onnx.cpp 61.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
63
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
64
65
66
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
67

68
69
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
Khalique's avatar
Khalique committed
70
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
71
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
72
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
73
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
74
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
75
76
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
77
78
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
79
80
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
81
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
82
83
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
84
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
85
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
86
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
87
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
88
89
90
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
91
        add_mem_op("Concat", &onnx_parser::parse_concat);
92
93
94
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
95
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
96
        add_mem_op("RNN", &onnx_parser::parse_rnn);
97
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
98
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
99
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
100
101
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
102
103
104
105
106
107
108

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
109
110
111
112
113
114
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
115
116
117
118
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
119
120
121
122
123
124
125
126
127
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
128
129
130
131
132
133
134
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
135
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
136
137
138
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
139

140
    template <class T>
Khalique's avatar
Khalique committed
141
    void add_binary_op(std::string name, T x)
142
    {
Paul's avatar
Paul committed
143
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
144
            if(args.size() != 2)
Paul's avatar
Paul committed
145
                MIGRAPHX_THROW("binary operators should have 2 operands");
146
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
147
148
149
150
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
151
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
152
153
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
154
155
                    return prog.add_instruction(x, args[0], l);
                }
156
                return prog.add_instruction(x, args);
157
            }
Paul's avatar
Paul committed
158
            else
159
            {
Khalique's avatar
Khalique committed
160
                return add_broadcastable_binary_op(args[0], args[1], x);
161
162
163
164
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
165
166
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
167
168
169
170
171
172
173
174
175
176
177
178
179
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
180
        if(s0.size() > s1.size())
181
182
183
184
185
186
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
187
188
189
190
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
191
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
192
                           if(a != b and a != 1 and b != 1)
193
                           {
Shucai Xiao's avatar
Shucai Xiao committed
194
195
196
197
198
199
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
200
201
202
203

        return out_lens;
    }

Khalique's avatar
Khalique committed
204
205
206
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
207
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
208
209
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
210
211
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
212
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
213
214
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
215
216
217
218
219
220
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
221
222
    }

Paul's avatar
Paul committed
223
    template <class T>
Paul's avatar
Paul committed
224
225
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
226
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
227
228
229
230
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
231
    template <class T>
Khalique's avatar
Khalique committed
232
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
233
    {
Paul's avatar
Paul committed
234
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
235
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
236
237
238
239
240
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
241
        });
Khalique's avatar
Khalique committed
242
243
    }

Khalique's avatar
Khalique committed
244
245
246
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
247
248
249
250
251
252
253
254
255
256
257
258
259
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
260
    instruction_ref
Paul's avatar
Paul committed
261
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
262
263
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
264
265
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
266
267
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
268
269
    }

Shucai Xiao's avatar
Shucai Xiao committed
270
271
272
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
273
274
275
276
277
278
279
280
281
282
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

283
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
284
285
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
286
    {
287
        int64_t axis = 0;
288
289
        if(contains(attributes, "axis"))
        {
290
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
291
292
        }

Shucai Xiao's avatar
Shucai Xiao committed
293
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
294
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
295
296
297
298
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
299
        if(keep_dims == 0)
300
301
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
302
            return prog.add_instruction(op::squeeze{{axis}}, ins);
303
304
305
306
307
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
308
309
310
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
311
312
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
313
    {
314
        int64_t axis = 0;
315
316
        if(contains(attributes, "axis"))
        {
317
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
318
319
        }

Shucai Xiao's avatar
Shucai Xiao committed
320
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
321
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
322
323
324
325
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
326
        if(keep_dims == 0)
327
328
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
329
            return prog.add_instruction(op::squeeze{{axis}}, ins);
330
331
332
333
334
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
335
336
    }

