"...lm-evaluation-harness.git" did not exist on "d32ce5cf11608d59602e498d51f38d7d01f9d0ff"
onnx.cpp 61.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

67
68
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
Khalique's avatar
Khalique committed
69
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
70
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
71
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
72
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
73
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
74
75
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
76
77
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
78
79
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
80
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
81
82
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
83
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
84
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
85
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
86
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
87
88
89
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
90
        add_mem_op("Concat", &onnx_parser::parse_concat);
91
92
93
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
94
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
95
        add_mem_op("RNN", &onnx_parser::parse_rnn);
96
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
97
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
98
        add_mem_op("Pad", &onnx_parser::parse_pad);
99
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_sum);
100
101
102
103
104
105
106

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
107
108
109
110
111
112
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
113
114
115
116
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
117
118
119
120
121
122
123
124
125
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
126
127
128
129
130
131
132
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
133
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
134
135
136
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
137

138
    template <class T>
Khalique's avatar
Khalique committed
139
    void add_binary_op(std::string name, T x)
140
    {
Paul's avatar
Paul committed
141
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
142
            if(args.size() != 2)
Paul's avatar
Paul committed
143
                MIGRAPHX_THROW("binary operators should have 2 operands");
144
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
145
146
147
148
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
149
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
150
151
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
152
153
                    return prog.add_instruction(x, args[0], l);
                }
154
                return prog.add_instruction(x, args);
155
            }
Paul's avatar
Paul committed
156
            else
157
            {
Khalique's avatar
Khalique committed
158
                return add_broadcastable_binary_op(args[0], args[1], x);
159
160
161
162
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
163
164
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
165
166
167
168
169
170
171
172
173
174
175
176
177
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
178
        if(s0.size() > s1.size())
179
180
181
182
183
184
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
185
186
187
188
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
189
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
190
                           if(a != b and a != 1 and b != 1)
191
                           {
Shucai Xiao's avatar
Shucai Xiao committed
192
193
194
195
196
197
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
198
199
200
201

        return out_lens;
    }

Khalique's avatar
Khalique committed
202
203
204
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
205
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
206
207
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
208
209
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
210
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
211
212
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
213
214
215
216
217
218
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
219
220
    }

Paul's avatar
Paul committed
221
    template <class T>
Paul's avatar
Paul committed
222
223
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
224
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
225
226
227
228
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
229
    template <class T>
Khalique's avatar
Khalique committed
230
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
231
    {
Paul's avatar
Paul committed
232
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
233
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
234
235
236
237
238
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
239
        });
Khalique's avatar
Khalique committed
240
241
    }

Khalique's avatar
Khalique committed
242
243
244
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
245
246
247
248
249
250
251
252
253
254
255
256
257
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
258
    instruction_ref
Paul's avatar
Paul committed
259
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
260
261
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
262
263
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
264
265
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
266
267
    }

Shucai Xiao's avatar
Shucai Xiao committed
268
269
270
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
271
272
273
274
275
276
277
278
279
280
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

281
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
282
283
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
284
    {
285
        int64_t axis = 0;
286
287
        if(contains(attributes, "axis"))
        {
288
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
289
290
        }

Shucai Xiao's avatar
Shucai Xiao committed
291
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
292
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
293
294
295
296
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
297
        if(keep_dims == 0)
298
299
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
300
            return prog.add_instruction(op::squeeze{{axis}}, ins);
301
302
303
304
305
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
306
307
308
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
309
310
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
311
    {
312
        int64_t axis = 0;
313
314
        if(contains(attributes, "axis"))
        {
315
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
316
317
        }

Shucai Xiao's avatar
Shucai Xiao committed
318
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
319
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
320
321
322
323
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
324
        if(keep_dims == 0)
325
326
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
327
            return prog.add_instruction(op::squeeze{{axis}}, ins);
328
329
330
331
332
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
333
334
    }

