task.py 68.1 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
lintangsutawika's avatar
lintangsutawika committed
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class AggMetricConfig(dict):
56
    metric: Optional[str] = None
57
58
    aggregation: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
59
    # list of filter names which should be incorporated into the aggregated metric.
lintangsutawika's avatar
lintangsutawika committed
60
    filter_list: Optional[Union[str, list]] = "none"
61
62

    def __post_init__(self):
63
64
65
66
67
        if self.aggregation != "mean":
            raise ValueError(
                f"Currently, only 'mean' is supported for automatically aggregating scores across groups' subtasks. Got '{self.aggregation}'."
            )

68
69
        if isinstance(self.filter_list, str):
            self.filter_list = [self.filter_list]
lintangsutawika's avatar
lintangsutawika committed
70

lintangsutawika's avatar
lintangsutawika committed
71

lintangsutawika's avatar
lintangsutawika committed
72
73
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
74
75
76
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
77
    aggregate_metric_list: Optional[
78
79
        Union[List[AggMetricConfig], AggMetricConfig, dict]
    ] = None
lintangsutawika's avatar
lintangsutawika committed
80
81
82
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
lintangsutawika's avatar
lintangsutawika committed
83
84
85
86
87
88
89

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

90
    def __post_init__(self):
91
92
93
        if self.aggregate_metric_list is not None:
            if isinstance(self.aggregate_metric_list, dict):
                self.aggregate_metric_list = [self.aggregate_metric_list]
94

95
            self.aggregate_metric_list = [
96
                AggMetricConfig(**item) if isinstance(item, dict) else item
97
                for item in self.aggregate_metric_list
98
99
            ]

lintangsutawika's avatar
lintangsutawika committed
100
101
102
103
104
105
106
107
108
109
110
111
112
    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
lintangsutawika's avatar
lintangsutawika committed
113
            if callable(v):
lintangsutawika's avatar
lintangsutawika committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
134
135
136
137
138
139
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
        self._config = GroupConfig(**config)
haileyschoelkopf's avatar
haileyschoelkopf committed
140
        # self._task_id = self._config.group
lintangsutawika's avatar
lintangsutawika committed
141
142
143
144

    @property
    def group(self):
        return self._config.group
145

lintangsutawika's avatar
lintangsutawika committed
146
147
148
    @property
    def group_alias(self):
        return self._config.group_alias
149
150
151
152
153

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
154
155
156
157
    @property
    def config(self):
        return self._config.to_dict()

haileyschoelkopf's avatar
haileyschoelkopf committed
158
159
160
    # @property
    # def task_id(self) -> Any:
    #     return self._task_id
161

haileyschoelkopf's avatar
haileyschoelkopf committed
162
163
164
    # @task_id.setter
    # def task_id(self, value):
    #     self._task_id = value
lintangsutawika's avatar
lintangsutawika committed
165
166
167
168

    @property
    def group_name(self) -> Any:
        return self._config.group
lintangsutawika's avatar
lintangsutawika committed
169

lintangsutawika's avatar
lintangsutawika committed
170
171
    def __repr__(self):
        return (
172
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
173
174
        )

175

176
177
@dataclass
class TaskConfig(dict):
178
    # task naming/registry
179
180
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
181
    tag: Optional[Union[str, list]] = None
182
    group: Optional[Union[str, list]] = None
183
184
185
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
186
187
188
189
190
191
192
193
194
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
195
196
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
197
198
199
200
201
202
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
203
    description: str = ""
204
205
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
206
    fewshot_config: Optional[dict] = None
207
    # runtime configuration options
208
    num_fewshot: Optional[int] = None
209
    # scoring options
210
211
212
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
213
    repeats: int = 1
214
    filter_list: Optional[Union[str, list]] = None
215
    should_decontaminate: bool = False
216
217
218
219
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
220

