onnx.cpp 63.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Shucai Xiao's avatar
Shucai Xiao committed
65
        add_variadic_op("Pow", op::pow{});
Paul's avatar
Paul committed
66

67
68
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
69
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
70
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
71
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
72
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
73
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
74
        add_mem_op("Elu", &onnx_parser::parse_elu);
75
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
76
77
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
78
79
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
80
81
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
82
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
83
84
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
85
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
86
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
87
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
88
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
89
90
91
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
92
        add_mem_op("Concat", &onnx_parser::parse_concat);
93
94
95
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
96
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
97
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
98
        add_mem_op("RNN", &onnx_parser::parse_rnn);
99
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
101
        add_mem_op("Pad", &onnx_parser::parse_pad);
102
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_sum);
103
104
105
106
107
108
109

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
110
111
112
113
114
115
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
116
117
118
119
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
120
121
122
123
124
125
126
127
128
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
129
130
131
132
133
134
135
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
136
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
137
138
139
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
140

141
    template <class T>
Khalique's avatar
Khalique committed
142
    void add_binary_op(std::string name, T x)
143
    {
Paul's avatar
Paul committed
144
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
145
            if(args.size() != 2)
Paul's avatar
Paul committed
146
                MIGRAPHX_THROW("binary operators should have 2 operands");
147
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
148
149
150
151
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
152
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
153
154
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
155
156
                    return prog.add_instruction(x, args[0], l);
                }
157
                return prog.add_instruction(x, args);
158
            }
Paul's avatar
Paul committed
159
            else
160
            {
Khalique's avatar
Khalique committed
161
                return add_broadcastable_binary_op(args[0], args[1], x);
162
163
164
165
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
166
167
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
168
169
170
171
172
173
174
175
176
177
178
179
180
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
181
        if(s0.size() > s1.size())
182
183
184
185
186
187
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
Shucai Xiao's avatar
Shucai Xiao committed
192
                       [](auto a, auto b) { return std::max(a, b); });
193
194
195
196

        return out_lens;
    }

Khalique's avatar
Khalique committed
197
198
199
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
200
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
201
202
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
203
204
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
205
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
206
207
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
208
209
210
211
212
213
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
214
215
    }

Paul's avatar
Paul committed
216
    template <class T>
Paul's avatar
Paul committed
217
218
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
219
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
220
221
222
223
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
224
    template <class T>
Khalique's avatar
Khalique committed
225
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
226
    {
Paul's avatar
Paul committed
227
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
228
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
229
230
231
232
233
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
234
        });
Khalique's avatar
Khalique committed
235
236
    }

Khalique's avatar
Khalique committed
237
238
239
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
240
241
242
243
244
245
246
247
248
249
250
251
252
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
253
    instruction_ref
Paul's avatar
Paul committed
254
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
255
256
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
257
258
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
259
260
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
261
262
    }

Shucai Xiao's avatar
Shucai Xiao committed
263
264
265
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
266
267
268
269
270
271
272
273
274
275
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

276
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
277
278
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
279
280
281
282
283
284
285
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
286
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
287
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
288
289
290
291
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
292
        if(keep_dims == 0)
293
294
295
296
297
298
299
300
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
            return prog.add_instruction(op::squeeze{{static_cast<int64_t>(axis)}}, ins);
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
301
302
303
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
304
305
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
306
307
308
309
310
311
312
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
313
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
314
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
315
316
317
318
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
319
        if(keep_dims == 0)
320
321
322
323
324
325
326
327
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
            return prog.add_instruction(op::squeeze{{static_cast<int64_t>(axis)}}, ins);
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
328
329
    }

Paul's avatar
Paul committed
330
    instruction_ref
Paul's avatar
Paul committed
331
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
332
    {
333
        op::convolution op;
334
        auto l0 = args[0];
Paul's avatar
Paul committed
335
336
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
337
            if(contains(attributes, "auto_pad"))
338
            {
Paul's avatar
Paul committed
339
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
340
            }
341
342
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
343
            if(padding.size() != 4)
344
            {
Paul's avatar
Paul committed
345
                MIGRAPHX_THROW("padding should have 4 values");
346
            }
Scott Thornton's avatar
Scott Thornton committed
347
            if(padding[0] != padding[2] || padding[1] != padding[3])
348
            {
349
350
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
351
                l0      = prog.add_instruction(op::pad{padding}, l0);
352
            }
353
354
355
356
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
357
            }
Paul's avatar
Paul committed
358
        }
Paul's avatar
Paul committed
359
360
361
362
363
364
365
366
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
367
        if(contains(attributes, "auto_pad"))
368
369
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
370
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
371
            {
Paul's avatar
Paul committed
372
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
373
374
            }

wsttiger's avatar
fixes  
wsttiger committed
375
            if(s.find("SAME") != std::string::npos)
376
            {
377
                op.padding_mode = op::padding_mode_t::same;
378
379
            }
        }
Khalique's avatar
Khalique committed
380
381
382
383
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
384
385
386
387
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
388
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
389
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
390
        }
391
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
392
    }
Paul's avatar
Paul committed
393

