Unverified Commit 692e0f83 authored by Baber Abbasi's avatar Baber Abbasi Committed by GitHub
Browse files

Call "exact_match" once for each multiple-target sample (#1266)

* Refine scoring logic for multiple_target "exact_match" metric

* skip old tests from master

* skip old tests from master

* delete tests from master
parent 9b0b15b1
......@@ -61,7 +61,7 @@ jobs:
# pip install bleurt@https://github.com/google-research/bleurt/archive/b610120347ef22b494b6d69b4316e303f5932516.zip#egg=bleurt
# if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Test with pytest
run: python -m pytest --showlocals -s -vv -n=auto --ignore=tests/tests_master --ignore=tests/extra
run: python -m pytest --showlocals -s -vv -n=auto
- name: Archive artifacts
uses: actions/upload-artifact@v3
with:
......
......@@ -1131,27 +1131,36 @@ class ConfigurableTask(Task):
# sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
# print(gold)
gold = [gold]
for gold_option in gold:
try:
result_score = self._metric_fn_list[metric](
references=[gold_option],
predictions=[result],
**self._metric_fn_kwargs[metric],
)
except (
TypeError
): # TODO: this is hacky and I don't want to do it
result_score = self._metric_fn_list[metric](
[gold_option, result]
)
if isinstance(result_score, dict):
# TODO: this handles the case where HF evaluate returns a dict.
result_score = result_score[metric]
scores.append(result_score)
if any(scores):
result_score = 1.0
if metric == "exact_match":
result = [result for _ in range(len(gold))]
scores = self._metric_fn_list[metric](
references=gold,
predictions=result,
**self._metric_fn_kwargs[metric],
)[metric]
result_score = 1.0 if scores > 0.0 else 0.0
else:
result_score = 0.0
for gold_option in gold:
try:
result_score = self._metric_fn_list[metric](
references=[gold_option],
predictions=[result],
**self._metric_fn_kwargs[metric],
)
except (
TypeError
): # TODO: this is hacky and I don't want to do it
result_score = self._metric_fn_list[metric](
[gold_option, result]
)
if isinstance(result_score, dict):
# TODO: this handles the case where HF evaluate returns a dict.
result_score = result_score[metric]
scores.append(result_score)
if any(scores):
result_score = 1.0
else:
result_score = 0.0
else:
try:
result_score = self._metric_fn_list[metric](
......
import random
import lm_eval.models
import lm_eval.tasks
def test_description():
seed = 42
num_examples = 1
task_names = ["arc_challenge", "arc_easy"]
description_dict = {
"arc_challenge": "Label for the relevant action:\nSentences describing context, with an incomplete sentence trailing answer that plausibly completes the situation.",
"lambada": "Winograd schema sentence including a either a ___ blank with a missing word, making the pronoun ambiguous, or the same with the word filled in.",
}
task_dict = lm_eval.tasks.get_task_dict(task_names)
for task_name, task in task_dict.items():
# patch description field in task (# TODO: make this much more cleaned up)
task._config.description = description_dict[task_name]
rnd = random.Random()
rnd.seed(seed)
if task.has_training_docs():
docs = task.training_docs()
elif set == "val" and task.has_validation_docs():
docs = task.validation_docs()
elif set == "test" and task.has_test_docs():
docs = task.test_docs()
description = (
description_dict[task_name]
if description_dict and task_name in description_dict
else ""
)
for _, doc in (
zip(range(num_examples), docs) if num_examples > 0 else enumerate(docs)
):
ctx = task.fewshot_context(
doc=doc,
num_fewshot=1,
)
assert description in ctx
import glob
import logging
import os
import shutil
from collections import Counter
from lm_eval.decontamination.archiver import Archive, TextReader
from lm_eval.decontamination.janitor import Janitor, word_ngrams
from scripts.clean_training_data.generate_13_grams import do_ngrams_in_buckets
logger = logging.getLogger(__name__)
def test_generate_13_grams_1(caplog):
data = """A goose (plural geese) is a bird of any of several waterfowl species in the family Anatidae.
This group comprises the genera Anser (the grey geese and white geese) and Branta (the black geese).
Some other birds, mostly related to the shelducks, have "goose" as part of their names.
More distantly related members of the family Anatidae are swans, most of which are larger
than true geese, and ducks, which are smaller. The term "goose" may refer to either a male
or female bird, but when paired with "gander", refers specifically to a female one (the latter referring
to a male). Young birds before fledging are called goslings. The collective noun for a group of
geese on the ground is a gaggle; when in flight, they are called a skein, a team, or a wedge; when
flying close together, they are called a plump."""
data = data + data
# Simple Generation
print("simple generation")
n = 13
janitor = Janitor()