Paul's avatar
Paul committed
335
    instruction_ref
Paul's avatar
Paul committed
336
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
337
    {
338
        op::convolution op;
339
        auto l0 = args[0];
Paul's avatar
Paul committed
340
341
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
342
            if(contains(attributes, "auto_pad"))
343
            {
Paul's avatar
Paul committed
344
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
345
            }
346
347
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
348
            if(padding.size() != 4)
349
            {
Paul's avatar
Paul committed
350
                MIGRAPHX_THROW("padding should have 4 values");
351
            }
Scott Thornton's avatar
Scott Thornton committed
352
            if(padding[0] != padding[2] || padding[1] != padding[3])
353
            {
354
355
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
356
                l0      = prog.add_instruction(op::pad{padding}, l0);
357
            }
358
359
360
361
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
362
            }
Paul's avatar
Paul committed
363
        }
Paul's avatar
Paul committed
364
365
366
367
368
369
370
371
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
372
        if(contains(attributes, "auto_pad"))
373
374
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
375
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
376
            {
Paul's avatar
Paul committed
377
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
378
379
            }

wsttiger's avatar
fixes  
wsttiger committed
380
            if(s.find("SAME") != std::string::npos)
381
            {
382
                op.padding_mode = op::padding_mode_t::same;
383
384
            }
        }
Khalique's avatar
Khalique committed
385
386
387
388
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
389
390
391
392
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
393
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
394
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
395
        }
396
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
397
    }
Paul's avatar
Paul committed
398

Paul's avatar
Paul committed
399
400
401
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
402
    {
Khalique's avatar
Khalique committed
403
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
404
        auto l0 = args[0];
Khalique's avatar
Khalique committed
405
        if(starts_with(name, "Global"))
406
        {
Khalique's avatar
Khalique committed
407
408
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
409
        }
Paul's avatar
Paul committed
410
411
        if(contains(attributes, "pads"))
        {
412
413
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
414
            if(padding.size() != 4)
415
            {
Paul's avatar
Paul committed
416
                MIGRAPHX_THROW("padding should have 4 values");
417
            }
Scott Thornton's avatar
Scott Thornton committed
418
            if(padding[0] != padding[2] || padding[1] != padding[3])
419
            {
420
421
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
422
423
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
424
425
426
427
428
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
429
            }
Paul's avatar
Paul committed
430
431
432
433
434
435
436
437
438
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
439
        if(contains(attributes, "auto_pad"))
440
441
        {
            auto s = attributes["auto_pad"].s();
442
            if(s.find("SAME_UPPER") == std::string::npos)
443
            {
444
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
445
            }
446
            op.padding_mode = op::padding_mode_t::same;
447
448
        }

449
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
450
451
    }

Paul's avatar
Paul committed
452
    instruction_ref
Paul's avatar
Paul committed
453
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
454
    {
455
        op::reshape op;
Paul's avatar
Paul committed
456
457
458
459
460
461
462
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
463
            auto s = args[1]->eval();
Paul's avatar
Paul committed
464
            if(s.empty())
Paul's avatar
Paul committed
465
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
466
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
467
        }
Paul's avatar
Paul committed
468
469
470
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
471
    instruction_ref
Paul's avatar
Paul committed
472
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
473
    {
474
        uint64_t axis = 1;
Paul's avatar
Paul committed
475
476
477
478
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
479
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
480
481
    }

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
500
501
502
503
504
505
506
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
507

508
509
510
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
511
        int axis = 0;
512
513
514
515
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
516
        op::gather op{axis};
517
518
519
        return prog.add_instruction(op, std::move(args));
    }

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
540
541
542
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
543
    {
Shucai Xiao's avatar
Shucai Xiao committed
544
        literal v     = parse_value(attributes.at("value"));
545
546
547
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
548
        {
549
            migraphx::shape scalar_shape{v.get_shape().type()};
550
551
552
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
553
554
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
555

Paul's avatar
Paul committed
556
    instruction_ref
Paul's avatar
Paul committed
557
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
558
559
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
560
        float beta  = 1.0f;
Paul's avatar
Paul committed
561
562
563
564
565
566
567
568
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
569
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
570
571
572
573
574
575
576
577
578
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
579
580
581
582
583
584

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

585
586
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
587
588
        if(args.size() == 3)
        {
589
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
590
            {
Shucai Xiao's avatar
Shucai Xiao committed
591
                auto out_lens   = l1->get_shape().lens();
592
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
593
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
594
595
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
596
                {
597
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
598
                }
599
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
600
            }
Paul's avatar
Paul committed
601
        }
602
603