Paul's avatar
Paul committed
394
395
396
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
397
    {
Khalique's avatar
Khalique committed
398
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
399
        auto l0 = args[0];
Khalique's avatar
Khalique committed
400
        if(starts_with(name, "Global"))
401
        {
Khalique's avatar
Khalique committed
402
403
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
404
        }
Paul's avatar
Paul committed
405
406
        if(contains(attributes, "pads"))
        {
407
408
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
409
            if(padding.size() != 4)
410
            {
Paul's avatar
Paul committed
411
                MIGRAPHX_THROW("padding should have 4 values");
412
            }
Scott Thornton's avatar
Scott Thornton committed
413
            if(padding[0] != padding[2] || padding[1] != padding[3])
414
            {
415
416
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
417
418
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
419
420
421
422
423
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
424
            }
Paul's avatar
Paul committed
425
426
427
428
429
430
431
432
433
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
434
        if(contains(attributes, "auto_pad"))
435
436
        {
            auto s = attributes["auto_pad"].s();
437
            if(s.find("SAME_UPPER") == std::string::npos)
438
            {
439
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
440
            }
441
            op.padding_mode = op::padding_mode_t::same;
442
443
        }

444
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
445
446
    }

Paul's avatar
Paul committed
447
    instruction_ref
Paul's avatar
Paul committed
448
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
449
    {
450
        op::reshape op;
Paul's avatar
Paul committed
451
452
453
454
455
456
457
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
458
            auto s = args[1]->eval();
Paul's avatar
Paul committed
459
            if(s.empty())
Paul's avatar
Paul committed
460
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
461
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
462
        }
Paul's avatar
Paul committed
463
464
465
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
466
    instruction_ref
Paul's avatar
Paul committed
467
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
468
    {
469
        uint64_t axis = 1;
Paul's avatar
Paul committed
470
471
472
473
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
474
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
475
476
    }

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
495
496
497
498
499
500
501
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
502

503
504
505
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
506
        int axis = 0;
507
508
509
510
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
511
        op::gather op{axis};
512
513
514
        return prog.add_instruction(op, std::move(args));
    }

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
535
536
537
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
538
    {
Shucai Xiao's avatar
Shucai Xiao committed
539
        literal v     = parse_value(attributes.at("value"));
540
541
542
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
543
        {
544
            migraphx::shape scalar_shape{v.get_shape().type()};
545
546
547
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
548
549
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
550

Paul's avatar
Paul committed
551
    instruction_ref
Paul's avatar
Paul committed
552
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
553
554
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
555
        float beta  = 1.0f;
Paul's avatar
Paul committed
556
557
558
559
560
561
562
563
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
564
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
565
566
567
568
569
570
571
572
573
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
574
575
576
577
578
579

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

580
581
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
582
583
        if(args.size() == 3)
        {
584
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
585
            {
Shucai Xiao's avatar
Shucai Xiao committed
586
                auto out_lens   = l1->get_shape().lens();
587
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
588
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
589
590
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
591
                {
592
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
593
                }
594
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
595
            }
Paul's avatar
Paul committed
596
        }
597
598

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
599
600
    }

601
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
602
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
603
    {
Shucai Xiao's avatar
Shucai Xiao committed
604
605
        auto l0      = args[0];
        auto l1      = args[1];
606
607
608
609
610
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
611
        if(l0_lens.size() == 1)
612
613
614
615
616
617
618
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
619
        if(l1_lens.size() == 1)
620
621
622
623
624
625
626
627
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
628
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
629
630
631
632
633
634
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
635
            l0_broadcasted_lens = output_lens;
636
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
637
            l1_broadcasted_lens = output_lens;
638
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
639
            if(l0_lens != l0_broadcasted_lens)
640
641
642
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
643
            if(l1_lens != l1_broadcasted_lens)
644
645
646
647
648
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
649
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
650
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
651
        if(is_a_prepended)
652
653
654
655
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
656
        if(is_b_appended)
657
658
659
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
660

