task.py 47.1 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
from tqdm import tqdm
12
13
14
15

import datasets
import numpy as np

baberabb's avatar
baberabb committed
16
from typing import Union, List, Any, Tuple, Literal
17
from collections.abc import Callable
18

19
from lm_eval import utils
20
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
21
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
22
from lm_eval.api.filter import FilterEnsemble
23
24
25
26

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
27
28
29
30
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
31
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
32
33
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
36
    get_metric,
    get_aggregation,
    is_higher_better,
37
38
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
39
40
    AGGREGATION_REGISTRY,
)
41

42
43
44
45
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
46
    "generate_until",
47
48
]

49
50
51

@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
54
    group: Union[str, list] = None
55
56
57
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
58
59
    dataset_path: str = None
    dataset_name: str = None
60
    dataset_kwargs: dict = None
61
62
63
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
65
66
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
67
    process_docs: Callable = None
68
69
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
70
    doc_to_choice: Union[Callable, str, dict, list] = None
71
    gold_alias: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
72
    process_results: Union[Callable, str] = None
73
    use_prompt: str = None
74
    description: str = ""
75
76
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
77
    fewshot_config: dict = None
78
    # runtime configuration options
79
    num_fewshot: int = 0
80
    # scoring options
81
    metric_list: list = None
82
    output_type: str = "generate_until"
83
    generation_kwargs: dict = None
84
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
85
    filter_list: Union[str, list] = None
86
87
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
88

lintangsutawika's avatar
lintangsutawika committed
89
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
90

Ethan Smith's avatar
Ethan Smith committed
91
    def __post_init__(self) -> None:
lintangsutawika's avatar
lintangsutawika committed
92
93
94
        if "." in self.dataset_path:
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
95

lintangsutawika's avatar
lintangsutawika committed
96
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
97

Lintang Sutawika's avatar
Lintang Sutawika committed
98
        if self.generation_kwargs is not None:
99
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
100
                eval_logger.warning(
101
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
102
                )
103
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
111
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
112
        else:
113
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
114
115
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
116
                    "until": None
117
118
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
119
120
                    "do_sample": False,
                }
121

haileyschoelkopf's avatar
haileyschoelkopf committed
122
123
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

124
125
126
    def __getitem__(self, item):
        return getattr(self, item)

127
128
129
    def __setitem__(self, item, value):
        return setattr(self, item, value)

130
    def to_dict(self):
131
132
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
133
        Used for dumping results alongside full task configuration
134

haileyschoelkopf's avatar
haileyschoelkopf committed
135
136
137
138
139
140
141
142
143
144
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
145
146
147
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
148
        return cfg_dict
149

150
151
152
153
154
155
156
157
158
159
160
161

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
162

163
164
165
166
167
168
169
170
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
171

172
173
174
175
176
177
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
178
    ) -> None:
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
205
        self._config = TaskConfig(**config) if config else TaskConfig()
206
207
208

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
209
            for name, components in self._config.get(
210
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
211
            ):
212
213
214
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
215
        self.sampler = samplers.Sampler(
216
217
            list(self.fewshot_docs()), self, rnd=random.Random(1234)
        )
218

Ethan Smith's avatar
Ethan Smith committed
219
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
244
245
246
247
248
249
250
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
251

252
253
254
255
256
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

293
294
295
296
297
298
299
300
301
302
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
303
            eval_logger.warning(
304
                "has_training_docs and has_validation_docs are False"
305
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
306
            )
307
308
            return self.test_docs()

309
310
311
312
313
314
315
316
317
318
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
319

320
321
322
323
324
325
326
327
328
329
330
331
332
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
333
    def doc_to_decontamination_query(self, doc) -> None:
334
335
336
337
338
339
340
341
342
343
344
345
346
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
347
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
348
349
350
351
352
353
354
355
356
357
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

358
        eval_logger.info(
359
            f"Building contexts for task '{self.config.task}' on rank {rank}..."
360
361
        )

362
        instances = []
363
364
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
365
        ):
366
            # sample fewshot context #TODO: need to offset doc_id by rank now!
367
            fewshot_ctx = self.fewshot_context(
368
                doc,
369
                self.config.num_fewshot,
370
            )
371

372
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
373
374
375
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
376
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
377
            )
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
403
            The number of times each instance in a dataset is inferred on. Defaults to 1,
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
439
440
441
442
443
444
445
446
447
448
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

449
    @utils.positional_deprecated
450
    def fewshot_context(self, doc, num_fewshot):
451
452
453
454
455
456
457
458
459
460
461
462
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
463
            # always prepend the (possibly empty) task description
464
            labeled_examples = self.config.description
465
        else:
466
            labeled_examples = self.config.description + self.sampler.get_context(
lintangsutawika's avatar
lintangsutawika committed
467
468
                doc, num_fewshot
            )
469
470

        example = self.doc_to_text(doc)
471
472
473
474
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
475
        elif type(example) == int:
476
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
477
478
479
480
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)
481
482

