onnx.cpp 63.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Shucai Xiao's avatar
Shucai Xiao committed
65
        add_variadic_op("Pow", op::pow{});
Paul's avatar
Paul committed
66

67
68
        add_mem_op("ArgMax", &onnx_parser::parse_argmax);
        add_mem_op("ArgMin", &onnx_parser::parse_argmin);
69
        add_mem_op("Cast", &onnx_parser::parse_cast);
Khalique's avatar
Khalique committed
70
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
71
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
72
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
73
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
74
        add_mem_op("Elu", &onnx_parser::parse_elu);
75
        add_mem_op("Expand", &onnx_parser::parse_expand);
Paul's avatar
Paul committed
76
77
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
78
79
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
80
81
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
82
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
83
84
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
85
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
86
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
87
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
88
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
89
90
91
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
92
        add_mem_op("Concat", &onnx_parser::parse_concat);
93
94
95
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
96
        add_mem_op("ConstantOfShape", &onnx_parser::parse_constant_of_shape);
Khalique's avatar
Khalique committed
97
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
98
        add_mem_op("RNN", &onnx_parser::parse_rnn);
99
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
100
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
101
        add_mem_op("Pad", &onnx_parser::parse_pad);
102
        add_mem_op("ReduceSum", &onnx_parser::parse_reduce_sum);
103
104
105
106
107
108
109

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
110
111
112
113
114
115
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
116
117
118
119
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
120
121
122
123
124
125
126
127
128
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
129
130
131
132
133
134
135
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
136
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
137
138
139
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
140

141
    template <class T>
Khalique's avatar
Khalique committed
142
    void add_binary_op(std::string name, T x)
143
    {
Paul's avatar
Paul committed
144
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
145
            if(args.size() != 2)
Paul's avatar
Paul committed
146
                MIGRAPHX_THROW("binary operators should have 2 operands");
147
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
148
149
150
151
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
152
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
153
154
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
155
156
                    return prog.add_instruction(x, args[0], l);
                }
157
                return prog.add_instruction(x, args);
158
            }
Paul's avatar
Paul committed
159
            else
160
            {
Khalique's avatar
Khalique committed
161
                return add_broadcastable_binary_op(args[0], args[1], x);
162
163
164
165
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
166
167
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
168
169
170
171
172
173
174
175
176
177
178
179
180
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
181
        if(s0.size() > s1.size())
182
183
184
185
186
187
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
192
                       [](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
193
194
                           return std::max(a, b);
                       });
195
196
197
198

        return out_lens;
    }

Khalique's avatar
Khalique committed
199
200
201
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
202
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
203
204
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
205
206
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
207
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
208
209
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
210
211
212
213
214
215
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
216
217
    }

Paul's avatar
Paul committed
218
    template <class T>
Paul's avatar
Paul committed
219
220
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
221
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
222
223
224
225
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
226
    template <class T>
Khalique's avatar
Khalique committed
227
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
228
    {
Paul's avatar
Paul committed
229
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
230
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
231
232
233
234
235
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
236
        });
Khalique's avatar
Khalique committed
237
238
    }

Khalique's avatar
Khalique committed
239
240
241
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
242
243
244
245
246
247
248
249
250
251
252
253
254
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
255
    instruction_ref
Paul's avatar
Paul committed
256
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
257
258
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
259
260
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
261
262
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
263
264
    }

Shucai Xiao's avatar
Shucai Xiao committed
265
266
267
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
268
269
270
271
272
273
274
275
276
277
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

278
    instruction_ref parse_argmax(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
279
280
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
281
282
283
284
285
286
287
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
288
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
289
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
290
291
292
293
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
294
        if(keep_dims == 0)
295
296
297
298
299
300
301
302
        {
            auto ins = prog.add_instruction(op::argmax{axis}, std::move(args));
            return prog.add_instruction(op::squeeze{{static_cast<int64_t>(axis)}}, ins);
        }
        else
        {
            return prog.add_instruction(op::argmax{axis}, std::move(args));
        }
303
304
305
    }