661
662
663
        return dot_res;
    }

664
    instruction_ref
Paul's avatar
Paul committed
665
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
666
    {
Scott Thornton's avatar
Scott Thornton committed
667
668
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
669
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
670
        bool is_test                                      = false;
671
672
673
674
675
676
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
677
            momentum = parse_value(attributes.at("momentum")).at<float>();
678
679
680
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
681
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
682
683
684
        }
        if(contains(attributes, "spatial"))
        {
685
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
686
687
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
688
        }
Paul's avatar
Paul committed
689
        (void)is_test;
Paul's avatar
Paul committed
690
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
691
        return prog.add_instruction(op, std::move(args));
692
693
    }

694
695
696
697
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
698
        float alpha = 0.01; // default alpha val for leaky relu
699
700
701
702
703
704
705
706
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
707
708
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
709
710
711
712
713
714
715
716
717
718
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
719
720
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
721
722
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
723
724
725
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
726
727
728
729
730
731
732
733
734
735
736
737
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
754
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
755

Khalique's avatar
Khalique committed
756
757
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
758
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
759

760
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
761
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
762
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
763
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
764
    }
Khalique's avatar
Khalique committed
765

Khalique's avatar
Khalique committed
766
767
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
768
769
770
771
772
773
774
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
775
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
776
777
    }

Khalique's avatar
Khalique committed
778
779
780
781
782
783
784
785
786
787
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
788
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
789
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
790
791
792
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
793
794
795
796
797
798
799
800
801
802
803
804
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
805
806
807
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
808
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
809
810
    {
        if(args.size() != 1)
811
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
848
849
        if(contains(attributes, "extra_shape"))
        {
850
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
851
852
        }

853
854
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
855
            if(args.size() != 1)
856
            {
857
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
858
859
            }

Shucai Xiao's avatar
Shucai Xiao committed
860
861
            if(contains(attributes, "shape"))
            {
862
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
863
                               "at the same time");
864
865
            }

866
867
868
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
869
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
870
            }
871

872
873
874
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
875
876
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
877
878
879
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
880
881
            if(!contains(attributes, "shape"))
            {
882
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
883
884
885
            }

            literal ls = parse_value(attributes.at("shape"));
886
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
887
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
888
            migraphx::shape s{type, dims};
889
890
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
891
892
893
        }
        else
        {
894
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
895
896
897
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
898
899
900
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
901
902
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
903
        if(contains(attributes, "value"))
904
905
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
906
            if(l_val.get_shape().elements() != 1)
907
908
909
910
911
912
913
914
915
916
917
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
918
        if(args.size() == 0)
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        {
            return prog.add_literal(literal({type, {1}, {0}}, l_val.data()));
        }
        else
        {
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
                MIGRAPHX_THROW("ConstantOfShape: cannot handle dynamic shape as input");
            }

            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
946
947
    instruction_ref
    parse_expand(const std::string&, attribute_map, std::vector<instruction_ref> args)
948
    {
Shucai Xiao's avatar
Shucai Xiao committed
949
950
        auto in_lens  = args[0]->get_shape().lens();
        auto ex_lens  = args[1]->get_shape().lens();
951
952
953
954
955
        auto out_lens = compute_broadcasted_lens(in_lens, ex_lens);

        return prog.add_instruction(op::multibroadcast{out_lens}, std::move(args[0]));
    }

Shucai Xiao's avatar
Shucai Xiao committed
956
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
957
958
959
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
960
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
961
962
963

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
964
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
965
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
966
967
968
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
969
970
971
972
973
974
975
976
977
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

978
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
979
980
        if(direction == "bidirectional")
        {
981
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
982
983
984
        }
        else if(direction == "reverse")
        {
985
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
986
987
        }

988
        std::vector<std::string> vec_names{"tanh"};
989
990
991
992
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
993
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
994
995
996
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
997
998
        }

999
1000
1001
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1002
        if(name_it != vec_names.end())
1003
1004
1005
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1006

Shucai Xiao's avatar
Shucai Xiao committed
1007
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1008
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1009
        // if only one actv function is provided, we use it in both
1010
        // forward and reverse direction
1011
        if(dirct == op::rnn_direction::bidirectional)
1012
        {
Shucai Xiao's avatar
Shucai Xiao committed
1013
            if(vec_names.size() == 1)
1014
1015
1016
1017
1018
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1019
1020
1021
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1022
        });
Shucai Xiao's avatar
Shucai Xiao committed
1023

