onnx.cpp 61.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
        add_generic_op("Exp", op::exp{});
Shucai Xiao's avatar
Shucai Xiao committed
43
        add_generic_op("Erf", op::erf{});
Shucai Xiao's avatar
Shucai Xiao committed
44
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
45
46
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
47
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
48
49
50
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
51
52
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
53
        add_generic_op("Tanh", op::tanh{});
54
55
56
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
57

Khalique's avatar
Khalique committed
58
59
60
61
62
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
63
64
65
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
66

67
68
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
Khalique's avatar
Khalique committed
69
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
70
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
71
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
72
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
73
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
74
75
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
76
77
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
78
79
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
80
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
81
82
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
83
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
84
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
85
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
86
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
87
88
89
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
90
        add_mem_op("Concat", &onnx_parser::parse_concat);
91
92
93
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
94
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
95
        add_mem_op("RNN", &onnx_parser::parse_rnn);
96
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
97
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
98
        add_mem_op("Pad", &onnx_parser::parse_pad);
Shucai Xiao's avatar
Shucai Xiao committed
99
100
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_oper<op::reduce_sum>);
        add_mem_op("ReduceMean", &onnx_parser::parse_reduce_oper<op::reduce_mean>);
101
102
103
104
105
106
107

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
108
109
110
111
112
113
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
114
115
116
117
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
118
119
120
121
122
123
124
125
126
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
127
128
129
130
131
132
133
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
134
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
135
136
137
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
138

139
    template <class T>
Khalique's avatar
Khalique committed
140
    void add_binary_op(std::string name, T x)
141
    {
Paul's avatar
Paul committed
142
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
143
            if(args.size() != 2)
Paul's avatar
Paul committed
144
                MIGRAPHX_THROW("binary operators should have 2 operands");
145
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
146
147
148
149
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
150
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
151
152
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
153
154
                    return prog.add_instruction(x, args[0], l);
                }
155
                return prog.add_instruction(x, args);
156
            }
Paul's avatar
Paul committed
157
            else
158
            {
Khalique's avatar
Khalique committed
159
                return add_broadcastable_binary_op(args[0], args[1], x);
160
161
162
163
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
164
165
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
166
167
168
169
170
171
172
173
174
175
176
177
178
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
179
        if(s0.size() > s1.size())
180
181
182
183
184
185
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
186
187
188
189
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
190
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
191
                           if(a != b and a != 1 and b != 1)
192
                           {
Shucai Xiao's avatar
Shucai Xiao committed
193
194
195
196
197
198
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
199
200
201
202

        return out_lens;
    }

Khalique's avatar
Khalique committed
203
204
205
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
206
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
207
208
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
209
210
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
211
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
212
213
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
214
215
216
217
218
219
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
220
221
    }

Paul's avatar
Paul committed
222
    template <class T>
Paul's avatar
Paul committed
223
224
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
225
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
226
227
228
229
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
230
    template <class T>
Khalique's avatar
Khalique committed
231
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
232
    {
Paul's avatar
Paul committed
233
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
234
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
235
236
237
238
239
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
240
        });
Khalique's avatar
Khalique committed
241
242
    }

Khalique's avatar
Khalique committed
243
244
245
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
246
247
248
249
250
251
252
253
254
255
256
257
258
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
259
    instruction_ref
Paul's avatar
Paul committed
260
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
261
262
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
263
264
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
265
266
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
267
268
    }

Shucai Xiao's avatar
Shucai Xiao committed
269
270
271
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
272
273
274
275
276
277
278
279
280
281
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

282
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
283
284
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
285
    {
286
        int64_t axis = 0;
287
288
        if(contains(attributes, "axis"))
        {
289
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
290
291
        }

Shucai Xiao's avatar
Shucai Xiao committed
292
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
293
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
294
295
296
297
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
298
        if(keep_dims == 0)
299
300
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
301
            return prog.add_instruction(op::squeeze{{axis}}, ins);
302
303
304
305
306
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
307
308
309
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
310
311
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
312
    {
313
        int64_t axis = 0;
314
315
        if(contains(attributes, "axis"))
        {
316
            axis = static_cast<int64_t>(parse_value(attributes.at("axis")).at<int>());
317
318
        }

Shucai Xiao's avatar
Shucai Xiao committed
319
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
320
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
321
322
323
324
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
325
        if(keep_dims == 0)
326
327
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
328
            return prog.add_instruction(op::squeeze{{axis}}, ins);
329
330
331
332
333
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
334
335
    }