    instruction_ref parse_argmin(const std::string&,
Shucai Xiao's avatar
Shucai Xiao committed
306
307
                                 const attribute_map& attributes,
                                 std::vector<instruction_ref> args)
308
309
310
311
312
313
314
    {
        int axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
315
        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
316
        if(contains(attributes, "keepdims"))
Shucai Xiao's avatar
Shucai Xiao committed
317
318
319
320
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
321
        if(keep_dims == 0)
322
323
324
325
326
327
328
329
        {
            auto ins = prog.add_instruction(op::argmin{axis}, std::move(args));
            return prog.add_instruction(op::squeeze{{static_cast<int64_t>(axis)}}, ins);
        }
        else
        {
            return prog.add_instruction(op::argmin{axis}, std::move(args));
        }
330
331
    }

Paul's avatar
Paul committed
332
    instruction_ref
Paul's avatar
Paul committed
333
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
334
    {
335
        op::convolution op;
336
        auto l0 = args[0];
Paul's avatar
Paul committed
337
338
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
339
            if(contains(attributes, "auto_pad"))
340
            {
Paul's avatar
Paul committed
341
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
342
            }
343
344
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
345
            if(padding.size() != 4)
346
            {
Paul's avatar
Paul committed
347
                MIGRAPHX_THROW("padding should have 4 values");
348
            }
Scott Thornton's avatar
Scott Thornton committed
349
            if(padding[0] != padding[2] || padding[1] != padding[3])
350
            {
351
352
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
353
                l0      = prog.add_instruction(op::pad{padding}, l0);
354
            }
355
356
357
358
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
359
            }
Paul's avatar
Paul committed
360
        }
Paul's avatar
Paul committed
361
362
363
364
365
366
367
368
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
369
        if(contains(attributes, "auto_pad"))
370
371
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
372
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
373
            {
Paul's avatar
Paul committed
374
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
375
376
            }

wsttiger's avatar
fixes  
wsttiger committed
377
            if(s.find("SAME") != std::string::npos)
378
            {
379
                op.padding_mode = op::padding_mode_t::same;
380
381
            }
        }
Khalique's avatar
Khalique committed
382
383
384
385
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
386
387
388
389
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
390
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
391
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
392
        }
393
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
394
    }
Paul's avatar
Paul committed
395

Paul's avatar
Paul committed
396
397
398
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
399
    {
Khalique's avatar
Khalique committed
400
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
401
        auto l0 = args[0];
Khalique's avatar
Khalique committed
402
        if(starts_with(name, "Global"))
403
        {
Khalique's avatar
Khalique committed
404
405
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
406
        }
Paul's avatar
Paul committed
407
408
        if(contains(attributes, "pads"))
        {
409
410
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
411
            if(padding.size() != 4)
412
            {
Paul's avatar
Paul committed
413
                MIGRAPHX_THROW("padding should have 4 values");
414
            }
Scott Thornton's avatar
Scott Thornton committed
415
            if(padding[0] != padding[2] || padding[1] != padding[3])
416
            {
417
418
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
419
420
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
421
422
423
424
425
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
426
            }
Paul's avatar
Paul committed
427
428
429
430
431
432
433
434
435
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
436
        if(contains(attributes, "auto_pad"))
437
438
        {
            auto s = attributes["auto_pad"].s();
439
            if(s.find("SAME_UPPER") == std::string::npos)
440
            {
441
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
442
            }
443
            op.padding_mode = op::padding_mode_t::same;
444
445
        }

446
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
447
448
    }

Paul's avatar
Paul committed
449
    instruction_ref
Paul's avatar
Paul committed
450
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
451
    {
452
        op::reshape op;
Paul's avatar
Paul committed
453
454
455
456
457
458
459
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
460
            auto s = args[1]->eval();
Paul's avatar
Paul committed
461
            if(s.empty())
Paul's avatar
Paul committed
462
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
463
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
464
        }
Paul's avatar
Paul committed
465
466
467
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
468
    instruction_ref
Paul's avatar
Paul committed
469
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
470
    {
471
        uint64_t axis = 1;
Paul's avatar
Paul committed
472
473
474
475
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
476
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
477
478
    }

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
497
498
499
500
501
502
503
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
504

505
506
507
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
508
        int axis = 0;
509
510
511
512
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
513
        op::gather op{axis};
514
515
516
        return prog.add_instruction(op, std::move(args));
    }

