onnx.cpp 64.5 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
57
        add_generic_op("Sqrt", op::sqrt{});
Paul's avatar
Paul committed
58

Khalique's avatar
Khalique committed
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});
Shucai Xiao's avatar
Shucai Xiao committed
63
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
64

Khalique's avatar
Khalique committed
65
66
67
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
68

69
70
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
71
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
72
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
73
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
74
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
75
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
76
        add_mem_op("Elu", &onnx_parser::parse_elu);
77
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
78
79
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
80
81
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
82
83
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
84
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
85
86
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
87
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
88
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
89
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
90
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
91
92
93
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
94
        add_mem_op("Concat", &onnx_parser::parse_concat);
95
96
97
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
98
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
99
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("RNN", &onnx_parser::parse_rnn);
101
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
102
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
103
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
104
105
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
106
107
108
109
110
111
112

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
113
114
115
116
117
118
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
119
120
121
122
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
132
133
134
135
136
137
138
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
139
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
140
141
142
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
143

144
    template <class T>
Khalique's avatar
Khalique committed
145
    void add_binary_op(std::string name, T x)
146
    {
Paul's avatar
Paul committed
147
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
148
            if(args.size() != 2)
Paul's avatar
Paul committed
149
                MIGRAPHX_THROW("binary operators should have 2 operands");
150
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
151
152
153
154
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
155
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
156
157
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
158
159
                    return prog.add_instruction(x, args[0], l);
                }
160
                return prog.add_instruction(x, args);
161
            }
Paul's avatar
Paul committed
162
            else
163
            {
Khalique's avatar
Khalique committed
164
                return add_broadcastable_binary_op(args[0], args[1], x);
165
166
167
168
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
169
170
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
171
172
173
174
175
176
177
178
179
180
181
182
183
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
184
        if(s0.size() > s1.size())
185
186
187
188
189
190
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
195
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
196
                           if(a != b and a != 1 and b != 1)
197
                           {
Shucai Xiao's avatar
Shucai Xiao committed
198
199
200
201
202
203
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
204
205
206
207

        return out_lens;
    }

Khalique's avatar
Khalique committed
208
209
210
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
211
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
212
213
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
214
215
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
216
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
217
218
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
219
220
221
222
223
224
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
225
226
    }

Paul's avatar
Paul committed
227
    template <class T>
Paul's avatar
Paul committed
228
229
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
230
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
231
232
233
234
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
235
    template <class T>
Khalique's avatar
Khalique committed
236
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
237
    {
Paul's avatar
Paul committed
238
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
239
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
240
241
242
243
244
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
245
        });
Khalique's avatar
Khalique committed
246
247
    }

Khalique's avatar
Khalique committed
248
249
250
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
264
    instruction_ref
Paul's avatar
Paul committed
265
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
266
267
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
268
269
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
270
271
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
272
273
    }

Shucai Xiao's avatar
Shucai Xiao committed
274
275
276
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
277
278
279
280
281
282
283
284
285
286
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

287
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
288
289
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
290
    {
291
        int64_t axis = 0;
292
293
        if(contains(attributes, "axis"))
        {
294
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
295
296
        }

Shucai Xiao's avatar
Shucai Xiao committed
297
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
298
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
299
300
301
302
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
303
        if(keep_dims == 0)
304
305
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
306
            return prog.add_instruction(op::squeeze{{axis}}, ins);
307
308
309
310
311
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
312
313
314
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
315
316
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
317
    {
318
        int64_t axis = 0;
319
320
        if(contains(attributes, "axis"))
        {
321
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
322
323
        }

Shucai Xiao's avatar
Shucai Xiao committed
324
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
325
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
326
327
328
329
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
330
        if(keep_dims == 0)
331
332
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
333
            return prog.add_instruction(op::squeeze{{axis}}, ins);
334
335
336
337
338
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
339
340
    }

