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
345
            if(contains(attributes, "auto_pad"))
346
            {
Paul's avatar
Paul committed
347
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
348
            }
349
350
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
351
            if(padding.size() != 4)
352
            {
Paul's avatar
Paul committed
353
                MIGRAPHX_THROW("padding should have 4 values");
354
            }
Scott Thornton's avatar
Scott Thornton committed
355
            if(padding[0] != padding[2] || padding[1] != padding[3])
356
            {
357
358
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
359
                l0      = prog.add_instruction(op::pad{padding}, l0);
360
            }
361
362
363
364
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
365
            }
Paul's avatar
Paul committed
366
        }
Paul's avatar
Paul committed
367
368
369
370
371
372
373
374
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
375
        if(contains(attributes, "auto_pad"))
376
377
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
378
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
379
            {
Paul's avatar
Paul committed
380
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
381
382
            }

wsttiger's avatar
fixes  
wsttiger committed
383
            if(s.find("SAME") != std::string::npos)
384
            {
385
                op.padding_mode = op::padding_mode_t::same;
386
387
            }
        }
Khalique's avatar
Khalique committed
388
389
390
391
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
392
393
394
395
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
396
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
397
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
398
        }
399
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
400
    }
Paul's avatar
Paul committed
401

Paul's avatar
Paul committed
402
403
404
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
405
    {
Khalique's avatar
Khalique committed
406
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
407
        auto l0 = args[0];
Khalique's avatar
Khalique committed
408
        if(starts_with(name, "Global"))
409
        {
Khalique's avatar
Khalique committed
410
411
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
412
        }
Paul's avatar
Paul committed
413
414
        if(contains(attributes, "pads"))
        {
415
416
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
417
            if(padding.size() != 4)
418
            {
Paul's avatar
Paul committed
419
                MIGRAPHX_THROW("padding should have 4 values");
420
            }
Scott Thornton's avatar
Scott Thornton committed
421
            if(padding[0] != padding[2] || padding[1] != padding[3])
422
            {
423
424
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
425
426
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
427
428
429
430
431
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
432
            }
Paul's avatar
Paul committed
433
434
435
436
437
438
439
440
441
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
442
        if(contains(attributes, "auto_pad"))
443
444
        {
            auto s = attributes["auto_pad"].s();
445
            if(s.find("SAME_UPPER") == std::string::npos)
446
            {
447
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
448
            }
449
            op.padding_mode = op::padding_mode_t::same;
450
451
        }

452
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
453
454
    }

Paul's avatar
Paul committed
455
    instruction_ref
Paul's avatar
Paul committed
456
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
457
    {
458
        op::reshape op;
Paul's avatar
Paul committed
459
460
461
462
463
464
465
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
466
            auto s = args[1]->eval();
Paul's avatar
Paul committed
467
            if(s.empty())
Paul's avatar
Paul committed
468
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
469
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
470
        }
Paul's avatar
Paul committed
471
472
473
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
474
    instruction_ref
Paul's avatar
Paul committed
475
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
476
    {
477
        uint64_t axis = 1;
Paul's avatar
Paul committed
478
479
480
481
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
482
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
483
484
    }

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
503
504
505
506
507
508
509
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
510

511
512
513
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
514
        int axis = 0;
515
516
517
518
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
519
        op::gather op{axis};
520
521
522
        return prog.add_instruction(op, std::move(args));
    }

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
543
544
545
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
546
    {
Shucai Xiao's avatar
Shucai Xiao committed
547
        literal v     = parse_value(attributes.at("value"));
548
549
550
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
551
        {
552
            migraphx::shape scalar_shape{v.get_shape().type()};
553
554
555
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
556
557
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
558

Paul's avatar
Paul committed
559
    instruction_ref
Paul's avatar
Paul committed
560
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
561
562
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
563
        float beta  = 1.0f;
Paul's avatar
Paul committed
564
565
566
567
568
569
570
571
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
572
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
573
574
575
576
577
578
579
580
581
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
582
583
584
585
586
587

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

588
589
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
590
591
        if(args.size() == 3)
        {
592
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
593
            {
Shucai Xiao's avatar
Shucai Xiao committed
594
                auto out_lens   = l1->get_shape().lens();
595
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
596
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
597
598
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
599
                {
600
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
601
                }
602
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
603
            }
Paul's avatar
Paul committed
604
        }
605
606