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
537
538
539
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
540
    {
Shucai Xiao's avatar
Shucai Xiao committed
541
        literal v     = parse_value(attributes.at("value"));
542
543
544
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
545
        {
546
            migraphx::shape scalar_shape{v.get_shape().type()};
547
548
549
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
550
551
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
552

Paul's avatar
Paul committed
553
    instruction_ref
Paul's avatar
Paul committed
554
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
555
556
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
557
        float beta  = 1.0f;
Paul's avatar
Paul committed
558
559
560
561
562
563
564
565
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
566
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
567
568
569
570
571
572
573
574
575
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
576
577
578
579
580
581

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

582
583
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
584
585
        if(args.size() == 3)
        {
586
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
587
            {
Shucai Xiao's avatar
Shucai Xiao committed
588
                auto out_lens   = l1->get_shape().lens();
589
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
590
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
591
592
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
593
                {
594
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
595
                }
596
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
597
            }
Paul's avatar
Paul committed
598
        }
599
600

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
601
602
    }

603
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
604
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
605
    {
Shucai Xiao's avatar
Shucai Xiao committed
606
607
        auto l0      = args[0];
        auto l1      = args[1];
608
609
610
611
612
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
613
        if(l0_lens.size() == 1)
614
615
616
617
618
619
620
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
621
        if(l1_lens.size() == 1)
622
623
624
625
626
627
628
629
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
630
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
631
632
633
634
635
636
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
637
            l0_broadcasted_lens = output_lens;
638
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
639
            l1_broadcasted_lens = output_lens;
640
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
641
            if(l0_lens != l0_broadcasted_lens)
642
643
644
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
645
            if(l1_lens != l1_broadcasted_lens)
646
647
648
649
650
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
651
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
652
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
653
        if(is_a_prepended)
654
655
656
657
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
658
        if(is_b_appended)
659
660
661
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
662

663
664
665
        return dot_res;
    }

666
    instruction_ref
Paul's avatar
Paul committed
667
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
668
    {
Scott Thornton's avatar
Scott Thornton committed
669
670
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
671
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
672
        bool is_test                                      = false;
673
674
675
676
677
678
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
679
            momentum = parse_value(attributes.at("momentum")).at<float>();
680
681
682
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
683
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
684
685
686
        }
        if(contains(attributes, "spatial"))
        {
687
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
688
689
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
690
        }
Paul's avatar
Paul committed
691
        (void)is_test;
Paul's avatar
Paul committed
692
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
693
        return prog.add_instruction(op, std::move(args));
694
695
    }

696
697
698
699
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
700
        float alpha = 0.01; // default alpha val for leaky relu
701
702
703
704
705
706
707
708
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
709
710
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
711
712
713
714
715
716
717
718
719
720
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
721
722
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
723
724
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
725
726
727
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
728
729
730
731
732
733
734
735
736
737
738
739
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
756
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
757

Khalique's avatar
Khalique committed
758
759
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
760
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
761

762
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
763
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
764
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
765
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
766
    }
Khalique's avatar
Khalique committed
767

Khalique's avatar
Khalique committed
768
769
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
770
771
772
773
774
775
776
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
777
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
778
779
    }

Khalique's avatar
Khalique committed
780
781
782
783
784
785
786
787
788
789
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
790
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
791
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
792
793
794
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
795
796
797
798
799
800
801
802
803
804
805
806
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
807
808
809
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
810
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
811
812
    {
        if(args.size() != 1)
813
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
850
851
        if(contains(attributes, "extra_shape"))
        {
852
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
853
854
        }

855
856
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
857
            if(args.size() != 1)
858
            {
859
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
860
861
            }

Shucai Xiao's avatar
Shucai Xiao committed
862
863
            if(contains(attributes, "shape"))
            {
864
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
865
                               "at the same time");
866
867
            }

868
869
870
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
871
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
872
            }
873