Paul's avatar
Paul committed
341
    instruction_ref
Paul's avatar
Paul committed
342
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
343
    {
344
        op::convolution op;
345
        auto l0 = args[0];
Paul's avatar
Paul committed
346
347
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
348
            if(contains(attributes, "auto_pad"))
349
            {
Paul's avatar
Paul committed
350
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
351
            }
352
353
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
354
            if(padding.size() != 4)
355
            {
Paul's avatar
Paul committed
356
                MIGRAPHX_THROW("padding should have 4 values");
357
            }
Scott Thornton's avatar
Scott Thornton committed
358
            if(padding[0] != padding[2] || padding[1] != padding[3])
359
            {
360
361
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
362
                l0      = prog.add_instruction(op::pad{padding}, l0);
363
            }
364
365
366
367
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
368
            }
Paul's avatar
Paul committed
369
        }
Paul's avatar
Paul committed
370
371
372
373
374
375
376
377
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
378
        if(contains(attributes, "auto_pad"))
379
380
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
381
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
382
            {
Paul's avatar
Paul committed
383
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
384
385
            }

wsttiger's avatar
fixes  
wsttiger committed
386
            if(s.find("SAME") != std::string::npos)
387
            {
388
                op.padding_mode = op::padding_mode_t::same;
389
390
            }
        }
Khalique's avatar
Khalique committed
391
392
393
394
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
395
396
397
398
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
399
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
400
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
401
        }
402
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
403
    }
Paul's avatar
Paul committed
404

Paul's avatar
Paul committed
405
406
407
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
408
    {
Khalique's avatar
Khalique committed
409
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
410
        auto l0 = args[0];
Khalique's avatar
Khalique committed
411
        if(starts_with(name, "Global"))
412
        {
Khalique's avatar
Khalique committed
413
414
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
415
        }
Paul's avatar
Paul committed
416
417
        if(contains(attributes, "pads"))
        {
418
419
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
420
            if(padding.size() != 4)
421
            {
Paul's avatar
Paul committed
422
                MIGRAPHX_THROW("padding should have 4 values");
423
            }
Scott Thornton's avatar
Scott Thornton committed
424
            if(padding[0] != padding[2] || padding[1] != padding[3])
425
            {
426
427
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
428
429
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
430
431
432
433
434
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
435
            }
Paul's avatar
Paul committed
436
437
438
439
440
441
442
443
444
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
445
        if(contains(attributes, "auto_pad"))
446
447
        {
            auto s = attributes["auto_pad"].s();
448
            if(s.find("SAME_UPPER") == std::string::npos)
449
            {
450
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
451
            }
452
            op.padding_mode = op::padding_mode_t::same;
453
454
        }

455
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
456
457
    }

Paul's avatar
Paul committed
458
    instruction_ref
Paul's avatar
Paul committed
459
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
460
    {
461
        op::reshape op;
Paul's avatar
Paul committed
462
463
464
465
466
467
468
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
469
            auto s = args[1]->eval();
Paul's avatar
Paul committed
470
            if(s.empty())
Paul's avatar
Paul committed
471
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
472
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
473
        }
Paul's avatar
Paul committed
474
475
476
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
477
    instruction_ref
Paul's avatar
Paul committed
478
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
479
    {
480
        uint64_t axis = 1;
Paul's avatar
Paul committed
481
482
483
484
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
485
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
486
487
    }

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
506
507
508
509
510
511
512
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
513

514
515
516
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
517
        int axis = 0;
518
519
520
521
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
522
        op::gather op{axis};
523
524
525
        return prog.add_instruction(op, std::move(args));
    }

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
546
547
548
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
549
    {
Shucai Xiao's avatar
Shucai Xiao committed
550
        literal v = parse_value(attributes.at("value"));
551
        // return empty literal
Shucai Xiao's avatar
Shucai Xiao committed
552
        if(v.get_shape().elements() == 0)
553
554
555
556
        {
            return prog.add_literal(literal{});
        }