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
607
608
    }

609
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
610
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
611
    {
Shucai Xiao's avatar
Shucai Xiao committed
612
613
        auto l0      = args[0];
        auto l1      = args[1];
614
615
616
617
618
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
619
        if(l0_lens.size() == 1)
620
621
622
623
624
625
626
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
627
        if(l1_lens.size() == 1)
628
629
630
631
632
633
634
635
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
636
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
637
638
639
640
641
642
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
643
            l0_broadcasted_lens = output_lens;
644
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
645
            l1_broadcasted_lens = output_lens;
646
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
647
            if(l0_lens != l0_broadcasted_lens)
648
649
650
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
651
            if(l1_lens != l1_broadcasted_lens)
652
653
654
655
656
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
657
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
658
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
659
        if(is_a_prepended)
660
661
662
663
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
664
        if(is_b_appended)
665
666
667
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
668

669
670
671
        return dot_res;
    }

672
    instruction_ref
Paul's avatar
Paul committed
673
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
674
    {
Scott Thornton's avatar
Scott Thornton committed
675
676
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
677
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
678
        bool is_test                                      = false;
679
680
681
682
683
684
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
685
            momentum = parse_value(attributes.at("momentum")).at<float>();
686
687
688
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
689
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
690
691
692
        }
        if(contains(attributes, "spatial"))
        {
693
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
694
695
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
696
        }
Paul's avatar
Paul committed
697
        (void)is_test;
Paul's avatar
Paul committed
698
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
699
        return prog.add_instruction(op, std::move(args));
700
701
    }

702
703
704
705
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
706
        float alpha = 0.01; // default alpha val for leaky relu
707
708
709
710
711
712
713
714
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
715
716
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
717
718
719
720
721
722
723
724
725
726
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
727
728
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
729
730
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
731
732
733
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
734
735
736
737
738
739
740
741
742
743
744
745
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
762
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
763

Khalique's avatar
Khalique committed
764
765
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
766
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
767

768
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
769
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
770
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
771
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
772
    }
Khalique's avatar
Khalique committed
773

Khalique's avatar
Khalique committed
774
775
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
776
777
778
779
780
781
782
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
783
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
784
785
    }

Khalique's avatar
Khalique committed
786
787
788
789
790
791
792
793
794
795
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
796
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
797
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
798
799
800
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
801
802
803
804
805
806
807
808
809
810
811
812
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
813
814
815
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
816
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
817
818
    {
        if(args.size() != 1)
819
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
856
857
        if(contains(attributes, "extra_shape"))
        {
858
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
859
860
        }

861
862
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
863
            if(args.size() != 1)
864
            {
865
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
866
867
            }

Shucai Xiao's avatar
Shucai Xiao committed
868
869
            if(contains(attributes, "shape"))
            {
870
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
871
                               "at the same time");
872
873
            }

874
875
876
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
877
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
878
            }
879

880
881
882
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
883
884
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
885
886
887
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
888
889
            if(!contains(attributes, "shape"))
            {
890
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
891
892
893
            }

            literal ls = parse_value(attributes.at("shape"));
894
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
895
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
896
            migraphx::shape s{type, dims};
897
898
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
899
900
901
        }
        else
        {
902
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
903
904
905
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
906
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
907
908
909
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
910
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
911
912
913

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
914
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
915
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
916
917
918
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
919
920
921
922
923
924
925
926
927
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

928
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
929
930
        if(direction == "bidirectional")
        {
931
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
932
933
934
        }
        else if(direction == "reverse")
        {
935
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
936
937
        }

938
        std::vector<std::string> vec_names{"tanh"};
939
940
941
942
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
943
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
944
945
946
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
947
948
        }

949
950
951
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
952
        if(name_it != vec_names.end())
953
954
955
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
956

Shucai Xiao's avatar
Shucai Xiao committed
957
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
958
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
959
        // if only one actv function is provided, we use it in both
960
        // forward and reverse direction
961
        if(dirct == op::rnn_direction::bidirectional)
962
        {
Shucai Xiao's avatar
Shucai Xiao committed
963
            if(vec_names.size() == 1)
964
965
966
967
968
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
969
970
971
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
972
        });
Shucai Xiao's avatar
Shucai Xiao committed
973