Paul's avatar
Paul committed
337
    instruction_ref
Paul's avatar
Paul committed
338
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
339
    {
340
        op::convolution op;
341
        auto l0 = args[0];
Paul's avatar
Paul committed
342
343
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
344
            if(contains(attributes, "auto_pad"))
345
            {
Paul's avatar
Paul committed
346
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
347
            }
348
349
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
350
            if(padding.size() != 4)
351
            {
Paul's avatar
Paul committed
352
                MIGRAPHX_THROW("padding should have 4 values");
353
            }
Scott Thornton's avatar
Scott Thornton committed
354
            if(padding[0] != padding[2] || padding[1] != padding[3])
355
            {
356
357
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
358
                l0      = prog.add_instruction(op::pad{padding}, l0);
359
            }
360
361
362
363
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
364
            }
Paul's avatar
Paul committed
365
        }
Paul's avatar
Paul committed
366
367
368
369
370
371
372
373
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
374
        if(contains(attributes, "auto_pad"))
375
376
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
377
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
378
            {
Paul's avatar
Paul committed
379
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
380
381
            }

wsttiger's avatar
fixes  
wsttiger committed
382
            if(s.find("SAME") != std::string::npos)
383
            {
384
                op.padding_mode = op::padding_mode_t::same;
385
386
            }
        }
Khalique's avatar
Khalique committed
387
388
389
390
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
391
392
393
394
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
395
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
396
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
397
        }
398
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
399
    }
Paul's avatar
Paul committed
400

Paul's avatar
Paul committed
401
402
403
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
404
    {
Khalique's avatar
Khalique committed
405
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
406
        auto l0 = args[0];
Khalique's avatar
Khalique committed
407
        if(starts_with(name, "Global"))
408
        {
Khalique's avatar
Khalique committed
409
410
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
411
        }
Paul's avatar
Paul committed
412
413
        if(contains(attributes, "pads"))
        {
414
415
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
416
            if(padding.size() != 4)
417
            {
Paul's avatar
Paul committed
418
                MIGRAPHX_THROW("padding should have 4 values");
419
            }
Scott Thornton's avatar
Scott Thornton committed
420
            if(padding[0] != padding[2] || padding[1] != padding[3])
421
            {
422
423
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
424
425
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
426
427
428
429
430
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
431
            }
Paul's avatar
Paul committed
432
433
434
435
436
437
438
439
440
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
441
        if(contains(attributes, "auto_pad"))
442
443
        {
            auto s = attributes["auto_pad"].s();
444
            if(s.find("SAME_UPPER") == std::string::npos)
445
            {
446
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
447
            }
448
            op.padding_mode = op::padding_mode_t::same;
449
450
        }

451
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
452
453
    }

Paul's avatar
Paul committed
454
    instruction_ref
Paul's avatar
Paul committed
455
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
456
    {
457
        op::reshape op;
Paul's avatar
Paul committed
458
459
460
461
462
463
464
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
465
            auto s = args[1]->eval();
Paul's avatar
Paul committed
466
            if(s.empty())
Paul's avatar
Paul committed
467
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
468
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
469
        }
Paul's avatar
Paul committed
470
471
472
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
473
    instruction_ref
Paul's avatar
Paul committed
474
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
475
    {
476
        uint64_t axis = 1;
Paul's avatar
Paul committed
477
478
479
480
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
481
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
482
483
    }

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
502
503
504
505
506
507
508
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
509

510
511
512
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
513
        int axis = 0;
514
515
516
517
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
518
        op::gather op{axis};
519
520
521
        return prog.add_instruction(op, std::move(args));
    }

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
542
543
544
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
545
    {
Shucai Xiao's avatar
Shucai Xiao committed
546
        literal v     = parse_value(attributes.at("value"));
547
548
549
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
550
        {
551
            migraphx::shape scalar_shape{v.get_shape().type()};
552
553
554
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
555
556
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
557

Paul's avatar
Paul committed
558
    instruction_ref
Paul's avatar
Paul committed
559
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
560
561
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
562
        float beta  = 1.0f;
Paul's avatar
Paul committed
563
564
565
566
567
568
569
570
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
571
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
572
573
574
575
576
577
578
579
580
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
581
582
583
584
585
586

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

587
588
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
589
590
        if(args.size() == 3)
        {
591
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
592
            {
Shucai Xiao's avatar
Shucai Xiao committed
593
                auto out_lens   = l1->get_shape().lens();
594
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
595
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
596
597
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
598
                {
599
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
600
                }
601
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
602
            }
Paul's avatar
Paul committed
603
        }
604
605