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
483
484
485
486
487
488
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
489

baberabb's avatar
baberabb committed
490
    def dump_config(self) -> dict:
491
        """Returns a dictionary representing the task's config.
492
493
494
495
496

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
497
        # (num_fewshot)
498
        return self.config.to_dict()
499

500
501

class ConfigurableTask(Task):
502
    VERSION = "Yaml"
503
    OUTPUT_TYPE = None
504
    CONFIG = None
505
506
507

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
508
    ) -> None:  # TODO no super() call here
509
        # Get pre-configured attributes
510
        self._config = self.CONFIG
511

512
        # Use new configurations if there was no preconfiguration
513
        if self.config is None:
514
            self._config = TaskConfig(**config)
515
516
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
517
            if config is not None:
518
                self._config.__dict__.update(config)
519

520
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
521
522
523
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
524

525
526
527
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
528

529
530
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
531

532
533
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
534

535
536
537
538
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
539

540
541
        _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
        if self.config.metric_list is None:
542
            # TODO: handle this in TaskConfig.__post_init__ ?
543
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
544
                self._metric_fn_list[metric_name] = get_metric(metric_name)
545
                self._aggregation_list[metric_name] = get_aggregation(metric_name)
haileyschoelkopf's avatar
haileyschoelkopf committed
546
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
547
        else:
548
            for metric_config in self.config.metric_list:
549
550
551
552
553
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
554
555
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
556
                }
Chris's avatar
Chris committed
557
558
559
560
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
561

562
                if self.config.process_results is not None:
563
564
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
565
566
567
568
569
570
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
571
572
573
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
574
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
575

576
                if "aggregation" in metric_config:
577
                    agg_name = metric_config["aggregation"]
578
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
579
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
580
581
582
583
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
584
                else:
585
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
586
                    metric_agg = get_default_aggregation(metric_name)
587
                    eval_logger.warning(
baberabb's avatar
baberabb committed
588
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
589
590
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
591
                    )
592
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
593

594
595
596
597
598
599
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
600
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
601
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
602
                        f"higher_is_better={is_higher_better(metric_name)}"
603
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
604
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
605

606
        self.download(self.config.dataset_kwargs)
607
608
609
        self._training_docs = None
        self._fewshot_docs = None

610
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
611
            self._filters = []
612
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
613
614
615
616
617
618
619
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
620
621
622
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
623
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
624
        else:
625
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
626

627
628
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
629
            self.prompt = get_prompt(
630
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
631
            )
632
633
634
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
635
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
636
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
637
638
639
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
640
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
641

642
        if self.has_test_docs():
643
            self.task_docs = self.test_docs()
644
        elif self.has_validation_docs():
645
            self.task_docs = self.validation_docs()
646
647
648
649
650
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

651
        # Test One Doc
652
        self.features = list(self.task_docs.features.keys())
653
654
        self.multiple_input = 0
        self.multiple_target = 0
655
        test_doc = self.task_docs[0]
656
        test_text = self.doc_to_text(test_doc)
657
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
658

659
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
660
661
662
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
663
664
            else:
                num_choice = len(test_choice)
665

666
667
            if type(test_text) is int:
                self.multiple_input = num_choice
668
669
        else:
            test_choice = None
670

671
        if type(test_target) is list:
672
            self.multiple_target = len(test_target)
673
        else:
lintangsutawika's avatar
lintangsutawika committed
674
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
675
                test_target = test_choice[test_target]
676
            else:
lintangsutawika's avatar
lintangsutawika committed
677
                test_target = str(test_target)
678

679
680
681
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
682
            check_choices = [test_target]
683
684
685
686
687
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
                    True if self.config.target_delimiter[-1].isspace() else False
688
                )
689

690
691
692
693
694
695
696
697
698
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" does not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

Ethan Smith's avatar
Ethan Smith committed
699
    def download(self, dataset_kwargs=None) -> None:
700
701
702
703
704
705
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
706
    def has_training_docs(self) -> bool:
707
        if self.config.training_split is not None:
708
709
710
711
            return True
        else:
            return False

baberabb's avatar
baberabb committed
712
    def has_validation_docs(self) -> bool:
713
        if self.config.validation_split is not None:
714
715
716
717
            return True
        else:
            return False

baberabb's avatar
baberabb committed
718
    def has_test_docs(self) -> bool:
719
        if self.config.test_split is not None:
720
721
722
723
            return True
        else:
            return False

baberabb's avatar
baberabb committed
724
    def training_docs(self) -> datasets.Dataset:
725
        if self.has_training_docs():
726
727
728
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
729
                )
730
            return self.dataset[self.config.training_split]
731

baberabb's avatar
baberabb committed
732
    def validation_docs(self) -> datasets.Dataset:
733
        if self.has_validation_docs():
734
735
736
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
737
                )
738
            return self.dataset[self.config.validation_split]
739

baberabb's avatar
baberabb committed
740
    def test_docs(self) -> datasets.Dataset:
741
        if self.has_test_docs():
742
743
744
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
745