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
604
605
    }

606
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
607
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
608
    {
Shucai Xiao's avatar
Shucai Xiao committed
609
610
        auto l0      = args[0];
        auto l1      = args[1];
611
612
613
614
615
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
616
        if(l0_lens.size() == 1)
617
618
619
620
621
622
623
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
624
        if(l1_lens.size() == 1)
625
626
627
628
629
630
631
632
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
633
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
634
635
636
637
638
639
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
640
            l0_broadcasted_lens = output_lens;
641
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
642
            l1_broadcasted_lens = output_lens;
643
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
644
            if(l0_lens != l0_broadcasted_lens)
645
646
647
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
648
            if(l1_lens != l1_broadcasted_lens)
649
650
651
652
653
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
654
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
655
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
656
        if(is_a_prepended)
657
658
659
660
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
661
        if(is_b_appended)
662
663
664
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
665

666
667
668
        return dot_res;
    }

669
    instruction_ref
Paul's avatar
Paul committed
670
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
671
    {
Scott Thornton's avatar
Scott Thornton committed
672
673
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
674
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
675
        bool is_test                                      = false;
676
677
678
679
680
681
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
682
            momentum = parse_value(attributes.at("momentum")).at<float>();
683
684
685
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
686
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
687
688
689
        }
        if(contains(attributes, "spatial"))
        {
690
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
691
692
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
693
        }
Paul's avatar
Paul committed
694
        (void)is_test;
Paul's avatar
Paul committed
695
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
696
        return prog.add_instruction(op, std::move(args));
697
698
    }

699
700
701
702
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
703
        float alpha = 0.01; // default alpha val for leaky relu
704
705
706
707
708
709
710
711
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
712
713
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
714
715
716
717
718
719
720
721
722
723
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
724
725
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
726
727
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
728
729
730
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
731
732
733
734
735
736
737
738
739
740
741
742
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
759
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
760

Khalique's avatar
Khalique committed
761
762
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
763
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
764

765
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
766
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
767
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
768
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
769
    }
Khalique's avatar
Khalique committed
770

Khalique's avatar
Khalique committed
771
772
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
773
774
775
776
777
778
779
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
780
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
781
782
    }

Khalique's avatar
Khalique committed
783
784
785
786
787
788
789
790
791
792
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
793
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
794
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
795
796
797
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
798
799
800
801
802
803
804
805
806
807
808
809
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
810
811
812
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
813
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
814
815
    {
        if(args.size() != 1)
816
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
853
854
        if(contains(attributes, "extra_shape"))
        {
855
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
856
857
        }

858
859
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
860
            if(args.size() != 1)
861
            {
862
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
863
864
            }

Shucai Xiao's avatar
Shucai Xiao committed
865
866
            if(contains(attributes, "shape"))
            {
867
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
868
                               "at the same time");
869
870
            }

871
872
873
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
874
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
875
            }
876

877
878
879
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
880
881
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
882
883
884
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
885
886
            if(!contains(attributes, "shape"))
            {
887
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
888
889
890
            }

            literal ls = parse_value(attributes.at("shape"));
891
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
892
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
893
            migraphx::shape s{type, dims};
894
895
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
896
897
898
        }
        else
        {
899
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
900
901
902
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
903
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
904
905
906
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
907
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
908
909
910

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
911
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
912
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
913
914
915
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
916
917
918
919
920
921
922
923
924
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

925
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
926
927
        if(direction == "bidirectional")
        {
928
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
929
930
931
        }
        else if(direction == "reverse")
        {
932
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
933
934
        }

935
        std::vector<std::string> vec_names{"tanh"};
936
937
938
939
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
940
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
941
942
943
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
944
945
        }

946
947
948
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
949
        if(name_it != vec_names.end())
950
951
952
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
953

Shucai Xiao's avatar
Shucai Xiao committed
954
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
955
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
956
        // if only one actv function is provided, we use it in both
957
        // forward and reverse direction
958
        if(dirct == op::rnn_direction::bidirectional)
959
        {
Shucai Xiao's avatar
Shucai Xiao committed
960
            if(vec_names.size() == 1)
961
962
963
964
965
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
966
967
968
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
969
        });
Shucai Xiao's avatar
Shucai Xiao committed
970

