task.py 35.8 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
32
33
from lm_eval.api.metrics import (
    # get_metric,
    # get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
lintangsutawika's avatar
lintangsutawika committed
34
    METRIC_REGISTRY,
35
36
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
37
38
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
39
    DEFAULT_AGGREGATION_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
)
41

42
43
44
45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

49
50
51
52

@dataclass
class TaskConfig(dict):

53
    task: str = None
54
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
55
    reference: str = None
56

57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64

65
    template_aliases: str = None
66
67
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
68
    use_prompt: str = None
69
70
    delimiter: str = "\n\n"
    description: str = ""
71

72
73
    num_fewshot: int = 0
    batch_size: int = 1
74
75
    repeats: int = 1

76
    metric_list: str = None
lintangsutawika's avatar
lintangsutawika committed
77
    gold_alias: Union[Callable, str] = None
78
    output_type: str = "greedy_until"
79
    generation_kwargs: dict = None
lintangsutawika's avatar
lintangsutawika committed
80
    filter_list: Union[str, list] = None
81
82
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
83

lintangsutawika's avatar
lintangsutawika committed
84
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
85

86
87
88
89
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
90
91
92
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
93

94
95
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
96

97
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
98
                self.gold_alias = self.template_aliases + self.gold_alias
99

100
        if self.generation_kwargs or self.output_type == "greedy_until":
101
102
103
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
104
105
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
106

107
108
109
    def __getitem__(self, item):
        return getattr(self, item)

110
    def to_dict(self):
111
112
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
113
        Used for dumping results alongside full task configuration
114

haileyschoelkopf's avatar
haileyschoelkopf committed
115
116
117
118
119
120
121
122
123
124
125
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
        return cfg_dict
126

127
128
129
130
131
132
133
134
135
136
137
138

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
139

140
141
142
143
144
145
146
147
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
183
        self._config = TaskConfig(**config) if config else TaskConfig()
184
185
186

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
187
            for name, components in self._config.get(
188
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
189
            ):
190
191
192
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
193
194
195
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
222
223
224
225
226
227
228
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

266
267
268
269
270
271
272
273
274
275
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
276
            eval_logger.warning(
277
                "has_training_docs and has_validation_docs are False"
278
                ", using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
279
            )
280
281
            return self.test_docs()

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

320
    def build_all_requests(self, limit=None, rank=None, world_size=None):
321
322
323
324
325
326
327
328
329
330
331
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
332
333
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
334
        ):
335
            # sample fewshot context #TODO: need to offset doc_id by rank now!
336
337
338
339
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
340
341
342
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
343
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
344
            )
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
370
            The number of times each instance in a dataset is inferred on. Defaults to 1,
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
406
407
408
409
410
411
412
413
414
415
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
436
437
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
438
        else:
439
            labeled_examples = self._config.description + self.sampler.get_context(doc, num_fewshot)
440
441
442
443
444
445

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
446
447
448
449
450
451
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
452

453
    def dump_config(self):
454
        """Returns a dictionary representing the task's config.
455
456
457
458
459
460
461
462

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

463
464
465

class ConfigurableTask(Task):

466
    VERSION = "Yaml"
467
    OUTPUT_TYPE = None
468
    CONFIG = None
469
470
471
472

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
473
        # Get pre-configured attributes
474
        self._config = self.CONFIG
475

476
477
        # Use new configurations if there was no preconfiguration
        if self._config is None:
478
            self._config = TaskConfig(**config)
479
480
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
481
            if config is not None:
482
                self._config.__dict__.update(config)
483

484
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
485
486
487
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
488
489

        if self._config.output_type is not None:
490
            assert self._config.output_type in ALL_OUTPUT_TYPES
491
492
            self.OUTPUT_TYPE = self._config.output_type

493
494
495
496
497
498
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

499
500
501
502
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
503

504
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
505
        if self._config.metric_list is None:
506
            # TODO: handle this in TaskConfig.__post_init__ ?
507
508
            for metric_name in _metric_list:
                self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
509
510
511
                self._aggregation_list[metric_name] = DEFAULT_AGGREGATION_REGISTRY[
                    metric_name
                ]
512
513
514
                self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                    metric_name
                ]
515
516
517
518
519
520
521
522
523
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
524
                try:
525
                    self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
526
                except Exception:
527
528
529
530
531
532
533
534
535
536
537
538
539
540
                    eval_logger.warning(
                        f"Metric {metric_name} not found, "
                        "Searching from https://huggingface.co/evaluate-metric"
                    )
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_fn_list[metric_name] = metric_object
                        self._metric_fn_kwargs[metric_name] = kwargs

                    except Exception:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
lintangsutawika's avatar
lintangsutawika committed
541

542
                if "aggregation" in metric_config:
543
                    agg_name = metric_config["aggregation"]
544
545
546
547
548
549
550
551
                    if type(agg_name) == str:
                        self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[
                            agg_name
                        ]
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
552
                else:
553
554
555

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    metric_agg = DEFAULT_AGGREGATION_REGISTRY[metric_name]
556
                    eval_logger.warning(
557
558
559
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
560
                    )
561
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
562