Paul's avatar
Paul committed
336
    instruction_ref
Paul's avatar
Paul committed
337
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
338
    {
339
        op::convolution op;
340
        auto l0 = args[0];
Paul's avatar
Paul committed
341
342
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
343
            if(contains(attributes, "auto_pad"))
344
            {
Paul's avatar
Paul committed
345
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
346
            }
347
348
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
349
            if(padding.size() != 4)
350
            {
Paul's avatar
Paul committed
351
                MIGRAPHX_THROW("padding should have 4 values");
352
            }
Scott Thornton's avatar
Scott Thornton committed
353
            if(padding[0] != padding[2] || padding[1] != padding[3])
354
            {
355
356
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
357
                l0      = prog.add_instruction(op::pad{padding}, l0);
358
            }
359
360
361
362
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
363
            }
Paul's avatar
Paul committed
364
        }
Paul's avatar
Paul committed
365
366
367
368
369
370
371
372
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
373
        if(contains(attributes, "auto_pad"))
374
375
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
376
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
377
            {
Paul's avatar
Paul committed
378
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
379
380
            }

wsttiger's avatar
fixes  
wsttiger committed
381
            if(s.find("SAME") != std::string::npos)
382
            {
383
                op.padding_mode = op::padding_mode_t::same;
384
385
            }
        }
Khalique's avatar
Khalique committed
386
387
388
389
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
390
391
392
393
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
394
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
395
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
396
        }
397
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
398
    }
Paul's avatar
Paul committed
399

Paul's avatar
Paul committed
400
401
402
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
403
    {
Khalique's avatar
Khalique committed
404
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
405
        auto l0 = args[0];
Khalique's avatar
Khalique committed
406
        if(starts_with(name, "Global"))
407
        {
Khalique's avatar
Khalique committed
408
409
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
410
        }
Paul's avatar
Paul committed
411
412
        if(contains(attributes, "pads"))
        {
413
414
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
415
            if(padding.size() != 4)
416
            {
Paul's avatar
Paul committed
417
                MIGRAPHX_THROW("padding should have 4 values");
418
            }
Scott Thornton's avatar
Scott Thornton committed
419
            if(padding[0] != padding[2] || padding[1] != padding[3])
420
            {
421
422
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
423
424
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
425
426
427
428
429
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
430
            }
Paul's avatar
Paul committed
431
432
433
434
435
436
437
438
439
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
440
        if(contains(attributes, "auto_pad"))
441
442
        {
            auto s = attributes["auto_pad"].s();
443
            if(s.find("SAME_UPPER") == std::string::npos)
444
            {
445
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
446
            }
447
            op.padding_mode = op::padding_mode_t::same;
448
449
        }

450
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
451
452
    }

Paul's avatar
Paul committed
453
    instruction_ref
Paul's avatar
Paul committed
454
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
455
    {
456
        op::reshape op;
Paul's avatar
Paul committed
457
458
459
460
461
462
463
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
464
            auto s = args[1]->eval();
Paul's avatar
Paul committed
465
            if(s.empty())
Paul's avatar
Paul committed
466
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
467
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
468
        }
Paul's avatar
Paul committed
469
470
471
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
472
    instruction_ref
Paul's avatar
Paul committed
473
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
474
    {
475
        uint64_t axis = 1;
Paul's avatar
Paul committed
476
477
478
479
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
480
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
481
482
    }

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
501
502
503
504
505
506
507
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
508

509
510
511
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
512
        int axis = 0;
513
514
515
516
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
517
        op::gather op{axis};
518
519
520
        return prog.add_instruction(op, std::move(args));
    }

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
541
542
543
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
544
    {
Shucai Xiao's avatar
Shucai Xiao committed
545
        literal v     = parse_value(attributes.at("value"));
546
547
548
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
549
        {
550
            migraphx::shape scalar_shape{v.get_shape().type()};
551
552
553
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
554
555
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
556

Paul's avatar
Paul committed
557
    instruction_ref
Paul's avatar
Paul committed
558
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
559
560
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
561
        float beta  = 1.0f;
Paul's avatar
Paul committed
562
563
564
565
566
567
568
569
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
570
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
571
572
573
574
575
576
577
578
579
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
580
581
582
583
584
585