Ethan Smith's avatar
Ethan Smith committed
221
    def __post_init__(self) -> None:
222
223
224
225
226
227
228
229
230
231
232
233
        if self.group is not None:
            eval_logger.warning(
                "A task YAML file was found to contain a `group` key. Groups which provide aggregate scores over several subtasks now require a separate config file--if not aggregating, you may want to use the `tag` config option instead within your config. Setting `group` within a TaskConfig will be deprecated in v0.4.4. Please see https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/task_guide.md for more information."
            )

            if self.tag is None:
                self.tag = self.group
            else:
                raise ValueError(
                    "Got both a `group` and `tag` entry within a TaskConfig. Please use one or the other--`group` values will be deprecated in v0.4.4."
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
234
        if self.generation_kwargs is not None:
235
            if self.output_type != "generate_until":
236
                eval_logger.warning(
237
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
238
239
240
241
242
243
244
245
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
246
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
247
        else:
248
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
249
250
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
251
252
253
254
255
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
256
257
                    "do_sample": False,
                }
258

259
260
261
    def __getitem__(self, item):
        return getattr(self, item)

262
263
264
    def __setitem__(self, item, value):
        return setattr(self, item, value)

265
    def to_dict(self, keep_callable: bool = False) -> dict:
266
267
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
268
        Used for dumping results alongside full task configuration
269

haileyschoelkopf's avatar
haileyschoelkopf committed
270
271
272
273
274
275
276
277
278
279
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
280
281
282
283
284
285
286
287
288
289
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
290
        return cfg_dict
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

308
309
310
311
312
313
314
315
316
317
318

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

319
    VERSION: Optional[Union[int, str]] = None
320

321
322
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
323
    DATASET_PATH: Optional[str] = None
324
325

    # The name of a subset within `DATASET_PATH`.
326
    DATASET_NAME: Optional[str] = None
327

328
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
329

330
331
    def __init__(
        self,
332
333
334
335
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
336
    ) -> None:
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
359
360
361
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
362

363
        # Create a unique identifier ID
haileyschoelkopf's avatar
haileyschoelkopf committed
364
        # self._task_id = shortuuid.uuid()[:8]
365
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
366

lintangsutawika's avatar
lintangsutawika committed
367
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
368
369
370
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
371

372
373
374
375
376
377
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
402
403
404
405
406
407
408
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
409

410
    @property
411
    def config(self) -> TaskConfig:
412
413
414
        """Returns the TaskConfig associated with this class."""
        return self._config

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

430
    def training_docs(self) -> Iterable:
431
432
433
434
435
436
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

437
    def validation_docs(self) -> Iterable:
438
439
440
441
442
443
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

444
    def test_docs(self) -> Iterable:
445
446
447
448
449
450
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

451
    def fewshot_docs(self) -> Iterable:
452
453
454
455
456
457
458
459
460
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
461
            eval_logger.warning(
462
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
463
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
464
            )
465
466
            return self.test_docs()

467
    def _process_doc(self, doc: dict) -> dict:
468
469
470
471
472
473
474
475
476
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
477

478
    @property
479
    def instances(self) -> List[Instance]:
480
481
482
483
484
485
486
487
488
489
490
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

491
492
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
493
494
495
496
497
498
499
500
501
502
503
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

504
505
    def build_all_requests(
        self,
506
        *,
507
508
509
510
511
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
512
513
514
515
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
516
    ) -> None:
517
        """Build a set of Instances for a task, and store them in task.instances"""
518
519
520
521

        # used with caching
        og_limit = limit

522
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
523
524
525
526
527
528
529
530
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
546
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
547

548
        instances = []
549
550
551
552
553
554
555
556
557
558

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
559
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
560
561
562
563
564
565
566
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
567
        ):
568
            # sample fewshot context #TODO: need to offset doc_id by rank now!
569
            fewshot_ctx = self.fewshot_context(
570
                doc,
571
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
572
573
574
575
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
576
            )
577

578
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
579
580
581
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
582
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
583
            )
584
585
586
587

            if not isinstance(inst, list):
                inst = [inst]

588
589
590
591
592
593
594
595
596
597
598
599
600
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
601

602
603
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
604

605
606
607
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
624
            The number of times each instance in a dataset is inferred on. Defaults to 1,
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

660
661
662
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
663
664
665
666
667
668
669
670
671
672
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

673
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
674
    def fewshot_context(
675
676
677
        self,
        doc,
        num_fewshot,
678
        rnd=None,
679
        description=None,
lintangsutawika's avatar
lintangsutawika committed
680
    ):
681
682
683
684
685
686
687
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
688
689
690
691
692
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
693
694
695
        :returns: str
            The fewshot context.
        """
696
        if rnd is None:
697
698
699
700
701
702
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
703