Shucai Xiao's avatar
Shucai Xiao committed
971
972
973
974
975
976
977
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

978
979
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
980
        if(args.size() < 6)
981
982
983
984
985
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
986
987
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
988
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
989

990
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
991
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
992

Shucai Xiao's avatar
Shucai Xiao committed
993
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
994
995
    }

996
    std::vector<instruction_ref>
997
998
999
1000
1001
1002
1003
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1004
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1005
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1006
1007
1008
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1009
1010
1011
1012
1013
1014
1015
1016
1017
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1018
        op::rnn_direction dirct = op::rnn_direction::forward;
1019
1020
        if(direction == "bidirectional")
        {
1021
            dirct = op::rnn_direction::bidirectional;
1022
1023
1024
        }
        else if(direction == "reverse")
        {
1025
            dirct = op::rnn_direction::reverse;
1026
1027
        }

1028
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1029
1030
        if(contains(attributes, "activations"))
        {
1031
            auto names = attributes.at("activations").strings();
1032
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1033
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1034
1035
1036
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1037
1038
        }

1039
        // need 4 activation functions
1040
        if(dirct == op::rnn_direction::bidirectional)
1041
        {
Shucai Xiao's avatar
Shucai Xiao committed
1042
            // 4 activation functions are used in the bidirectional
1043
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1044
1045
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1046
1047
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1048
1049
1050
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1051
            if(vec_names.size() == 1)
1052
            {
1053
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1054
            }
1055
            else if(vec_names.size() == 2)
1056
            {
1057
1058
1059
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1060
            }
1061
            else if(vec_names.size() == 3)
1062
            {
1063
                vec_names.push_back(vec_names.at(2));
1064
1065
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1066
        else
1067
        {
1068
            if(vec_names.size() == 1)
1069
            {
1070
                vec_names.push_back(vec_names.at(0));
1071
1072
1073
            }
        }

1074
1075
1076
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1077
        if(name_it != vec_names.end())
1078
1079
1080
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1081

Shucai Xiao's avatar
Shucai Xiao committed
1082
1083
1084
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1085
        });
1086
1087
1088
1089
1090
1091
1092
1093

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1094
        if(contains(attributes, "linear_before_reset"))
1095
1096
1097
1098
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1099
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1100
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1101
1102
1103
1104
1105
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1106
1107
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1108
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1109
            std::move(args));
1110
1111

        // second output for last gru output
1112
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1113

Shucai Xiao's avatar
Shucai Xiao committed
1114
        return {hidden_states, last_output};
1115
1116
    }

Shucai Xiao's avatar
Shucai Xiao committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1139
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1140
1141
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1142
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1143
1144
1145
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1146
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1147
        }
Shucai Xiao's avatar
Shucai Xiao committed
1148
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1149
        {
Shucai Xiao's avatar
Shucai Xiao committed
1150
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1151
1152
1153
1154
1155
1156
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1157
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1158
1159
1160
1161
1162
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1163
1164
1165
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1166
1167
1168
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1169
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1170
1171
1172
1173
1174
1175
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1176
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1177
1178
1179
1180
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1181
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1182
1183
1184
1185
1186
1187
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1188
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1189
1190
1191

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1192
1193
1194
1195
1196
1197
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1198
1199
1200
1201
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1202
1203
1204
1205
1206
1207
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1208
1209
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1210
1211
1212
1213
1214
1215
1216
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1217
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1218

Shucai Xiao's avatar
Shucai Xiao committed
1219
1220
1221
1222
1223
1224
1225
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1226
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1227

Shucai Xiao's avatar
Shucai Xiao committed
1228
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1229
1230
1231
1232
1233
1234
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1235
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1236
1237
1238

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1239
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1240
1241
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1242
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1243
1244
1245
            }
        }

1246
1247
1248
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1249
        if(name_it != vec_names.end())
1250
1251
1252
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1275
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1276
1277
1278
1279
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1280
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1281
1282

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1283
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1284
1285
1286
1287
1288
1289