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

586
587
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
588
589
        if(args.size() == 3)
        {
590
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
591
            {
Shucai Xiao's avatar
Shucai Xiao committed
592
                auto out_lens   = l1->get_shape().lens();
593
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
594
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
595
596
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
597
                {
598
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
599
                }
600
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
601
            }
Paul's avatar
Paul committed
602
        }
603
604

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
605
606
    }

607
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
608
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
609
    {
Shucai Xiao's avatar
Shucai Xiao committed
610
611
        auto l0      = args[0];
        auto l1      = args[1];
612
613
614
615
616
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
617
        if(l0_lens.size() == 1)
618
619
620
621
622
623
624
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
625
        if(l1_lens.size() == 1)
626
627
628
629
630
631
632
633
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
634
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
635
636
637
638
639
640
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
641
            l0_broadcasted_lens = output_lens;
642
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
643
            l1_broadcasted_lens = output_lens;
644
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
645
            if(l0_lens != l0_broadcasted_lens)
646
647
648
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
649
            if(l1_lens != l1_broadcasted_lens)
650
651
652
653
654
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
655
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
656
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
657
        if(is_a_prepended)
658
659
660
661
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
662
        if(is_b_appended)
663
664
665
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
666

667
668
669
        return dot_res;
    }

670
    instruction_ref
Paul's avatar
Paul committed
671
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
672
    {
Scott Thornton's avatar
Scott Thornton committed
673
674
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
675
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
676
        bool is_test                                      = false;
677
678
679
680
681
682
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
683
            momentum = parse_value(attributes.at("momentum")).at<float>();
684
685
686
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
687
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
688
689
690
        }
        if(contains(attributes, "spatial"))
        {
691
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
692
693
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
694
        }
Paul's avatar
Paul committed
695
        (void)is_test;
Paul's avatar
Paul committed
696
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
697
        return prog.add_instruction(op, std::move(args));
698
699
    }

700
701
702
703
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
704
        float alpha = 0.01; // default alpha val for leaky relu
705
706
707
708
709
710
711
712
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
713
714
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
715
716
717
718
719
720
721
722
723
724
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
725
726
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
727
728
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
729
730
731
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
732
733
734
735
736
737
738
739
740
741
742
743
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
760
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
761

Khalique's avatar
Khalique committed
762
763
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
764
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
765

766
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
767
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
768
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
769
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
770
    }
Khalique's avatar
Khalique committed
771

Khalique's avatar
Khalique committed
772
773
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
774
775
776
777
778
779
780
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
781
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
782
783
    }

Khalique's avatar
Khalique committed
784
785
786
787
788
789
790
791
792
793
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
794
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
795
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
796
797
798
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
799
800
801
802
803
804
805
806
807
808
809
810
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
811
812
813
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
814
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
815
816
    {
        if(args.size() != 1)
817
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
854
855
        if(contains(attributes, "extra_shape"))
        {
856
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
857
858
        }

859
860
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
861
            if(args.size() != 1)
862
            {
863
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
864
865
            }

Shucai Xiao's avatar
Shucai Xiao committed
866
867
            if(contains(attributes, "shape"))
            {
868
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
869
                               "at the same time");
870
871
            }

872
873
874
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
875
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
876
            }
877

878
879
880
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
881
882
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
883
884
885
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
886
887
            if(!contains(attributes, "shape"))
            {
888
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
889
890
891
            }

            literal ls = parse_value(attributes.at("shape"));
892
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
893
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
894
            migraphx::shape s{type, dims};
895
896
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
897
898
899
        }
        else
        {
900
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
901
902
903
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
904
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
905
906
907
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
908
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
909
910
911

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
912
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
913
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
914
915
916
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
917
918
919
920
921
922
923
924
925
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

926
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
927
928
        if(direction == "bidirectional")
        {
929
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
930
931
932
        }
        else if(direction == "reverse")
        {
933
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
934
935
        }

936
        std::vector<std::string> vec_names{"tanh"};
937
938
939
940
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
941
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
942
943
944
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
945
946
        }

947
948
949
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
950
        if(name_it != vec_names.end())
951
952
953
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
954

Shucai Xiao's avatar
Shucai Xiao committed
955
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
956
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
957
        // if only one actv function is provided, we use it in both
958
        // forward and reverse direction
959
        if(dirct == op::rnn_direction::bidirectional)
960
        {
Shucai Xiao's avatar
Shucai Xiao committed
961
            if(vec_names.size() == 1)
962
963
964
965
966
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
967
968
969
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
970
        });
Shucai Xiao's avatar
Shucai Xiao committed
971