563
564
565
566
567
568
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
569
570
571
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={HIGHER_IS_BETTER_REGISTRY[metric_name]}"
572
                    )
573
574
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
lintangsutawika's avatar
lintangsutawika committed
575
                    ]
576

577
        self.download(self._config.dataset_kwargs)
578
579
580
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
581
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
582
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
583
584
585
586
587
588
589
590
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
591
592
593
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
594
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
595
        else:
596
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
597
598

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
599
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
600
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
601
602
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
603
604
605
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
606
607
608
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
609
            )
610

611
612
613
614
615
616
617
618
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

649
    def fewshot_docs(self):
650
        if self._config.fewshot_split is not None:
651
            return self.dataset[self._config.fewshot_split]
652
653
654
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
655
                    f"Task '{self._config.task}': "
656
657
658
659
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
660

661
662
663
664
665
666
667
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

668
669
670
671
672
673
674
675
676
677
678
679
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
680
681
682

        if self.prompt is not None:
            doc_to_text = self.prompt
683
684
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
685

686
687
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
688
        elif callable(doc_to_text):
689
690
691
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
692
        else:
693
            print(type(doc_to_text))
694
            raise TypeError
695
696

    def doc_to_target(self, doc):
697
698
699

        if self.prompt is not None:
            doc_to_target = self.prompt
700
701
702
        else:
            doc_to_target = self._config.doc_to_target

703
704
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
705
        elif callable(doc_to_target):
706
707
708
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
709
710
        else:
            raise TypeError
711

712
    def gold_alias(self, doc):
713
        # TODO: reevaluate if we need this. implemented to have a
714
        # processed version of answer to put into gsm8k exact_match scoring as ref.
lintangsutawika's avatar
lintangsutawika committed
715
        if self._config.gold_alias is not None:
716
717
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
718
719
            # doc_to_target = self._config.doc_to_target
            return self.doc_to_target(doc)
720
721
722
723
724
725
726
727
728
729

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

730
731
    def construct_requests(self, doc, ctx, **kwargs):

732
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
733
            arguments = (ctx, self.doc_to_target(doc))
734
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
735
            arguments = (self.doc_to_target(doc),)
736
        elif self.OUTPUT_TYPE == "multiple_choice":
737
738
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
739
740
741
742
743
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
744
            request_list = [
745
746
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
747
                    doc=doc,
748
                    arguments=(ctx, " {}".format(choice)),
749
                    idx=i,
750
751
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
752
                for i, choice in enumerate(choices)
753
            ]
754
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
755
            if "acc_mutual_info" in self._metric_fn_list.keys():
756
757
758
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
759
                # here mutual info refers to calculating
760
761
762
763
764
765
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
766
                            doc=doc,
767
768
769
770
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
771
                        for i, choice in enumerate(choices)
772
773
774
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
775

776
        elif self.OUTPUT_TYPE == "greedy_until":
777
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
778
779

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
780
781
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
782
783
784

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
785
786
787
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

788
        result_dict = {}
789
        use_metric = list(self._metric_fn_list.keys())
790
791
792
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
793
794
795
796
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
797
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
798
            (loglikelihood,) = results
799
800
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
801
            return {
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
817
            }
818
        elif self.OUTPUT_TYPE == "multiple_choice":
819
820

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
821
822
823
824
825
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

826
            pred = np.argmax(lls)
827
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
828
829
830
831
832
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
833
834
            if (
                2 * len(choices) == len(lls)
835
                and "acc_mutual_info" in self._metric_fn_list.keys()
836
837
838
839
840
841
842
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
843
844

            acc = 1.0 if np.argmax(lls) == gold else 0.0
845
846
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
847
848

            result_dict = {
849
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
850
851
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
852
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
853
854
855
            }

            # TODO: set which normalization metrics should be reported, and calculate them
856
            if "exact_match" in self._metric_fn_list.keys():
857
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
858
                is_greedy = is_greedy[gold]  # take value for the gold answer
859
860
                result_dict["exact_match"] = int(is_greedy)

861
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
862
863
864
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
865
866
867
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

868
869
870
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
871
                gold = self.gold_alias(doc)
872
873
874
            else:
                gold = self.doc_to_target(doc)

875
876
            for key, result in zip(self._metric_fn_list.keys(), results):
                _dict = self._metric_fn_list[key].compute(
lintangsutawika's avatar
lintangsutawika committed
877
                    references=[gold], predictions=[result], **self._metric_kwargs[key]
878
                )
879

lintangsutawika's avatar
lintangsutawika committed
880
                result_dict = {**result_dict, **_dict}
881
        else:
lintangsutawika's avatar
lintangsutawika committed
882
883
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
884
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
885
            )
886
887
888
889
890
891
892

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
893
        return self._higher_is_better
894
895
896
897
898
899
900
901
902
903


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
904
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
905
906
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
907
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
908
                doc=doc,
909
                arguments=(ctx, " {}".format(choice)),
910
                idx=i,
911
912
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
913
914
            for i, choice in enumerate(doc["choices"])
        ]
915
916

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
917
918
919
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
944
class PerplexityTask(Task):
945
946
947
948
949
950
951
952
953
954

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
955
    def fewshot_context(self, doc, num_fewshot, rnd=None):
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
984
985
986
987
988
989
990
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
991
992
993

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
994
995
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))