557
558
559
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
560
        {
561
            migraphx::shape scalar_shape{v.get_shape().type()};
562
563
564
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
565
566
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
567

Paul's avatar
Paul committed
568
    instruction_ref
Paul's avatar
Paul committed
569
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
570
571
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
572
        float beta  = 1.0f;
Paul's avatar
Paul committed
573
574
575
576
577
578
579
580
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
581
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
582
583
584
585
586
587
588
589
590
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
591
592
593
594
595
596

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

597
598
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
599
600
        if(args.size() == 3)
        {
601
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
602
            {
Shucai Xiao's avatar
Shucai Xiao committed
603
                auto out_lens   = l1->get_shape().lens();
604
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
605
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
606
607
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
608
                {
609
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
610
                }
611
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
612
            }
Paul's avatar
Paul committed
613
        }
614
615

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
616
617
    }

618
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
619
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
620
    {
Shucai Xiao's avatar
Shucai Xiao committed
621
622
        auto l0      = args[0];
        auto l1      = args[1];
623
624
625
626
627
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
628
        if(l0_lens.size() == 1)
629
630
631
632
633
634
635
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
636
        if(l1_lens.size() == 1)
637
638
639
640
641
642
643
644
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
645
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
646
647
648
649
650
651
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
652
            l0_broadcasted_lens = output_lens;
653
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
654
            l1_broadcasted_lens = output_lens;
655
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
656
            if(l0_lens != l0_broadcasted_lens)
657
658
659
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
660
            if(l1_lens != l1_broadcasted_lens)
661
662
663
664
665
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
666
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
667
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
668
        if(is_a_prepended)
669
670
671
672
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
673
        if(is_b_appended)
674
675
676
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
677

678
679
680
        return dot_res;
    }

681
    instruction_ref
Paul's avatar
Paul committed
682
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
683
    {
Scott Thornton's avatar
Scott Thornton committed
684
685
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
686
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
687
        bool is_test                                      = false;
688
689
690
691
692
693
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
694
            momentum = parse_value(attributes.at("momentum")).at<float>();
695
696
697
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
698
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
699
700
701
        }
        if(contains(attributes, "spatial"))
        {
702
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
703
704
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
705
        }
Paul's avatar
Paul committed
706
        (void)is_test;
Paul's avatar
Paul committed
707
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
708
        return prog.add_instruction(op, std::move(args));
709
710
    }

711
712
713
714
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
715
        float alpha = 0.01; // default alpha val for leaky relu
716
717
718
719
720
721
722
723
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
724
725
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
726
727
728
729
730
731
732
733
734
735
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
736
737
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
738
739
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
740
741
742
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
743
744
745
746
747
748
749
750
751
752
753
754
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
771
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
772

Khalique's avatar
Khalique committed
773
774
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
775
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
776

777
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
778
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
779
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
780
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
781
    }
Khalique's avatar
Khalique committed
782

Khalique's avatar
Khalique committed
783
784
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
785
786
787
788
789
790
791
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
792
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
793
794
    }

Khalique's avatar
Khalique committed
795
796
797
798
799
800
801
802
803
804
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
805
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
806
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
807
808
809
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
810
811
812
813
814
815
816
817
818
819
820
821
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
822
823
824
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
825
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
826
827
    {
        if(args.size() != 1)
828
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
865
866
        if(contains(attributes, "extra_shape"))
        {
867
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
868
869
        }

870
871
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
872
            if(args.size() != 1)
873
            {
874
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
875
876
            }

Shucai Xiao's avatar
Shucai Xiao committed
877
878
            if(contains(attributes, "shape"))
            {
879
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
880
                               "at the same time");
881
882
            }

883
884
885
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
886
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
887
            }
888