Shucai Xiao's avatar
Shucai Xiao committed
972
973
974
975
976
977
978
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

979
980
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
981
        if(args.size() < 6)
982
983
984
985
986
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
987
988
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
989
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
990

991
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
992
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
993

Shucai Xiao's avatar
Shucai Xiao committed
994
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
995
996
    }

997
    std::vector<instruction_ref>
998
999
1000
1001
1002
1003
1004
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1005
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1006
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1007
1008
1009
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1010
1011
1012
1013
1014
1015
1016
1017
1018
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1019
        op::rnn_direction dirct = op::rnn_direction::forward;
1020
1021
        if(direction == "bidirectional")
        {
1022
            dirct = op::rnn_direction::bidirectional;
1023
1024
1025
        }
        else if(direction == "reverse")
        {
1026
            dirct = op::rnn_direction::reverse;
1027
1028
        }

1029
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1030
1031
        if(contains(attributes, "activations"))
        {
1032
            auto names = attributes.at("activations").strings();
1033
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1034
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1035
1036
1037
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1038
1039
        }

1040
        // need 4 activation functions
1041
        if(dirct == op::rnn_direction::bidirectional)
1042
        {
Shucai Xiao's avatar
Shucai Xiao committed
1043
            // 4 activation functions are used in the bidirectional
1044
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1045
1046
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1047
1048
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1049
1050
1051
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1052
            if(vec_names.size() == 1)
1053
            {
1054
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1055
            }
1056
            else if(vec_names.size() == 2)
1057
            {
1058
1059
1060
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1061
            }
1062
            else if(vec_names.size() == 3)
1063
            {
1064
                vec_names.push_back(vec_names.at(2));
1065
1066
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1067
        else
1068
        {
1069
            if(vec_names.size() == 1)
1070
            {
1071
                vec_names.push_back(vec_names.at(0));
1072
1073
1074
            }
        }

1075
1076
1077
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1078
        if(name_it != vec_names.end())
1079
1080
1081
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1082

Shucai Xiao's avatar
Shucai Xiao committed
1083
1084
1085
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1086
        });
1087
1088
1089
1090
1091
1092
1093
1094

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1095
        if(contains(attributes, "linear_before_reset"))
1096
1097
1098
1099
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1100
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1101
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1102
1103
1104
1105
1106
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1107
1108
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1109
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1110
            std::move(args));
1111
1112

        // second output for last gru output
1113
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1114

Shucai Xiao's avatar
Shucai Xiao committed
1115
        return {hidden_states, last_output};
1116
1117
    }

Shucai Xiao's avatar
Shucai Xiao committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1140
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1141
1142
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1143
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
1146
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1147
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1148
        }
Shucai Xiao's avatar
Shucai Xiao committed
1149
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1150
        {
Shucai Xiao's avatar
Shucai Xiao committed
1151
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1152
1153
1154
1155
1156
1157
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1158
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1159
1160
1161
1162
1163
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1164
1165
1166
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1167
1168
1169
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1170
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1171
1172
1173
1174
1175
1176
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1177
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1178
1179
1180
1181
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1182
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1183
1184
1185
1186
1187
1188
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1189
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1190
1191
1192

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1193
1194
1195
1196
1197
1198
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1199
1200
1201
1202
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1203
1204
1205
1206
1207
1208
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1209
1210
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1211
1212
1213
1214
1215
1216
1217
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1218
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1219

Shucai Xiao's avatar
Shucai Xiao committed
1220
1221
1222
1223
1224
1225
1226
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1227
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1228

Shucai Xiao's avatar
Shucai Xiao committed
1229
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1230
1231
1232
1233
1234
1235
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1236
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1237
1238
1239

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1240
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1241
1242
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1243
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1244
1245
1246
            }
        }

1247
1248
1249
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1250
        if(name_it != vec_names.end())
1251
1252
1253
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1276
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1277
1278
1279
1280
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1281
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1282
1283

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1284
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1285
1286
1287
1288
1289
1290