874
875
876
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
877
878
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
879
880
881
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
882
883
            if(!contains(attributes, "shape"))
            {
884
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
885
886
887
            }

            literal ls = parse_value(attributes.at("shape"));
888
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
889
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
890
            migraphx::shape s{type, dims};
891
892
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
893
894
895
        }
        else
        {
896
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
897
898
899
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
900
901
902
    instruction_ref parse_constant_of_shape(const std::string&,
                                            attribute_map attributes,
                                            std::vector<instruction_ref> args)
903
904
    {
        literal l_val{};
Shucai Xiao's avatar
Shucai Xiao committed
905
        if(contains(attributes, "value"))
906
907
        {
            l_val = parse_value(attributes.at("value"));
Shucai Xiao's avatar
Shucai Xiao committed
908
            if(l_val.get_shape().elements() != 1)
909
910
911
912
913
914
915
916
917
918
919
            {
                MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
            }
        }
        else
        {
            l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
        }

        // input is empty, output is a scalar
        auto type = l_val.get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
920
        if(args.size() == 0)
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
        {
            return prog.add_literal(literal({type, {1}, {0}}, l_val.data()));
        }
        else
        {
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
                MIGRAPHX_THROW("ConstantOfShape: cannot handle dynamic shape as input");
            }

            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);

            literal l_out;
            l_val.visit([&](auto val) {
                using type = std::remove_cv_t<typename decltype(val)::value_type>;
                // l_val contains only one element
                std::vector<type> out_vec(s.elements(), *val.begin());
                l_out = literal(s, out_vec);
            });

            return prog.add_literal(l_out);
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
948
949
    instruction_ref
    parse_expand(const std::string&, attribute_map, std::vector<instruction_ref> args)
950
    {
Shucai Xiao's avatar
Shucai Xiao committed
951
952
        auto in_lens  = args[0]->get_shape().lens();
        auto ex_lens  = args[1]->get_shape().lens();
953
954
955
956
957
        auto out_lens = compute_broadcasted_lens(in_lens, ex_lens);

        return prog.add_instruction(op::multibroadcast{out_lens}, std::move(args[0]));
    }

Shucai Xiao's avatar
Shucai Xiao committed
958
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
959
960
961
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
962
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
963
964
965

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
966
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
967
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
968
969
970
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
971
972
973
974
975
976
977
978
979
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

980
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
981
982
        if(direction == "bidirectional")
        {
983
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
984
985
986
        }
        else if(direction == "reverse")
        {
987
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
988
989
        }

990
        std::vector<std::string> vec_names{"tanh"};
991
992
993
994
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
995
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
996
997
998
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
999
1000
        }

1001
1002
1003
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1004
        if(name_it != vec_names.end())
1005
1006
1007
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
1008

Shucai Xiao's avatar
Shucai Xiao committed
1009
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
1010
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
1011
        // if only one actv function is provided, we use it in both
1012
        // forward and reverse direction
1013
        if(dirct == op::rnn_direction::bidirectional)
1014
        {
Shucai Xiao's avatar
Shucai Xiao committed
1015
            if(vec_names.size() == 1)
1016
1017
1018
1019
1020
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
1021
1022
1023
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
1024
        });
Shucai Xiao's avatar
Shucai Xiao committed
1025

Shucai Xiao's avatar
Shucai Xiao committed
1026
1027
1028
1029
1030
1031
1032
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

1033
1034
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1035
        if(args.size() < 6)
1036
1037
1038
1039
1040
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
1041
1042
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
1043
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1044

1045
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
1046
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1047

Shucai Xiao's avatar
Shucai Xiao committed
1048
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
1049
1050
    }

1051
    std::vector<instruction_ref>
1052
1053
1054
1055
1056
1057
1058
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
1059
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
1060
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
1061
1062
1063
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
1064
1065
1066
1067
1068
1069
1070
1071
1072
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

1073
        op::rnn_direction dirct = op::rnn_direction::forward;
1074
1075
        if(direction == "bidirectional")
        {
1076
            dirct = op::rnn_direction::bidirectional;
1077
1078
1079
        }
        else if(direction == "reverse")
        {
1080
            dirct = op::rnn_direction::reverse;
1081
1082
        }

1083
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
1084
1085
        if(contains(attributes, "activations"))
        {
1086
            auto names = attributes.at("activations").strings();
1087
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
1088
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1089
1090
1091
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
1092
1093
        }