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
606
607
    }

608
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
609
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
610
    {
Shucai Xiao's avatar
Shucai Xiao committed
611
612
        auto l0      = args[0];
        auto l1      = args[1];
613
614
615
616
617
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
618
        if(l0_lens.size() == 1)
619
620
621
622
623
624
625
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
626
        if(l1_lens.size() == 1)
627
628
629
630
631
632
633
634
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
635
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
636
637
638
639
640
641
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
642
            l0_broadcasted_lens = output_lens;
643
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
644
            l1_broadcasted_lens = output_lens;
645
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
646
            if(l0_lens != l0_broadcasted_lens)
647
648
649
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
650
            if(l1_lens != l1_broadcasted_lens)
651
652
653
654
655
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
656
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
657
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
658
        if(is_a_prepended)
659
660
661
662
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
663
        if(is_b_appended)
664
665
666
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
667

668
669
670
        return dot_res;
    }

671
    instruction_ref
Paul's avatar
Paul committed
672
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
673
    {
Scott Thornton's avatar
Scott Thornton committed
674
675
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
676
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
677
        bool is_test                                      = false;
678
679
680
681
682
683
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
684
            momentum = parse_value(attributes.at("momentum")).at<float>();
685
686
687
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
688
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
689
690
691
        }
        if(contains(attributes, "spatial"))
        {
692
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
693
694
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
695
        }
Paul's avatar
Paul committed
696
        (void)is_test;
Paul's avatar
Paul committed
697
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
698
        return prog.add_instruction(op, std::move(args));
699
700
    }

701
702
703
704
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
705
        float alpha = 0.01; // default alpha val for leaky relu
706
707
708
709
710
711
712
713
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
714
715
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
716
717
718
719
720
721
722
723
724
725
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
726
727
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
728
729
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
730
731
732
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
733
734
735
736
737
738
739
740
741
742
743
744
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
761
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
762

Khalique's avatar
Khalique committed
763
764
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
765
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
766

767
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
768
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
769
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
770
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
771
    }
Khalique's avatar
Khalique committed
772

Khalique's avatar
Khalique committed
773
774
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
775
776
777
778
779
780
781
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
782
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
783
784
    }

Khalique's avatar
Khalique committed
785
786
787
788
789
790
791
792
793
794
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
795
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
796
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
797
798
799
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
800
801
802
803
804
805
806
807
808
809
810
811
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
812
813
814
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
815
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
816
817
    {
        if(args.size() != 1)
818
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
855
856
        if(contains(attributes, "extra_shape"))
        {
857
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
858
859
        }

860
861
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
862
            if(args.size() != 1)
863
            {
864
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
865
866
            }

Shucai Xiao's avatar
Shucai Xiao committed
867
868
            if(contains(attributes, "shape"))
            {
869
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
870
                               "at the same time");
871
872
            }

873
874
875
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
876
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
877
            }
878

879
880
881
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
882
883
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
884
885
886
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
887
888
            if(!contains(attributes, "shape"))
            {
889
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
890
891
892
            }

            literal ls = parse_value(attributes.at("shape"));
893
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
894
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
895
            migraphx::shape s{type, dims};
896
897
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
898
899
900
        }
        else
        {
901
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
902
903
904
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
905
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
906
907
908
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
909
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
910
911
912

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
913
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
914
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
915
916
917
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
918
919
920
921
922
923
924
925
926
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

927
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
928
929
        if(direction == "bidirectional")
        {
930
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
931
932
933
        }
        else if(direction == "reverse")
        {
934
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
935
936
        }

937
        std::vector<std::string> vec_names{"tanh"};
938
939
940
941
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
942
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
943
944
945
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
946
947
        }

948
949
950
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
951
        if(name_it != vec_names.end())
952
953
954
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
955

Shucai Xiao's avatar
Shucai Xiao committed
956
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
957
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
958
        // if only one actv function is provided, we use it in both
959
        // forward and reverse direction
960
        if(dirct == op::rnn_direction::bidirectional)
961
        {
Shucai Xiao's avatar
Shucai Xiao committed
962
            if(vec_names.size() == 1)
963
964
965
966
967
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
968
969
970
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
971
        });
Shucai Xiao's avatar
Shucai Xiao committed
972