889
890
891
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
892
893
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
894
895
896
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
897
898
            if(!contains(attributes, "shape"))
            {
899
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
900
901
902
            }

            literal ls = parse_value(attributes.at("shape"));
903
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
904
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
905
            migraphx::shape s{type, dims};
906
907
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
908
909
910
        }
        else
        {
911
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
912
913
914
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
915
916
917
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
918
919
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
920
        if(contains(attributes, "value"))
921
922
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
923
            if(l_val.get_shape().elements() != 1)
924
925
926
927
928
929
930
931
932
933
934
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
935

Shucai Xiao's avatar
Shucai Xiao committed
936
        if(args.empty())
937
        {
938
            MIGRAPHX_THROW("Parse ConstantOfShape : must have 1 input!");
939
940
941
        }
        else
        {
942
943
            migraphx::shape s;
            // empty input tensor, output is a scalar
Shucai Xiao's avatar
Shucai Xiao committed
944
            if(args[0]->get_shape().elements() == 0)
945
            {
946
                s = migraphx::shape{type, {1}, {0}};
947
            }
948
949
950
951
952
953
954
            else
            {
                migraphx::argument in = args[0]->eval();
                if(in.empty())
                {
                    MIGRAPHX_THROW("Parse ConstantOfShape: cannot handle dynamic shape as input");
                }
955

956
957
958
959
                std::vector<std::size_t> dims;
                in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
                s = migraphx::shape{type, dims};
            }
960
961
962
963
964
965
966
967
968
969
970
971
972

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
973
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
974
    parse_expand(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
975
    {
Shucai Xiao's avatar
Shucai Xiao committed
976
        auto in_lens             = args[0]->get_shape().lens();
977
        migraphx::argument arg_s = args[1]->eval();
Shucai Xiao's avatar
Shucai Xiao committed
978
        if(arg_s.empty())
979
980
981
982
983
984
        {
            MIGRAPHX_THROW("Parse Expand: cannot handle dynamic shape as input");
        }
        std::vector<std::size_t> dims;
        arg_s.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
        auto out_lens = compute_broadcasted_lens(in_lens, dims);
985

Shucai Xiao's avatar
Shucai Xiao committed
986
        return prog.add_instruction(op::multibroadcast{out_lens}, args[0]);
987
988
    }

Shucai Xiao's avatar
Shucai Xiao committed
989
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
990
991
992
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
993
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
994
995
996

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
997
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
998
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
999
1000
1001
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1011
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1012
1013
        if(direction == "bidirectional")
        {
1014
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1015
1016
1017
        }
        else if(direction == "reverse")
        {
1018
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1019
1020
        }

1021
        std::vector<std::string> vec_names{"tanh"};
1022
1023
1024
1025
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
1026
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1027
1028
1029
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1030
1031
        }

1032
1033
1034
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1035
        if(name_it != vec_names.end())
1036
1037
1038
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1039

Shucai Xiao's avatar
Shucai Xiao committed
1040
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1041
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1042
        // if only one actv function is provided, we use it in both
1043
        // forward and reverse direction
1044
        if(dirct == op::rnn_direction::bidirectional)
1045
        {
Shucai Xiao's avatar
Shucai Xiao committed
1046
            if(vec_names.size() == 1)
1047
1048
1049
1050
1051
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1052
1053
1054
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1055
        });
Shucai Xiao's avatar
Shucai Xiao committed
1056

Shucai Xiao's avatar
Shucai Xiao committed
1057
1058
1059
1060
1061
1062
1063
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1064
1065
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1066
        if(args.size() < 6)
1067
1068
1069
1070
1071
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1072
1073
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1074
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1075

1076
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1077
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1078

Shucai Xiao's avatar
Shucai Xiao committed
1079
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1080
1081
    }

1082
    std::vector<instruction_ref>
1083
1084
1085
1086
1087
1088
1089
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1090
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1091
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1092
1093
1094
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1095
1096
1097
1098
1099
1100
1101
1102
1103
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1104
        op::rnn_direction dirct = op::rnn_direction::forward;
1105
1106
        if(direction == "bidirectional")
        {
1107
            dirct = op::rnn_direction::bidirectional;
1108
1109
1110
        }
        else if(direction == "reverse")
        {
1111
            dirct = op::rnn_direction::reverse;
1112
1113
        }