1094
        // need 4 activation functions
1095
        if(dirct == op::rnn_direction::bidirectional)
1096
        {
Shucai Xiao's avatar
Shucai Xiao committed
1097
            // 4 activation functions are used in the bidirectional
1098
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
1099
1100
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
1101
1102
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
1103
1104
1105
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
1106
            if(vec_names.size() == 1)
1107
            {
1108
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
1109
            }
1110
            else if(vec_names.size() == 2)
1111
            {
1112
1113
1114
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1115
            }
1116
            else if(vec_names.size() == 3)
1117
            {
1118
                vec_names.push_back(vec_names.at(2));
1119
1120
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1121
        else
1122
        {
1123
            if(vec_names.size() == 1)
1124
            {
1125
                vec_names.push_back(vec_names.at(0));
1126
1127
1128
            }
        }

1129
1130
1131
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1132
        if(name_it != vec_names.end())
1133
1134
1135
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1136

Shucai Xiao's avatar
Shucai Xiao committed
1137
1138
1139
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1140
        });
1141
1142
1143
1144
1145
1146
1147
1148

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1149
        if(contains(attributes, "linear_before_reset"))
1150
1151
1152
1153
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1154
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1155
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1156
1157
1158
1159
1160
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1161
1162
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1163
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1164
            std::move(args));
1165
1166

        // second output for last gru output
1167
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1168

Shucai Xiao's avatar
Shucai Xiao committed
1169
        return {hidden_states, last_output};
1170
1171
    }

Shucai Xiao's avatar
Shucai Xiao committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1194
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1195
1196
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1197
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1198
1199
1200
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1201
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1202
        }
Shucai Xiao's avatar
Shucai Xiao committed
1203
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1204
        {
Shucai Xiao's avatar
Shucai Xiao committed
1205
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1206
1207
1208
1209
1210
1211
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1212
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1213
1214
1215
1216
1217
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1218
1219
1220
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1221
1222
1223
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1224
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1225
1226
1227
1228
1229
1230
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1231
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1232
1233
1234
1235
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1236
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1237
1238
1239
1240
1241
1242
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1243
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1244
1245
1246

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1247
1248
1249
1250
1251
1252
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1253
1254
1255
1256
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1257
1258
1259
1260
1261
1262
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1263
1264
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1265
1266
1267
1268
1269
1270
1271
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1272
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1273

Shucai Xiao's avatar
Shucai Xiao committed
1274
1275
1276
1277
1278
1279
1280
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1281
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1282

Shucai Xiao's avatar
Shucai Xiao committed
1283
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1284
1285
1286
1287
1288
1289
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1290
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1291
1292
1293

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1294
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1295
1296
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1297
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1298
1299
1300
            }
        }

1301
1302
1303
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1304
        if(name_it != vec_names.end())
1305
1306
1307
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1330
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1331
1332
1333
1334
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1335
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1336
1337

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1338
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1339
1340
1341
1342
1343
1344

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }
1345

Shucai Xiao's avatar
Shucai Xiao committed
1346
1347
1348
    instruction_ref parse_reduce_sum(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
    {
        std::size_t n_dim = args.front()->get_shape().lens().size();

        // default to reduce over all dimensions
        std::vector<std::size_t> axes(n_dim);
        std::iota(axes.begin(), axes.end(), 0);
        if(contains(attributes, "axes"))
        {
            axes.clear();
            auto&& attr_axes = attributes["axes"].ints();
Shucai Xiao's avatar
Shucai Xiao committed
1359
            axes             = std::vector<std::size_t>(attr_axes.begin(), attr_axes.end());
1360
1361
1362
        }

        int keep_dims = 1;
Shucai Xiao's avatar
Shucai Xiao committed
1363
        if(contains(attributes, "keepdims"))
1364
1365
1366
1367
        {
            keep_dims = parse_value(attributes.at("keepdims")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1368
        if(keep_dims == 1)
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
        {
            return prog.add_instruction(op::reduce_sum{axes}, std::move(args));
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_sum{axes}, std::move(args));
            std::vector<int64_t> squeeze_axes{axes.begin(), axes.end()};
            return prog.add_instruction(op::squeeze{squeeze_axes}, ins);
        }
    }
1379