704
        description = description if description else ""
705
706

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
707
            labeled_examples = ""
708
        else:
lintangsutawika's avatar
lintangsutawika committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
733
            )
734
735

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
736
        return description + labeled_examples + example
737

738
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
739
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
740
741
        if hasattr(self, "_filters"):
            for f in self._filters:
742
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
743
744
745
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
746

baberabb's avatar
baberabb committed
747
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
748
        """Returns the config as a dictionary."""
749
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
750
        # (num_fewshot)
751
        return self.config.to_dict()
752

Baber Abbasi's avatar
Baber Abbasi committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

793
794
795
796
797
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

798
799
800
801
802
803
804
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
805
806
807
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
808
809
810
811
812
813
814
815
816
817
818
819
820

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

haileyschoelkopf's avatar
haileyschoelkopf committed
821
822
823
    # @property
    # def task_id(self) -> Any:
    #     return self._task_id
824

haileyschoelkopf's avatar
haileyschoelkopf committed
825
826
827
    # @task_id.setter
    # def task_id(self, value):
    #     self._task_id = value
828

829

830
class ConfigurableTask(Task):
831
    VERSION = "Yaml"
832
    OUTPUT_TYPE = None
833
    CONFIG = None
834
835

    def __init__(
836
837
838
839
840
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
841
    ) -> None:  # TODO no super() call here
lintangsutawika's avatar
lintangsutawika committed
842
        # Create a unique identifier ID
haileyschoelkopf's avatar
haileyschoelkopf committed
843
        # self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
844

845
        # Get pre-configured attributes
846
        self._config = self.CONFIG
847

848
        # Use new configurations if there was no preconfiguration
849
        if self.config is None:
850
            self._config = TaskConfig(**config)
851
852
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
853
            if config is not None:
854
                self._config.__dict__.update(config)
855

856
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
857
858
859
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
860

861
862
863
864
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

865
        if self.config.output_type is not None:
866
867
868
869
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
870
            self.OUTPUT_TYPE = self.config.output_type
871

872
873
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
874

875
876
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
877

878
879
880
881
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
882

883
        if self.config.metric_list is None:
884
            # TODO: handle this in TaskConfig.__post_init__ ?
885
886
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

887
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
888
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
889
                self._metric_fn_kwargs[metric_name] = {}
890
891
892
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
893
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
894
        else:
895
            for metric_config in self.config.metric_list:
896
897
898
899
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
900
901
902
903
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
904
905
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
906
                }
Chris's avatar
Chris committed
907
908
909
910
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
911

912
                if self.config.process_results is not None:
913
914
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
915
916
917
918
919
920
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
921
922
923
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
924
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
925

926
                if "aggregation" in metric_config:
927
                    agg_name = metric_config["aggregation"]
928
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
929
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
930
                    elif callable(agg_name):  # noqa: E721
931
932
933
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
934
                else:
935
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
936
                    metric_agg = get_metric_aggregation(metric_name)
937
                    eval_logger.warning(
938
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
939
940
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
941
                    )
942
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
943

944
945
946
947
948
949
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
950
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
951
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
952
                        f"higher_is_better={is_higher_better(metric_name)}"
953
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
954
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
955

956
        self.download(self.config.dataset_kwargs)
957
958
959
        self._training_docs = None
        self._fewshot_docs = None

960
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
961
            self._filters = []
962
            for filter_config in self.config.filter_list:
963
964
965
966
967
968
969
970
971
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
972
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
973
        else:
974
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
975

976
977
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
978
            self.prompt = get_prompt(
979
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
980
            )
981
982
983
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
984
        if self.fewshot_docs() is not None:
985
986
987
988
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
989
990
991
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
1008

1009
        self.task_docs = self.eval_docs
1010

1011
        # Test One Doc
1012
        self.features = list(self.task_docs.features.keys())
1013
1014
        self.multiple_input = 0
        self.multiple_target = 0
1015
        test_doc = self.task_docs[0]
1016
        test_text = self.doc_to_text(test_doc)
1017
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
1018