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1291

Shucai Xiao's avatar
Shucai Xiao committed
1292
    template <class T>
Shucai Xiao's avatar
Shucai Xiao committed
1293
    instruction_ref parse_reduce_oper(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
1294
1295
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
1296
1297
1298
1299
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
1300
        std::vector<int64_t> axes(n_dim);
1301
1302
1303
1304
1305
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
1306
            axes             = std::vector<int64_t>(attr_axes.begin(), attr_axes.end());
1307
1308
1309
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1310
        if(contains(attributes, "keepdims"))
1311
1312
1313
1314
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1315
        if(keep_dims == 1)
1316
        {
Shucai Xiao's avatar
Shucai Xiao committed
1317
            return prog.add_instruction(T{axes}, std::move(args));
1318
1319
1320
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
1321
            auto ins = prog.add_instruction(T{axes}, std::move(args));
1322
            return prog.add_instruction(op::squeeze{axes}, ins);
Shucai Xiao's avatar
Shucai Xiao committed
1323
1324
        }
    }
Shucai Xiao's avatar
Shucai Xiao committed
1325

Paul's avatar
Paul committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1338
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1339
1340
1341
1342
1343
1344
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1345
1346
1347
1348
1349
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1350
1351
1352
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1365
        }
Paul's avatar
Paul committed
1366
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1367
        {
Paul's avatar
Paul committed
1368
            this->parse_node(output.name());
Paul's avatar
Paul committed
1369
1370
1371
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1372
    void parse_undefined(const std::string& name)
1373
    {
Shucai Xiao's avatar
Shucai Xiao committed
1374
        auto ins           = prog.add_instruction(op::undefined{});
1375
1376
1377
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1378
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1379
    {
Paul's avatar
Paul committed
1380
        if(name.empty())
Paul's avatar
Paul committed
1381
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1382
1383
1384
1385
1386
1387
1388
1389
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1390
1391
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1392
                }
Shucai Xiao's avatar
Shucai Xiao committed
1393
                else if(input.empty())
Paul's avatar
Paul committed
1394
                {
1395
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1396
                }
1397
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1398
            }
Paul's avatar
Paul committed
1399
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1400
1401
            if(ops.count(node.op_type()) == 0)
            {
1402
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1403
1404
1405
            }
            else
            {
Paul's avatar
Paul committed
1406
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1407
            }
Paul's avatar
Paul committed
1408
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1409
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1410
1411
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1412
1413
1414
            }
            else
            {
Paul's avatar
Paul committed
1415
1416
1417
1418
1419
1420
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1438
        std::size_t n = 0;
Paul's avatar
Paul committed
1439
1440
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1441
            if(node.output().empty())
Paul's avatar
Paul committed
1442
            {
Paul's avatar
Paul committed
1443
                if(node.name().empty())
Paul's avatar
Paul committed
1444
1445
1446
1447
1448
1449
1450
1451
1452
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1478
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1479
1480
1481
1482
1483
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1484
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1485
1486
1487
1488
1489
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1490
1491
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1492
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1493
1494
1495
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1496
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1497
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1498
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1499
1500
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1501
1502
1503
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1504
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1505
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1506
1507
1508
1509
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1510
1511
1512
1513
1514
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1515
            MIGRAPHX_THROW("Invalid tensor type");
1516
        }
Paul's avatar
Paul committed
1517
1518
1519
1520
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1521
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1522
1523
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1524
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1525
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1526
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1527
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1528
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1529
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1530
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1531
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1532
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1533
1534
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1535
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1536
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1537
        {
Khalique's avatar
Khalique committed
1538
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1539
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1540
1541
1542
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1543
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1544
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1545
        }
Paul's avatar
Paul committed
1546
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1547
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1548
1549
1550
1551
1552
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1553
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1554
1555
    }

Khalique's avatar
Khalique committed
1556
    static literal
1557
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1558
    {
Khalique's avatar
Khalique committed
1559
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1560
        if(dims.empty())
1561
            return literal{{shape_type}, data};
1562
1563
1564
        return literal{{shape_type, dims}, data};
    }

1565
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1566
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1567
1568
    {
        if(dims.empty())
1569
            return literal{{shape_type}, data.begin(), data.end()};
1570
        return literal{{shape_type, dims}, data.begin(), data.end()};
1571
1572
    }

Paul's avatar
Paul committed
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1592
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1593
1594
1595
1596
1597
1598
1599
1600
1601
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1602
        auto&& tensor_dims = t.tensor_type().shape().dim();
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1614
1615
        return {shape_type, dims};
    }
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1661
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1662
} // namespace migraphx