Shucai Xiao's avatar
Shucai Xiao committed
973
974
975
976
977
978
979
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

980
981
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
982
        if(args.size() < 6)
983
984
985
986
987
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
988
989
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
990
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
991

992
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
993
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
994

Shucai Xiao's avatar
Shucai Xiao committed
995
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
996
997
    }

998
    std::vector<instruction_ref>
999
1000
1001
1002
1003
1004
1005
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1006
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1007
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1008
1009
1010
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1011
1012
1013
1014
1015
1016
1017
1018
1019
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1020
        op::rnn_direction dirct = op::rnn_direction::forward;
1021
1022
        if(direction == "bidirectional")
        {
1023
            dirct = op::rnn_direction::bidirectional;
1024
1025
1026
        }
        else if(direction == "reverse")
        {
1027
            dirct = op::rnn_direction::reverse;
1028
1029
        }

1030
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1031
1032
        if(contains(attributes, "activations"))
        {
1033
            auto names = attributes.at("activations").strings();
1034
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1035
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1036
1037
1038
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1039
1040
        }

1041
        // need 4 activation functions
1042
        if(dirct == op::rnn_direction::bidirectional)
1043
        {
Shucai Xiao's avatar
Shucai Xiao committed
1044
            // 4 activation functions are used in the bidirectional
1045
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1046
1047
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1048
1049
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1050
1051
1052
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1053
            if(vec_names.size() == 1)
1054
            {
1055
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1056
            }
1057
            else if(vec_names.size() == 2)
1058
            {
1059
1060
1061
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1062
            }
1063
            else if(vec_names.size() == 3)
1064
            {
1065
                vec_names.push_back(vec_names.at(2));
1066
1067
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1068
        else
1069
        {
1070
            if(vec_names.size() == 1)
1071
            {
1072
                vec_names.push_back(vec_names.at(0));
1073
1074
1075
            }
        }

1076
1077
1078
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1079
        if(name_it != vec_names.end())
1080
1081
1082
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1083

Shucai Xiao's avatar
Shucai Xiao committed
1084
1085
1086
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1087
        });
1088
1089
1090
1091
1092
1093
1094
1095

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1096
        if(contains(attributes, "linear_before_reset"))
1097
1098
1099
1100
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1101
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1102
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1103
1104
1105
1106
1107
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1108
1109
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1110
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1111
            std::move(args));
1112
1113

        // second output for last gru output
1114
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1115

Shucai Xiao's avatar
Shucai Xiao committed
1116
        return {hidden_states, last_output};
1117
1118
    }

Shucai Xiao's avatar
Shucai Xiao committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1141
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1142
1143
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1144
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1145
1146
1147
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1148
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1149
        }
Shucai Xiao's avatar
Shucai Xiao committed
1150
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1151
        {
Shucai Xiao's avatar
Shucai Xiao committed
1152
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1153
1154
1155
1156
1157
1158
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1159
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1160
1161
1162
1163
1164
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1165
1166
1167
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1168
1169
1170
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1171
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1172
1173
1174
1175
1176
1177
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1178
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1179
1180
1181
1182
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1183
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1184
1185
1186
1187
1188
1189
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1190
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1191
1192
1193

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1194
1195
1196
1197
1198
1199
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1200
1201
1202
1203
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1204
1205
1206
1207
1208
1209
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1210
1211
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1212
1213
1214
1215
1216
1217
1218
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1219
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1220

Shucai Xiao's avatar
Shucai Xiao committed
1221
1222
1223
1224
1225
1226
1227
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1228
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1229

Shucai Xiao's avatar
Shucai Xiao committed
1230
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1231
1232
1233
1234
1235
1236
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1237
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1238
1239
1240

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1241
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1242
1243
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1244
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1245
1246
1247
            }
        }

1248
1249
1250
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1251
        if(name_it != vec_names.end())
1252
1253
1254
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1277
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1278
1279
1280
1281
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1282
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1283
1284

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1285
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1286
1287
1288
1289
1290
1291