Shucai Xiao's avatar
Shucai Xiao committed
974
975
976
977
978
979
980
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

981
982
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
983
        if(args.size() < 6)
984
985
986
987
988
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
989
990
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
991
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
992

993
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
994
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
995

Shucai Xiao's avatar
Shucai Xiao committed
996
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
997
998
    }

999
    std::vector<instruction_ref>
1000
1001
1002
1003
1004
1005
1006
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1007
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1008
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1009
1010
1011
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1012
1013
1014
1015
1016
1017
1018
1019
1020
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1021
        op::rnn_direction dirct = op::rnn_direction::forward;
1022
1023
        if(direction == "bidirectional")
        {
1024
            dirct = op::rnn_direction::bidirectional;
1025
1026
1027
        }
        else if(direction == "reverse")
        {
1028
            dirct = op::rnn_direction::reverse;
1029
1030
        }

1031
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1032
1033
        if(contains(attributes, "activations"))
        {
1034
            auto names = attributes.at("activations").strings();
1035
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1036
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1037
1038
1039
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1040
1041
        }

1042
        // need 4 activation functions
1043
        if(dirct == op::rnn_direction::bidirectional)
1044
        {
Shucai Xiao's avatar
Shucai Xiao committed
1045
            // 4 activation functions are used in the bidirectional
1046
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1047
1048
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1049
1050
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1051
1052
1053
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1054
            if(vec_names.size() == 1)
1055
            {
1056
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1057
            }
1058
            else if(vec_names.size() == 2)
1059
            {
1060
1061
1062
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1063
            }
1064
            else if(vec_names.size() == 3)
1065
            {
1066
                vec_names.push_back(vec_names.at(2));
1067
1068
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1069
        else
1070
        {
1071
            if(vec_names.size() == 1)
1072
            {
1073
                vec_names.push_back(vec_names.at(0));
1074
1075
1076
            }
        }

1077
1078
1079
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1080
        if(name_it != vec_names.end())
1081
1082
1083
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1084

Shucai Xiao's avatar
Shucai Xiao committed
1085
1086
1087
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1088
        });
1089
1090
1091
1092
1093
1094
1095
1096

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1097
        if(contains(attributes, "linear_before_reset"))
1098
1099
1100
1101
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1102
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1103
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1104
1105
1106
1107
1108
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1109
1110
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1111
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1112
            std::move(args));
1113
1114

        // second output for last gru output
1115
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1116

Shucai Xiao's avatar
Shucai Xiao committed
1117
        return {hidden_states, last_output};
1118
1119
    }

Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1142
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1143
1144
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1145
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1146
1147
1148
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1149
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1150
        }
Shucai Xiao's avatar
Shucai Xiao committed
1151
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1152
        {
Shucai Xiao's avatar
Shucai Xiao committed
1153
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1154
1155
1156
1157
1158
1159
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1160
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1161
1162
1163
1164
1165
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1166
1167
1168
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1169
1170
1171
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1172
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1173
1174
1175
1176
1177
1178
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1179
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1180
1181
1182
1183
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1184
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1185
1186
1187
1188
1189
1190
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1191
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1192
1193
1194

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1195
1196
1197
1198
1199
1200
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1201
1202
1203
1204
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1205
1206
1207
1208
1209
1210
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1211
1212
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1213
1214
1215
1216
1217
1218
1219
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1220
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1221

Shucai Xiao's avatar
Shucai Xiao committed
1222
1223
1224
1225
1226
1227
1228
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1229
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1230

Shucai Xiao's avatar
Shucai Xiao committed
1231
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1232
1233
1234
1235
1236
1237
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1238
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1239
1240
1241

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1242
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1243
1244
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1245
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1246
1247
1248
            }
        }

1249
1250
1251
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1252
        if(name_it != vec_names.end())
1253
1254
1255
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1278
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1279
1280
1281
1282
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1283
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1284
1285

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1286
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1287
1288
1289
1290
1291
1292