1114
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1115
1116
        if(contains(attributes, "activations"))
        {
1117
            auto names = attributes.at("activations").strings();
1118
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1119
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1120
1121
1122
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1123
1124
        }

1125
        // need 4 activation functions
1126
        if(dirct == op::rnn_direction::bidirectional)
1127
        {
Shucai Xiao's avatar
Shucai Xiao committed
1128
            // 4 activation functions are used in the bidirectional
1129
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1130
1131
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1132
1133
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1134
1135
1136
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1137
            if(vec_names.size() == 1)
1138
            {
1139
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1140
            }
1141
            else if(vec_names.size() == 2)
1142
            {
1143
1144
1145
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1146
            }
1147
            else if(vec_names.size() == 3)
1148
            {
1149
                vec_names.push_back(vec_names.at(2));
1150
1151
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1152
        else
1153
        {
1154
            if(vec_names.size() == 1)
1155
            {
1156
                vec_names.push_back(vec_names.at(0));
1157
1158
1159
            }
        }

1160
1161
1162
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1163
        if(name_it != vec_names.end())
1164
1165
1166
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1167

Shucai Xiao's avatar
Shucai Xiao committed
1168
1169
1170
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1171
        });
1172
1173
1174
1175
1176
1177
1178
1179

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1180
        if(contains(attributes, "linear_before_reset"))
1181
1182
1183
1184
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1185
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1186
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1187
1188
1189
1190
1191
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1192
1193
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1194
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1195
            std::move(args));
1196
1197

        // second output for last gru output
1198
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1199

Shucai Xiao's avatar
Shucai Xiao committed
1200
        return {hidden_states, last_output};
1201
1202
    }

Shucai Xiao's avatar
Shucai Xiao committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1225
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1226
1227
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1228
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1229
1230
1231
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1232
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1233
        }
Shucai Xiao's avatar
Shucai Xiao committed
1234
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1235
        {
Shucai Xiao's avatar
Shucai Xiao committed
1236
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1237
1238
1239
1240
1241
1242
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1243
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1244
1245
1246
1247
1248
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1249
1250
1251
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1252
1253
1254
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1255
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1256
1257
1258
1259
1260
1261
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1262
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1263
1264
1265
1266
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1267
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1268
1269
1270
1271
1272
1273
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1274
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1275
1276
1277

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1278
1279
1280
1281
1282
1283
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1284
1285
1286
1287
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1288
1289
1290
1291
1292
1293
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1294
1295
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1296
1297
1298
1299
1300
1301
1302
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1303
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1304

Shucai Xiao's avatar
Shucai Xiao committed
1305
1306
1307
1308
1309
1310
1311
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1312
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1313

Shucai Xiao's avatar
Shucai Xiao committed
1314
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1315
1316
1317
1318
1319
1320
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1321
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1322
1323
1324

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1325
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1326
1327
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1328
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1329
1330
1331
            }
        }

1332
1333
1334
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1335
        if(name_it != vec_names.end())
1336
1337
1338
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1361
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1362
1363
1364
1365
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1366
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1367
1368

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1369
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1370
1371
1372
1373
1374
1375

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1376

Shucai Xiao's avatar
Shucai Xiao committed
1377
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1378
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1379
1380
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
1381
1382
1383
1384
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1385
        std::vector<int64_t> axes(n_dim);
1386
1387
1388
1389
1390
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1391
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
1392
1393
1394
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1395
        if(contains(attributes, "keepdims"))
1396
1397
1398
1399
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1400
        if(keep_dims == 1)
1401
        {
Shucai Xiao's avatar
Shucai Xiao committed
1402
            return prog.add_instruction(T{axes}, std::move(args));
1403
1404
1405
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1406
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1407
            return prog.add_instruction(op::squeeze{axes}, ins);
1408
1409
        }
    }
1410