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1292

Shucai Xiao's avatar
Shucai Xiao committed
1293
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1294
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1295
1296
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
1297
1298
1299
1300
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1301
        std::vector<int64_t> axes(n_dim);
1302
1303
1304
1305
1306
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1307
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
1308
1309
1310
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1311
        if(contains(attributes, "keepdims"))
1312
1313
1314
1315
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1316
        if(keep_dims == 1)
1317
        {
Shucai Xiao's avatar
Shucai Xiao committed
1318
            return prog.add_instruction(T{axes}, std::move(args));
1319
1320
1321
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1322
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1323
            return prog.add_instruction(op::squeeze{axes}, ins);
1324
1325
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1326

Paul's avatar
Paul committed
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1339
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1340
1341
1342
1343
1344
1345
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1346
1347
1348
1349
1350
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1351
1352
1353
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1366
        }
Paul's avatar
Paul committed
1367
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1368
        {
Paul's avatar
Paul committed
1369
            this->parse_node(output.name());
Paul's avatar
Paul committed
1370
1371
1372
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1373
    void parse_undefined(const std::string& name)
1374
    {
Shucai Xiao's avatar
Shucai Xiao committed
1375
        auto ins           = prog.add_instruction(op::undefined{});
1376
1377
1378
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1379
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1380
    {
Paul's avatar
Paul committed
1381
        if(name.empty())
Paul's avatar
Paul committed
1382
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1383
1384
1385
1386
1387
1388
1389
1390
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1391
1392
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1393
                }
Shucai Xiao's avatar
Shucai Xiao committed
1394
                else if(input.empty())
Paul's avatar
Paul committed
1395
                {
1396
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1397
                }
1398
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1399
            }
Paul's avatar
Paul committed
1400
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1401
1402
            if(ops.count(node.op_type()) == 0)
            {
1403
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1404
1405
1406
            }
            else
            {
Paul's avatar
Paul committed
1407
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1408
            }
Paul's avatar
Paul committed
1409
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1410
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1411
1412
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1413
1414
1415
            }
            else
            {
Paul's avatar
Paul committed
1416
1417
1418
1419
1420
1421
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1439
        std::size_t n = 0;
Paul's avatar
Paul committed
1440
1441
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1442
            if(node.output().empty())
Paul's avatar
Paul committed
1443
            {
Paul's avatar
Paul committed
1444
                if(node.name().empty())
Paul's avatar
Paul committed
1445
1446
1447
1448
1449
1450
1451
1452
1453
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1479
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1480
1481
1482
1483
1484
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1485
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1486
1487
1488
1489
1490
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1491
1492
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1493
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1494
1495
1496
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1497
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1498
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1499
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1500
1501
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1502
1503
1504
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1505
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1506
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1507
1508
1509
1510
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1511
1512
1513
1514
1515
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1516
            MIGRAPHX_THROW("Invalid tensor type");
1517
        }
Paul's avatar
Paul committed
1518
1519
1520
1521
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1522
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1523
1524
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1525
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1526
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1527
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1528
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1529
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1530
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1531
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1532
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1533
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1534
1535
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1536
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1537
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1538
        {
Khalique's avatar
Khalique committed
1539
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1540
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1541
1542
1543
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1544
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1545
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1546
        }
Paul's avatar
Paul committed
1547
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1548
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1549
1550
1551
1552
1553
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1554
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1555
1556
    }

Khalique's avatar
Khalique committed
1557
    static literal
1558
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1559
    {
Khalique's avatar
Khalique committed
1560
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1561
        if(dims.empty())
1562
            return literal{{shape_type}, data};
1563
1564
1565
        return literal{{shape_type, dims}, data};
    }

1566
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1567
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1568
1569
    {
        if(dims.empty())
1570
            return literal{{shape_type}, data.begin(), data.end()};
1571
        return literal{{shape_type, dims}, data.begin(), data.end()};
1572
1573
    }

Paul's avatar
Paul committed
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1593
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1594
1595
1596
1597
1598
1599
1600
1601
1602
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1603
        auto&& tensor_dims = t.tensor_type().shape().dim();
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1615
1616
        return {shape_type, dims};
    }
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1662
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1663
} // namespace migraphx