1019
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1020
            test_choice = self.doc_to_choice(test_doc)
1021
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
1022
                eval_logger.error("doc_to_choice must return list")
1023
1024
            else:
                num_choice = len(test_choice)
1025

1026
            if isinstance(test_text, int):
1027
                self.multiple_input = num_choice
1028
1029
        else:
            test_choice = None
1030

1031
        if isinstance(test_target, list):
1032
            self.multiple_target = len(test_target)
1033
        else:
1034
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
1035
                test_target = test_choice[test_target]
1036
            else:
lintangsutawika's avatar
lintangsutawika committed
1037
                test_target = str(test_target)
1038

1039
1040
1041
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
1042
            check_choices = [test_target]
1043
1044
1045
1046
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1047
1048
                    True
                    if self.config.target_delimiter.rstrip()
1049
                    != self.config.target_delimiter
1050
                    else False
1051
                )
1052

1053
                if delimiter_has_whitespace and choice_has_whitespace:
1054
1055
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1056
1057
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1058
                    eval_logger.debug(
1059
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1060
1061
                    )

1062
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
1063
1064
1065
1066
1067
1068
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
1069
    def has_training_docs(self) -> bool:
1070
        if self.config.training_split is not None:
1071
1072
1073
1074
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1075
    def has_validation_docs(self) -> bool:
1076
        if self.config.validation_split is not None:
1077
1078
1079
1080
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1081
    def has_test_docs(self) -> bool:
1082
        if self.config.test_split is not None:
1083
1084
1085
1086
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1087
    def training_docs(self) -> datasets.Dataset:
1088
        if self.has_training_docs():
1089
1090
1091
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1092
                )
1093
            return self.dataset[self.config.training_split]
1094

baberabb's avatar
baberabb committed
1095
    def validation_docs(self) -> datasets.Dataset:
1096
        if self.has_validation_docs():
1097
1098
1099
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1100
                )
1101
            return self.dataset[self.config.validation_split]
1102

baberabb's avatar
baberabb committed
1103
    def test_docs(self) -> datasets.Dataset:
1104
        if self.has_test_docs():
1105
1106
1107
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1108

1109
    def fewshot_docs(self):
1110
        if self.config.fewshot_split is not None:
1111
1112
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1113
            return self.dataset[self.config.fewshot_split]
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1126
        else:
1127
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1128
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1129
                    f"[Task: {self.config.task}] "
1130
1131
1132
1133
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1134

KonradSzafer's avatar
KonradSzafer committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1156
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1157
1158
1159
1160
1161
1162
1163
1164
1165
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1166
1167
1168
1169
1170
1171
1172
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1173
1174
1175
1176
1177
1178
1179
1180
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1181
1182
1183
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1184
1185
1186
1187
1188
1189
1190

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1191
1192
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1193

KonradSzafer's avatar
KonradSzafer committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1203
        else:
KonradSzafer's avatar
KonradSzafer committed
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1223
1224

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1254
        else:
KonradSzafer's avatar
KonradSzafer committed
1255
1256
            if self.multiple_input:
                return labeled_examples
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1267

1268
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1269
        """Iterates over FilterEnsembles and applies them to instances"""
1270
1271
        if hasattr(self, "_filters"):
            for f in self._filters:
1272
                f.apply(self._instances)
1273
1274
1275
1276
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1277
    def should_decontaminate(self):
1278
        return self.config.should_decontaminate
1279
1280

    def doc_to_decontamination_query(self, doc):
1281
        if self.config.should_decontaminate:
1282
1283
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1284
            else:
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1296

1297
    def _process_doc(self, doc: dict) -> dict:
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1309
1310
        if self.prompt is not None:
            doc_to_text = self.prompt
1311
        else:
1312
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1313

1314
        if isinstance(doc_to_text, int):
1315
            return doc_to_text
1316
        elif isinstance(doc_to_text, str):
1317
            if doc_to_text in self.features:
1318
                # if self.config.doc_to_choice is not None:
1319
1320
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1321
1322
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1323
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1324
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1325
1326
1327
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1328
        elif callable(doc_to_text):
1329
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1330
        # Used when applying a Promptsource template
1331
        elif hasattr(doc_to_text, "apply"):
1332
1333
1334
1335
1336
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1337
                return self.config.fewshot_delimiter
1338
        else:
1339
            print(type(doc_to_text))
1340
            raise TypeError
1341