746
    def fewshot_docs(self):
747
748
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
749
        else:
750
            if self.config.num_fewshot > 0:
751
                eval_logger.warning(
752
                    f"Task '{self.config.task}': "
753
754
755
756
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
757

758
759
760
761
762
763
764
765
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

766
    def should_decontaminate(self):
767
        return self.config.should_decontaminate
768
769

    def doc_to_decontamination_query(self, doc):
770
771
772
        if self.config.should_decontaminate:
            if self.config.doc_to_decontamination_query in self.features:
                return doc[self.config.doc_to_decontamination_query]
773
774
            else:
                return ast.literal_eval(
775
                    utils.apply_template(self.config.doc_to_decontamination_query, doc)
776
                )
777

778
779
780
781
782
783
784
785
786
787
788
789
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
790
791
        if self.prompt is not None:
            doc_to_text = self.prompt
792
        else:
793
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
794

795
796
797
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
798
            if doc_to_text in self.features:
799
                # if self.config.doc_to_choice is not None:
800
801
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
802
803
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
804
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
805
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
806
807
808
                    return ast.literal_eval(text_string)
                else:
                    return text_string
809
        elif callable(doc_to_text):
810
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
811
        # Used when applying a Promptsource template
812
        elif hasattr(doc_to_text, "apply"):
813
814
815
816
817
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
818
                return self.config.fewshot_delimiter
819
        else:
820
            print(type(doc_to_text))
821
            raise TypeError
822

823
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
824
825
        if self.prompt is not None:
            doc_to_target = self.prompt
826
        else:
827
            doc_to_target = self.config.doc_to_target
828

829
830
831
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
832
            if doc_to_target in self.features:
833
                # if self.config.doc_to_choice is not None:
834
835
836
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
837
            else:
lintangsutawika's avatar
lintangsutawika committed
838
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
839
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
840
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
841
842
843
844
845
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
846
847
848
849
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
850
851
                else:
                    return target_string
852
853
        elif type(doc_to_target) == list:
            return doc_to_target
854
        elif callable(doc_to_target):
855
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
856
        # Used when applying a Promptsource template
857
        elif hasattr(doc_to_target, "apply"):
858
            applied_prompt = doc_to_target.apply(doc)
859
860
861
862
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
863
                return self.config.fewshot_delimiter
864
865
        else:
            raise TypeError
866

baberabb's avatar
baberabb committed
867
    def doc_to_choice(self, doc: Any) -> List[str]:
868
869
        if self.prompt is not None:
            doc_to_choice = self.prompt
870
        elif self.config.doc_to_choice is None:
871
872
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
873
            doc_to_choice = self.config.doc_to_choice
874
875
876
877
878
879
880
881
882
883
884
885
886

        if type(doc_to_choice) == str:
            return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
887

888
    def gold_alias(self, doc):
889
890
891
892
893
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
894
895
        if self.config.gold_alias is not None:
            doc_to_target = self.config.gold_alias
896
        else:
lintangsutawika's avatar
lintangsutawika committed
897
            return self.doc_to_target(doc)
898
899
900
901
902
903
904
905
906
907

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

baberabb's avatar
baberabb committed
908
909
910
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
911
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
912
            arguments = (ctx, self.doc_to_target(doc))
913
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
914
            arguments = (self.doc_to_target(doc),)
915
        elif self.OUTPUT_TYPE == "multiple_choice":
916
            choices = self.doc_to_choice(doc)
917
            target_delimiter = self.config.target_delimiter
918
919
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
920
                cont = self.doc_to_target(doc)
921
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
922
            else:
923
                # Otherwise they are placed in the continuation
924
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
925

926
            request_list = [
927
928
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
929
                    doc=doc,
930
                    arguments=arg,
931
                    idx=i,
932
933
                    **kwargs,
                )
934
                for i, arg in enumerate(arguments)
935
            ]
936
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
937
            if "acc_mutual_info" in self._metric_fn_list.keys():
938
939
940
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
941
                # here mutual info refers to calculating
942
943
944
945
946
947
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
948
                            doc=doc,
949
                            arguments=("", "{}".format(choice)),
950
951
952
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
953
                        for i, choice in enumerate(choices)
954
955
956
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
957

958
        elif self.OUTPUT_TYPE == "generate_until":
959
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
960
961

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
962
963
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
964
965

    def process_results(self, doc, results):
966
967
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
968