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1290

Shucai Xiao's avatar
Shucai Xiao committed
1291
1292
1293
    instruction_ref parse_reduce_sum(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
        std::vector<std::size_t> axes(n_dim);
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
Shucai Xiao's avatar
Shucai Xiao committed
1304
            axes             = std::vector<std::size_t>(attr_axes.begin(), attr_axes.end());
1305
1306
1307
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1308
        if(contains(attributes, "keepdims"))
1309
1310
1311
1312
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1313
        if(keep_dims == 1)
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
        {
            return prog.add_instruction(op::reduce_sum{axes}, std::move(args));
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_sum{axes}, std::move(args));
            std::vector<int64_t> squeeze_axes{axes.begin(), axes.end()};
            return prog.add_instruction(op::squeeze{squeeze_axes}, ins);
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1324

Paul's avatar
Paul committed
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1337
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1338
1339
1340
1341
1342
1343
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1344
1345
1346
1347
1348
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1349
1350
1351
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1364
        }
Paul's avatar
Paul committed
1365
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1366
        {
Paul's avatar
Paul committed
1367
            this->parse_node(output.name());
Paul's avatar
Paul committed
1368
1369
1370
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1371
    void parse_undefined(const std::string& name)
1372
    {
Shucai Xiao's avatar
Shucai Xiao committed
1373
        auto ins           = prog.add_instruction(op::undefined{});
1374
1375
1376
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1377
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1378
    {
Paul's avatar
Paul committed
1379
        if(name.empty())
Paul's avatar
Paul committed
1380
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1381
1382
1383
1384
1385
1386
1387
1388
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1389
1390
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1391
                }
Shucai Xiao's avatar
Shucai Xiao committed
1392
                else if(input.empty())
Paul's avatar
Paul committed
1393
                {
1394
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1395
                }
1396
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1397
            }
Paul's avatar
Paul committed
1398
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1399
1400
            if(ops.count(node.op_type()) == 0)
            {
1401
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1402
1403
1404
            }
            else
            {
Paul's avatar
Paul committed
1405
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1406
            }
Paul's avatar
Paul committed
1407
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1408
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1409
1410
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1411
1412
1413
            }
            else
            {
Paul's avatar
Paul committed
1414
1415
1416
1417
1418
1419
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1437
        std::size_t n = 0;
Paul's avatar
Paul committed
1438
1439
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1440
            if(node.output().empty())
Paul's avatar
Paul committed
1441
            {
Paul's avatar
Paul committed
1442
                if(node.name().empty())
Paul's avatar
Paul committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1477
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1478
1479
1480
1481
1482
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1483
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1484
1485
1486
1487
1488
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1489
1490
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1491
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1492
1493
1494
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1495
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1496
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1497
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1498
1499
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1500
1501
1502
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1503
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1504
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1505
1506
1507
1508
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1509
1510
1511
1512
1513
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1514
            MIGRAPHX_THROW("Invalid tensor type");
1515
        }
Paul's avatar
Paul committed
1516
1517
1518
1519
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1520
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1521
1522
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1523
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1524
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1525
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1526
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1527
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1528
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1529
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1530
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1531
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1532
1533
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1534
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1535
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1536
        {
Khalique's avatar
Khalique committed
1537
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1538
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1539
1540
1541
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1542
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1543
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1544
        }
Paul's avatar
Paul committed
1545
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1546
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1547
1548
1549
1550
1551
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1552
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1553
1554
    }

Khalique's avatar
Khalique committed
1555
    static literal
1556
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1557
    {
Khalique's avatar
Khalique committed
1558
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1559
        if(dims.empty())
1560
            return literal{{shape_type}, data};
1561
1562
1563
        return literal{{shape_type, dims}, data};
    }

1564
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1565
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1566
1567
    {
        if(dims.empty())
1568
            return literal{{shape_type}, data.begin(), data.end()};
1569
        return literal{{shape_type, dims}, data.begin(), data.end()};
1570
1571
    }

Paul's avatar
Paul committed
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1591
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1592
1593
1594
1595
1596
1597
1598
1599
1600
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1601
        auto&& tensor_dims = t.tensor_type().shape().dim();
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1613
1614
        return {shape_type, dims};
    }
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1660
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1661
} // namespace migraphx