Shucai Xiao's avatar
Shucai Xiao committed
1024
1025
1026
1027
1028
1029
1030
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1031
1032
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1033
        if(args.size() < 6)
1034
1035
1036
1037
1038
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1039
1040
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1041
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1042

1043
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1044
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1045

Shucai Xiao's avatar
Shucai Xiao committed
1046
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1047
1048
    }

1049
    std::vector<instruction_ref>
1050
1051
1052
1053
1054
1055
1056
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1057
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1058
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1059
1060
1061
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1062
1063
1064
1065
1066
1067
1068
1069
1070
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1071
        op::rnn_direction dirct = op::rnn_direction::forward;
1072
1073
        if(direction == "bidirectional")
        {
1074
            dirct = op::rnn_direction::bidirectional;
1075
1076
1077
        }
        else if(direction == "reverse")
        {
1078
            dirct = op::rnn_direction::reverse;
1079
1080
        }

1081
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1082
1083
        if(contains(attributes, "activations"))
        {
1084
            auto names = attributes.at("activations").strings();
1085
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1086
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1087
1088
1089
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1090
1091
        }

1092
        // need 4 activation functions
1093
        if(dirct == op::rnn_direction::bidirectional)
1094
        {
Shucai Xiao's avatar
Shucai Xiao committed
1095
            // 4 activation functions are used in the bidirectional
1096
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1097
1098
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1099
1100
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1101
1102
1103
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1104
            if(vec_names.size() == 1)
1105
            {
1106
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1107
            }
1108
            else if(vec_names.size() == 2)
1109
            {
1110
1111
1112
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1113
            }
1114
            else if(vec_names.size() == 3)
1115
            {
1116
                vec_names.push_back(vec_names.at(2));
1117
1118
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1119
        else
1120
        {
1121
            if(vec_names.size() == 1)
1122
            {
1123
                vec_names.push_back(vec_names.at(0));
1124
1125
1126
            }
        }

1127
1128
1129
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1130
        if(name_it != vec_names.end())
1131
1132
1133
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1134

Shucai Xiao's avatar
Shucai Xiao committed
1135
1136
1137
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1138
        });
1139
1140
1141
1142
1143
1144
1145
1146

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1147
        if(contains(attributes, "linear_before_reset"))
1148
1149
1150
1151
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1152
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1153
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1154
1155
1156
1157
1158
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1159
1160
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1161
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1162
            std::move(args));
1163
1164

        // second output for last gru output
1165
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1166

Shucai Xiao's avatar
Shucai Xiao committed
1167
        return {hidden_states, last_output};
1168
1169
    }

Shucai Xiao's avatar
Shucai Xiao committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1192
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1193
1194
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1195
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1196
1197
1198
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1199
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1200
        }
Shucai Xiao's avatar
Shucai Xiao committed
1201
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1202
        {
Shucai Xiao's avatar
Shucai Xiao committed
1203
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1204
1205
1206
1207
1208
1209
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1210
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1211
1212
1213
1214
1215
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1216
1217
1218
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1219
1220
1221
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1222
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1223
1224
1225
1226
1227
1228
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1229
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1230
1231
1232
1233
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1234
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1235
1236
1237
1238
1239
1240
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1241
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1242
1243
1244

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1245
1246
1247
1248
1249
1250
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1251
1252
1253
1254
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1255
1256
1257
1258
1259
1260
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1261
1262
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1263
1264
1265
1266
1267
1268
1269
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1270
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1271

Shucai Xiao's avatar
Shucai Xiao committed
1272
1273
1274
1275
1276
1277
1278
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1279
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1280

Shucai Xiao's avatar
Shucai Xiao committed
1281
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1282
1283
1284
1285
1286
1287
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1288
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1289
1290
1291

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1292
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1293
1294
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1295
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1296
1297
1298
            }
        }

1299
1300
1301
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1302
        if(name_it != vec_names.end())
1303
1304
1305
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1328
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1329
1330
1331
1332
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1333
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1334
1335

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1336
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1337
1338
1339
1340
1341
1342