1342
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1343
1344
        if self.prompt is not None:
            doc_to_target = self.prompt
1345
        else:
1346
            doc_to_target = self.config.doc_to_target
1347

1348
        if isinstance(doc_to_target, int):
1349
            return doc_to_target
1350
        elif isinstance(doc_to_target, str):
1351
            if doc_to_target in self.features:
1352
                # if self.config.doc_to_choice is not None:
1353
1354
1355
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1356
            else:
lintangsutawika's avatar
lintangsutawika committed
1357
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1358
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1359
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1360
1361
1362
1363
1364
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1365
1366
1367
1368
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1369
1370
                else:
                    return target_string
1371
        elif isinstance(doc_to_target, list):
1372
            return doc_to_target
1373
        elif callable(doc_to_target):
1374
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1375
        # Used when applying a Promptsource template
1376
        elif hasattr(doc_to_target, "apply"):
1377
            applied_prompt = doc_to_target.apply(doc)
1378
1379
1380
1381
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1382
                return self.config.fewshot_delimiter
1383
1384
        else:
            raise TypeError
1385

baberabb's avatar
baberabb committed
1386
    def doc_to_choice(self, doc: Any) -> List[str]:
1387
1388
        if self.prompt is not None:
            doc_to_choice = self.prompt
1389
        elif self.config.doc_to_choice is None:
1390
1391
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1392
            doc_to_choice = self.config.doc_to_choice
1393

1394
        if isinstance(doc_to_choice, str):
1395
1396
1397
1398
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1399
        elif isinstance(doc_to_choice, list):
1400
            return doc_to_choice
1401
        elif isinstance(doc_to_choice, dict):
1402
1403
1404
1405
1406
1407
1408
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1409

baberabb's avatar
baberabb committed
1410
1411
1412
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1413
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1414
            arguments = (ctx, self.doc_to_target(doc))
1415
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1416
            arguments = (self.doc_to_target(doc),)
1417
        elif self.OUTPUT_TYPE == "multiple_choice":
1418
            choices = self.doc_to_choice(doc)
1419
            target_delimiter = self.config.target_delimiter
1420
1421
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1422
                cont = self.doc_to_target(doc)
1423
1424
1425
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1426
            else:
1427
                # Otherwise they are placed in the continuation
1428
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1429

1430
            request_list = [
1431
1432
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1433
                    doc=doc,
1434
                    arguments=arg,
1435
                    idx=i,
1436
1437
                    **kwargs,
                )
1438
                for i, arg in enumerate(arguments)
1439
            ]
1440
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1441
            if "acc_mutual_info" in self._metric_fn_list.keys():
1442
1443
1444
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1445
                # here mutual info refers to calculating
1446
1447
1448
1449
1450
1451
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1452
                            doc=doc,
1453
                            arguments=("", "{}".format(choice)),
1454
1455
1456
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1457
                        for i, choice in enumerate(choices)
1458
1459
1460
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1461

1462
        elif self.OUTPUT_TYPE == "generate_until":
1463
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1464
1465

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1466
1467
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1468
1469

    def process_results(self, doc, results):
1470
1471
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1472

1473
        result_dict = {}
1474
        use_metric = list(self._metric_fn_list.keys())
1475
1476
1477
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1478
1479
1480
1481
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1482
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1483
            (loglikelihood,) = results
1484
1485
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1486
            return {
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1502
            }
1503
        elif self.OUTPUT_TYPE == "multiple_choice":
1504
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1505

1506
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1507
            choices = self.doc_to_choice(doc)
1508
1509
            completion_len = np.array([float(len(i)) for i in choices])

1510
1511
            if (
                2 * len(choices) == len(lls)
1512
                and "acc_mutual_info" in self._metric_fn_list.keys()
1513
1514
1515
1516
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1517
1518
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1519
1520
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1521

1522
1523
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1524

1525
1526
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1527
            else:
1528
                gold = self.doc_to_target(doc)
1529
1530

            gold_index_error = False
1531
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1532
1533
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1534
1535
                    gold_index_error = True
            else:
1536
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1537
                    gold = gold if gold < len(choices) else -100
1538
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1539
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1540