Shucai Xiao's avatar
Shucai Xiao committed
1380
1381
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
1382
    {
Shucai Xiao's avatar
Shucai Xiao committed
1383
        if(!contains(attributes, "to"))
1384
1385
1386
1387
        {
            MIGRAPHX_THROW("PARSE_CAST: missing to type attribute!");
        }

Shucai Xiao's avatar
Shucai Xiao committed
1388
        int to_type        = parse_value(attributes.at("to")).at<int>();
1389
1390
1391
        shape::type_t type = get_type(to_type);
        return prog.add_instruction(op::convert{type}, std::move(args));
    }
Shucai Xiao's avatar
Shucai Xiao committed
1392

Paul's avatar
Paul committed
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1405
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1406
1407
1408
1409
1410
1411
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1412
1413
1414
1415
1416
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1417
1418
1419
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1432
        }
Paul's avatar
Paul committed
1433
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1434
        {
Paul's avatar
Paul committed
1435
            this->parse_node(output.name());
Paul's avatar
Paul committed
1436
1437
1438
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1439
    void parse_undefined(const std::string& name)
1440
    {
Shucai Xiao's avatar
Shucai Xiao committed
1441
        auto ins           = prog.add_instruction(op::undefined{});
1442
1443
1444
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1445
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1446
    {
Paul's avatar
Paul committed
1447
        if(name.empty())
Paul's avatar
Paul committed
1448
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1449
1450
1451
1452
1453
1454
1455
1456
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1457
1458
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1459
                }
Shucai Xiao's avatar
Shucai Xiao committed
1460
                else if(input.empty())
Paul's avatar
Paul committed
1461
                {
1462
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1463
                }
1464
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1465
            }
Paul's avatar
Paul committed
1466
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1467
1468
            if(ops.count(node.op_type()) == 0)
            {
1469
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1470
1471
1472
            }
            else
            {
Paul's avatar
Paul committed
1473
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1474
            }
Paul's avatar
Paul committed
1475
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1476
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1477
1478
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1479
1480
1481
            }
            else
            {
Paul's avatar
Paul committed
1482
1483
1484
1485
1486
1487
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1505
        std::size_t n = 0;
Paul's avatar
Paul committed
1506
1507
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1508
            if(node.output().empty())
Paul's avatar
Paul committed
1509
            {
Paul's avatar
Paul committed
1510
                if(node.name().empty())
Paul's avatar
Paul committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1545
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1546
1547
1548
1549
1550
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1551
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1552
1553
1554
1555
1556
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1557
1558
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1559
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1560
1561
1562
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1563
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1564
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1565
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1566
1567
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1568
1569
1570
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1571
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1572
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1573
1574
1575
1576
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1577
1578
1579
1580
1581
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1582
            MIGRAPHX_THROW("Invalid tensor type");
1583
        }
Paul's avatar
Paul committed
1584
1585
1586
1587
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1588
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1589
1590
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1591
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1592
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1593
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1594
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1595
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1596
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1597
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1598
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1599
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1600
1601
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1602
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1603
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1604
        {
Khalique's avatar
Khalique committed
1605
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1606
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1607
1608
1609
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1610
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1611
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1612
        }
Paul's avatar
Paul committed
1613
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1614
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1615
1616
1617
1618
1619
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1620
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1621
1622
    }

Khalique's avatar
Khalique committed
1623
    static literal
1624
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1625
    {
Khalique's avatar
Khalique committed
1626
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1627
        if(dims.empty())
1628
            return literal{{shape_type}, data};
1629
1630
1631
        return literal{{shape_type, dims}, data};
    }

1632
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1633
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1634
1635
    {
        if(dims.empty())
1636
            return literal{{shape_type}, data.begin(), data.end()};
1637
        return literal{{shape_type, dims}, data.begin(), data.end()};
1638
1639
    }

Paul's avatar
Paul committed
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1659
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1660
1661
1662
1663
1664
1665
1666
1667
1668
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1669
        auto&& tensor_dims = t.tensor_type().shape().dim();
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1681
1682
        return {shape_type, dims};
    }
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1728
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1729
} // namespace migraphx