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1343

Shucai Xiao's avatar
Shucai Xiao committed
1344
1345
1346
    instruction_ref parse_reduce_sum(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
        std::vector<std::size_t> axes(n_dim);
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
Shucai Xiao's avatar
Shucai Xiao committed
1357
            axes             = std::vector<std::size_t>(attr_axes.begin(), attr_axes.end());
1358
1359
1360
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1361
        if(contains(attributes, "keepdims"))
1362
1363
1364
1365
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1366
        if(keep_dims == 1)
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
        {
            return prog.add_instruction(op::reduce_sum{axes}, std::move(args));
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_sum{axes}, std::move(args));
            std::vector<int64_t> squeeze_axes{axes.begin(), axes.end()};
            return prog.add_instruction(op::squeeze{squeeze_axes}, ins);
        }
    }
1377

Shucai Xiao's avatar
Shucai Xiao committed
1378
1379
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1380
    {
Shucai Xiao's avatar
Shucai Xiao committed
1381
        if(!contains(attributes, "to"))
1382
1383
1384
1385
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1386
        int to_type        = parse_value(attributes.at("to")).at<int>();
1387
1388
1389
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1390

Paul's avatar
Paul committed
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1403
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1404
1405
1406
1407
1408
1409
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1410
1411
1412
1413
1414
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1415
1416
1417
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1430
        }
Paul's avatar
Paul committed
1431
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1432
        {
Paul's avatar
Paul committed
1433
            this->parse_node(output.name());
Paul's avatar
Paul committed
1434
1435
1436
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1437
    void parse_undefined(const std::string& name)
1438
    {
Shucai Xiao's avatar
Shucai Xiao committed
1439
        auto ins           = prog.add_instruction(op::undefined{});
1440
1441
1442
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1443
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1444
    {
Paul's avatar
Paul committed
1445
        if(name.empty())
Paul's avatar
Paul committed
1446
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1447
1448
1449
1450
1451
1452
1453
1454
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1455
1456
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1457
                }
Shucai Xiao's avatar
Shucai Xiao committed
1458
                else if(input.empty())
Paul's avatar
Paul committed
1459
                {
1460
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1461
                }
1462
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1463
            }
Paul's avatar
Paul committed
1464
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1465
1466
            if(ops.count(node.op_type()) == 0)
            {
1467
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1468
1469
1470
            }
            else
            {
Paul's avatar
Paul committed
1471
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1472
            }
Paul's avatar
Paul committed
1473
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1474
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1475
1476
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1477
1478
1479
            }
            else
            {
Paul's avatar
Paul committed
1480
1481
1482
1483
1484
1485
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1503
        std::size_t n = 0;
Paul's avatar
Paul committed
1504
1505
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1506
            if(node.output().empty())
Paul's avatar
Paul committed
1507
            {
Paul's avatar
Paul committed
1508
                if(node.name().empty())
Paul's avatar
Paul committed
1509
1510
1511
1512
1513
1514
1515
1516
1517
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1543
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1544
1545
1546
1547
1548
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1549
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1550
1551
1552
1553
1554
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1555
1556
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1557
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1558
1559
1560
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1561
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1562
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1563
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1564
1565
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1566
1567
1568
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1569
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1570
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1571
1572
1573
1574
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1575
1576
1577
1578
1579
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1580
            MIGRAPHX_THROW("Invalid tensor type");
1581
        }
Paul's avatar
Paul committed
1582
1583
1584
1585
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1586
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1587
1588
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1589
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1590
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1591
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1592
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1593
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1594
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1595
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1596
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1597
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1598
1599
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1600
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1601
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1602
        {
Khalique's avatar
Khalique committed
1603
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1604
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1605
1606
1607
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1608
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1609
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1610
        }
Paul's avatar
Paul committed
1611
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1612
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1613
1614
1615
1616
1617
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1618
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1619
1620
    }

Khalique's avatar
Khalique committed
1621
    static literal
1622
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1623
    {
Khalique's avatar
Khalique committed
1624
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1625
        if(dims.empty())
1626
            return literal{{shape_type}, data};
1627
1628
1629
        return literal{{shape_type, dims}, data};
    }

1630
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1631
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1632
1633
    {
        if(dims.empty())
1634
            return literal{{shape_type}, data.begin(), data.end()};
1635
        return literal{{shape_type, dims}, data.begin(), data.end()};
1636
1637
    }

Paul's avatar
Paul committed
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1657
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1658
1659
1660
1661
1662
1663
1664
1665
1666
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1667
        auto&& tensor_dims = t.tensor_type().shape().dim();
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1679
1680
        return {shape_type, dims};
    }
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1726
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1727
} // namespace migraphx