Shucai Xiao's avatar
Shucai Xiao committed
1411
1412
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1413
    {
Shucai Xiao's avatar
Shucai Xiao committed
1414
        if(!contains(attributes, "to"))
1415
1416
1417
1418
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1419
        int to_type        = parse_value(attributes.at("to")).at<int>();
1420
1421
1422
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1423

Paul's avatar
Paul committed
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1436
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1437
1438
1439
1440
1441
1442
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1443
1444
1445
1446
1447
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1448
1449
1450
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1463
        }
Paul's avatar
Paul committed
1464
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1465
        {
Paul's avatar
Paul committed
1466
            this->parse_node(output.name());
Paul's avatar
Paul committed
1467
1468
1469
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1470
    void parse_undefined(const std::string& name)
1471
    {
Shucai Xiao's avatar
Shucai Xiao committed
1472
        auto ins           = prog.add_instruction(op::undefined{});
1473
1474
1475
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1476
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1477
    {
Paul's avatar
Paul committed
1478
        if(name.empty())
Paul's avatar
Paul committed
1479
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1480
1481
1482
1483
1484
1485
1486
1487
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1488
1489
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1490
                }
Shucai Xiao's avatar
Shucai Xiao committed
1491
                else if(input.empty())
Paul's avatar
Paul committed
1492
                {
1493
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1494
                }
1495
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1496
            }
Paul's avatar
Paul committed
1497
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1498
1499
            if(ops.count(node.op_type()) == 0)
            {
1500
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1501
1502
1503
            }
            else
            {
Paul's avatar
Paul committed
1504
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1505
            }
Paul's avatar
Paul committed
1506
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1507
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1508
1509
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1510
1511
1512
            }
            else
            {
Paul's avatar
Paul committed
1513
1514
1515
1516
1517
1518
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1536
        std::size_t n = 0;
Paul's avatar
Paul committed
1537
1538
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1539
            if(node.output().empty())
Paul's avatar
Paul committed
1540
            {
Paul's avatar
Paul committed
1541
                if(node.name().empty())
Paul's avatar
Paul committed
1542
1543
1544
1545
1546
1547
1548
1549
1550
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1576
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1577
1578
1579
1580
1581
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1582
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1583
1584
1585
1586
1587
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1588
1589
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1590
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1591
1592
1593
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1594
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1595
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1596
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1597
1598
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1599
1600
1601
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1602
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1603
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1604
1605
1606
1607
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1608
1609
1610
1611
1612
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1613
            MIGRAPHX_THROW("Invalid tensor type");
1614
        }
Paul's avatar
Paul committed
1615
1616
1617
1618
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1619
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1620
1621
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1622
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1623
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1624
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1625
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1626
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1627
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1628
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1629
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1630
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1631
1632
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1633
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1634
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1635
        {
Khalique's avatar
Khalique committed
1636
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1637
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1638
1639
1640
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1641
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1642
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1643
        }
Paul's avatar
Paul committed
1644
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1645
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1646
1647
1648
1649
1650
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1651
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1652
1653
    }

Khalique's avatar
Khalique committed
1654
    static literal
1655
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1656
    {
Khalique's avatar
Khalique committed
1657
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1658
        if(dims.empty())
1659
            return literal{{shape_type}, data};
1660
1661
1662
        return literal{{shape_type, dims}, data};
    }

1663
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1664
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1665
1666
    {
        if(dims.empty())
1667
            return literal{{shape_type}, data.begin(), data.end()};
1668
        return literal{{shape_type, dims}, data.begin(), data.end()};
1669
1670
    }

Paul's avatar
Paul committed
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1690
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1691
1692
1693
1694
1695
1696
1697
1698
1699
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1700
        auto&& tensor_dims = t.tensor_type().shape().dim();
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1712
1713
        return {shape_type, dims};
    }
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1759
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1760
} // namespace migraphx