Lintang Sutawika's avatar
Lintang Sutawika committed
1541
                if gold == -100:
1542
1543
1544
1545
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1546
                    f"Label index was not in within range of available choices,"
1547
1548
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1549

1550
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1551
1552
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1553
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1554
1555
1556
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1557
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1558
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1559

Lintang Sutawika's avatar
Lintang Sutawika committed
1560
1561
1562
1563
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1564
            result_dict = {
1565
                **({"acc": acc} if "acc" in use_metric else {}),
1566
1567
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1568
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1569
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1570
1571
1572
1573
1574
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1575
1576
            }

1577
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1578
1579
1580
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1581
1582
1583
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1584
        elif self.OUTPUT_TYPE == "generate_until":
1585
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1586
            result = results[0]
1587
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1588
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1589
                # it assumes that doc_to_target returns a number.
1590
1591
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1592
1593
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1594
                gold = list(gold)
Chris's avatar
Chris committed
1595
1596
1597
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1598

lintangsutawika's avatar
lintangsutawika committed
1599
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1600
1601
1602
1603
1604
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1605
1606
1607
1608
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1609
1610
1611
1612
1613
1614
1615
1616
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1617
                    else:
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1639
                else:
1640
                    try:
1641
                        result_score = self._metric_fn_list[metric](
1642
1643
                            references=[gold],
                            predictions=[result],
1644
                            **self._metric_fn_kwargs[metric],
1645
                        )
1646
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1647
                        result_score = self._metric_fn_list[metric]([gold, result])
1648
1649
1650
1651
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1652
        else:
lintangsutawika's avatar
lintangsutawika committed
1653
1654
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1655
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1656
            )
1657
1658
1659

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1660
    def aggregation(self) -> dict:
1661
1662
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1663
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1664
        return self._higher_is_better
1665

Baber Abbasi's avatar
Baber Abbasi committed
1666
1667
1668
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

lintangsutawika's avatar
lintangsutawika committed
1669
1670
1671
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)
lintangsutawika's avatar
lintangsutawika committed
1672

1673
1674
1675
1676
1677
1678
1679
1680
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1681
1682

class MultipleChoiceTask(Task):
1683
    OUTPUT_TYPE = "loglikelihood"
1684

baberabb's avatar
baberabb committed
1685
    def doc_to_target(self, doc: dict) -> str:
1686
1687
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1688
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1689
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1690
1691
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1692
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1693
                doc=doc,
1694
                arguments=(ctx, " {}".format(choice)),
1695
                idx=i,
1696
1697
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1698
1699
            for i, choice in enumerate(doc["choices"])
        ]
1700

1701
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1702
1703
1704
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1716
    def higher_is_better(self) -> dict:
1717
1718
1719
1720
1721
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1722
    def aggregation(self) -> dict:
1723
1724
1725
1726
1727
1728
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1729
class PerplexityTask(Task):
1730
1731
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1732
    def has_training_docs(self) -> bool:
1733
1734
        return False

baberabb's avatar
baberabb committed
1735
    def fewshot_examples(self, k: int, rnd) -> List:
1736
1737
1738
1739
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1740
1741
        return []

baberabb's avatar
baberabb committed
1742
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1743
1744
1745
1746
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1747
1748
1749

        return ""

baberabb's avatar
baberabb committed
1750
    def higher_is_better(self) -> dict:
1751
1752
1753
1754
1755
1756
1757
1758
1759
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1760
    def doc_to_text(self, doc) -> str:
1761
1762
1763
1764
1765
        return ""

    def doc_to_target(self, doc):
        return doc

1766
1767
1768
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1769

lintangsutawika's avatar
lintangsutawika committed
1770
1771
1772
1773
1774
1775
1776
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1777

1778
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1779
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1780
1781
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1782
1783
1784
1785
1786
1787
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1788
    def aggregation(self) -> dict:
1789
1790
1791
1792
1793
1794
1795
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1796
    def count_bytes(cls, doc) -> int:
1797
1798
1799
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1800
    def count_words(cls, doc) -> int:
1801
1802
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))