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1293

Shucai Xiao's avatar
Shucai Xiao committed
1294
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1295
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1296
1297
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
1298
1299
1300
1301
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1302
        std::vector<int64_t> axes(n_dim);
1303
1304
1305
1306
1307
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1308
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
1309
1310
1311
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1312
        if(contains(attributes, "keepdims"))
1313
1314
1315
1316
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1317
        if(keep_dims == 1)
1318
        {
Shucai Xiao's avatar
Shucai Xiao committed
1319
            return prog.add_instruction(T{axes}, std::move(args));
1320
1321
1322
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1323
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1324
            return prog.add_instruction(op::squeeze{axes}, ins);
Shucai Xiao's avatar
Shucai Xiao committed
1325
1326
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1327

Paul's avatar
Paul committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1340
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1341
1342
1343
1344
1345
1346
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1347
1348
1349
1350
1351
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1352
1353
1354
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1367
        }
Paul's avatar
Paul committed
1368
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1369
        {
Paul's avatar
Paul committed
1370
            this->parse_node(output.name());
Paul's avatar
Paul committed
1371
1372
1373
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1374
    void parse_undefined(const std::string& name)
1375
    {
Shucai Xiao's avatar
Shucai Xiao committed
1376
        auto ins           = prog.add_instruction(op::undefined{});
1377
1378
1379
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1380
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1381
    {
Paul's avatar
Paul committed
1382
        if(name.empty())
Paul's avatar
Paul committed
1383
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1384
1385
1386
1387
1388
1389
1390
1391
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1392
1393
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1394
                }
Shucai Xiao's avatar
Shucai Xiao committed
1395
                else if(input.empty())
Paul's avatar
Paul committed
1396
                {
1397
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1398
                }
1399
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1400
            }
Paul's avatar
Paul committed
1401
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1402
1403
            if(ops.count(node.op_type()) == 0)
            {
1404
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1405
1406
1407
            }
            else
            {
Paul's avatar
Paul committed
1408
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1409
            }
Paul's avatar
Paul committed
1410
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1411
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1412
1413
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1414
1415
1416
            }
            else
            {
Paul's avatar
Paul committed
1417
1418
1419
1420
1421
1422
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1440
        std::size_t n = 0;
Paul's avatar
Paul committed
1441
1442
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1443
            if(node.output().empty())
Paul's avatar
Paul committed
1444
            {
Paul's avatar
Paul committed
1445
                if(node.name().empty())
Paul's avatar
Paul committed
1446
1447
1448
1449
1450
1451
1452
1453
1454
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1480
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1481
1482
1483
1484
1485
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1486
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1487
1488
1489
1490
1491
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1492
1493
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1494
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1495
1496
1497
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1498
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1499
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1500
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1501
1502
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1503
1504
1505
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1506
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1507
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1508
1509
1510
1511
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1512
1513
1514
1515
1516
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1517
            MIGRAPHX_THROW("Invalid tensor type");
1518
        }
Paul's avatar
Paul committed
1519
1520
1521
1522
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1523
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1524
1525
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1526
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1527
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1528
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1529
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1530
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1531
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1532
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1533
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1534
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1535
1536
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1537
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1538
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1539
        {
Khalique's avatar
Khalique committed
1540
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1541
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1542
1543
1544
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1545
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1546
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1547
        }
Paul's avatar
Paul committed
1548
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1549
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1550
1551
1552
1553
1554
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1555
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1556
1557
    }

Khalique's avatar
Khalique committed
1558
    static literal
1559
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1560
    {
Khalique's avatar
Khalique committed
1561
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1562
        if(dims.empty())
1563
            return literal{{shape_type}, data};
1564
1565
1566
        return literal{{shape_type, dims}, data};
    }

1567
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1568
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1569
1570
    {
        if(dims.empty())
1571
            return literal{{shape_type}, data.begin(), data.end()};
1572
        return literal{{shape_type, dims}, data.begin(), data.end()};
1573
1574
    }

Paul's avatar
Paul committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1594
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1595
1596
1597
1598
1599
1600
1601
1602
1603
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1604
        auto&& tensor_dims = t.tensor_type().shape().dim();
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1616
1617
        return {shape_type, dims};
    }
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1663
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1664
} // namespace migraphx