969
        result_dict = {}
970
        use_metric = list(self._metric_fn_list.keys())
971
972
973
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
974
975
976
977
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
978
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
979
            (loglikelihood,) = results
980
981
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
982
            return {
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
998
            }
999
        elif self.OUTPUT_TYPE == "multiple_choice":
1000
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1001

1002
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1003
            choices = self.doc_to_choice(doc)
1004
1005
            completion_len = np.array([float(len(i)) for i in choices])

1006
1007
            if (
                2 * len(choices) == len(lls)
1008
                and "acc_mutual_info" in self._metric_fn_list.keys()
1009
1010
1011
1012
1013
1014
1015
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1016

1017
1018
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1019

1020
1021
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1022
            else:
1023
                gold = self.doc_to_target(doc)
1024
1025
1026

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1027
1028
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1029
1030
1031
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1032
                    gold = gold if gold < len(choices) else -100
1033
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1034
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1035

Lintang Sutawika's avatar
Lintang Sutawika committed
1036
                if gold == -100:
1037
1038
1039
1040
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1041
                    f"Label index was not in within range of available choices,"
1042
1043
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1044

1045
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1046
1047
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1048
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1049
1050
1051
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1052
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1053
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1054
1055

            result_dict = {
1056
                **({"acc": acc} if "acc" in use_metric else {}),
1057
1058
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1059
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1060
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1061
1062
            }

1063
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1064
1065
1066
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1067
1068
1069
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1070
        elif self.OUTPUT_TYPE == "generate_until":
1071
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1072
            result = results[0]
1073
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1074
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1075
                # it assumes that doc_to_target returns a number.
1076
1077
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1078
1079
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1080
                gold = list(gold)
Chris's avatar
Chris committed
1081
1082
1083
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1084

lintangsutawika's avatar
lintangsutawika committed
1085
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1086
1087
1088
1089
1090
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1091
1092
1093
1094
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1095
                    for gold_option in gold:
1096
                        try:
1097
                            result_score = self._metric_fn_list[metric](
1098
1099
                                references=[gold_option],
                                predictions=[result],
1100
                                **self._metric_fn_kwargs[metric],
1101
                            )
baberabb's avatar
baberabb committed
1102
1103
1104
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1105
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1106
1107
1108
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1109
                            # TODO: this handles the case where HF evaluate returns a dict.
1110
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1111
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1112
                    if any(scores):
1113
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1114
                    else:
1115
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1116
                else:
1117
                    try:
1118
                        result_score = self._metric_fn_list[metric](
1119
1120
                            references=[gold],
                            predictions=[result],
1121
                            **self._metric_fn_kwargs[metric],
1122
                        )
baberabb's avatar
baberabb committed
1123
1124
1125
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1126
                        result_score = self._metric_fn_list[metric]([gold, result])
1127
1128
1129
1130
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1131
        else:
lintangsutawika's avatar
lintangsutawika committed
1132
1133
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1134
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1135
            )
1136
1137
1138
1139
1140
1141
1142

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1143
        return self._higher_is_better
1144
1145
1146
1147
1148


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1149
    def doc_to_target(self, doc: dict) -> str:
1150
1151
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1152
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1153
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1154
1155
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1156
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1157
                doc=doc,
1158
                arguments=(ctx, " {}".format(choice)),
1159
                idx=i,
1160
1161
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1162
1163
            for i, choice in enumerate(doc["choices"])
        ]
1164

baberabb's avatar
baberabb committed
1165
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1166
1167
1168
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1180
    def higher_is_better(self) -> dict:
1181
1182
1183
1184
1185
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1186
    def aggregation(self) -> dict:
1187
1188
1189
1190
1191
1192
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1193
class PerplexityTask(Task):
1194
1195
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1196
    def has_training_docs(self) -> bool:
1197
1198
        return False

baberabb's avatar
baberabb committed
1199
    def fewshot_examples(self, k: int, rnd) -> List:
1200
1201
1202
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1203
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1204
1205
1206
1207
1208
1209
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1210
    def higher_is_better(self) -> dict:
1211
1212
1213
1214
1215
1216
1217
1218
1219
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1220
    def doc_to_text(self, doc) -> str:
1221
1222
1223
1224
1225
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1226
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1227
1228
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1229
1230
1231
1232
1233
1234
1235
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1236

baberabb's avatar
baberabb committed
1237
    def process_results(self, doc: dict, results: float) -> dict:
1238
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1239
1240
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1241
1242
1243
1244
1245
1246
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1247
    def aggregation(self) -> dict:
1248
1249
1250
1251
1252
1253
1254
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1255
    def count_bytes(cls, doc) -> int:
1256
1257
1258
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1259
    def count_words(cls, doc) -> int:
1260
1261
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))