ngrams = word_ngrams(janitor.normalize_string(data), n)
comparison = list(ngrams)
comparison_counter = Counter(comparison)
print(len(comparison))
# print(comparison)
# Generating into buckets
print("bucket generation")
test_working_directory = "test_generate_13_grams"
try:
shutil.rmtree(test_working_directory)
except FileNotFoundError:
pass
os.makedirs(test_working_directory)
assert not os.path.exists("../pile")
os.makedirs("../pile")
archive = Archive(os.path.join("../pile", "test.jsonl.zst"))
archive.add_data(data)
archive.commit()
bucket_count = 4
do_ngrams_in_buckets(n, test_working_directory, bucket_count)
# Rebuild from buckets
print("rebuild")
rebuilt_ngrams = []
bucket_file_paths = glob.glob(
os.path.join(test_working_directory, "output", "*.bkt.txt")
)
for bucket_file_path in bucket_file_paths:
reader = TextReader(bucket_file_path)
for line in reader.read():
[ngram, document_id] = line.rsplit(" ", 1)
rebuilt_ngrams.append(ngram)
# Compare
print("compare")
result_counter = Counter(rebuilt_ngrams)
# print(len(result_counter))
# print(len(comparison_counter))
assert len(result_counter) == len(comparison_counter)
# print(result_counter)
# print(comparison_counter)
assert comparison_counter == result_counter
import hashlib
import json
import os
import pickle
import unittest.mock as mock
import pytest
from openai import OpenAI
import lm_eval.models as models
client = OpenAI()
LOGLIKELIHOOD_TEST_CASES = [
("The quick brown fox jumps over the lazy", " dog"),
("The quick brown fox jumps over the lazy", " cat"),
("The quick brown fox jumps over the lazy", ", lazy dog"),
("The quick brown fox jumps over the lazy", ", lazy fox"),
(
"The quick brown fox jumps over the lazy",
", lazy fox and they both fall to the ground",
),
(
"""A mult""",
"""ilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN)""",
),
(
"""The term MLP is used ambiguously, sometimes loosely to any feedforward ANN, sometimes strictly to refer to networks composed of multiple layers of perceptrons""",
""" (with threshold activation); see § Terminology""",
),
(
"""Multilayer perceptrons are sometimes coll""",
"""oquially referred to as "vanilla" neural networks, especially when they have a single hidden layer.[1]""",
),
(
"""An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear""",
""" activation function.""",
),
(
"""MLP utilizes a supervised""",
""" learning technique called backpropagation for training.[2][3] Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish data that is not linearly separable.[4]""",
),
(
"""Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic""",
""" in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. """,
),
(
"""Specifically, we train GPT-3, an autoregressive language model with 175""",
""" billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.""",
),
(
"""A mult""",
"""ilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN)""",
),
("""Hello""", """ World"""),
]
# Test HuggingFace Models (GPT-2)
def test_gpt2():
gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
(
(ll_dog, ig_dog),
(ll_cat, ig_cat),
(_, ll_max_0),
(_, ll_max_1),
(_, ll_max_2),
*vals,
) = gpt2.loglikelihood(LOGLIKELIHOOD_TEST_CASES)
assert ll_dog > ll_cat
assert not ig_cat
assert not ll_max_0
assert ll_max_1
assert ll_max_2
# test empty context
gpt2.loglikelihood([("", "test")])
(gen,) = gpt2.generate_until(
[("The quick brown fox jumps over the lazy", [".", "\n"])]
)
assert gen == ", lazy fox and they both fall to the ground"
targets = [
-61.60536193847656,
-56.57843780517578,
-62.131004333496094,
-9.799489974975586,
-153.96334838867188,
-341.222900390625,
-731.1475830078125,
-61.60536193847656,
-8.682319641113281,
]
for (pred, _), tgt in zip(vals, targets):
assert pred == pytest.approx(tgt, rel=1e-3)
def test_gpt2_perplexity():
gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
test_string = "We study empirical scaling laws for language model performance on the cross-entropy loss."
perplexity = gpt2.loglikelihood_rolling([(test_string,)])[0]
tgt = sum(
[
-4.9599953,
-8.069298,
-8.308624,
-10.178513,
-8.906924,
-1.9318912,
-7.745445,
-7.146077,
-5.2072,
-3.5882986,
-1.9957212,
-8.044922,
-0.20841774,
-5.1096807,
-0.099879116,
-8.888423,
-4.6180487,
]
)
assert perplexity == pytest.approx(tgt, rel=1e-3)
with mock.patch.object(
models.gpt2.HFLM, "max_length", new_callable=mock.PropertyMock
) as mock_max_length:
mock_max_length.return_value = 5
gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
perplexity = gpt2.loglikelihood_rolling([(test_string,)])[0]
tgt = sum(
[
-4.96001,
-8.069275,
-8.308612,
-10.178482,
-8.90691,
-4.037338,
-8.09261,
-11.662385,
-10.206891,
-4.425003,
-2.2563353,
-7.909143,
-1.9304147,
-7.3610134,
-2.3120654,
-7.3229,
-2.1643813,
]
)
assert perplexity == pytest.approx(tgt, rel=1e-3)
# Test OpenAI Models (GPT-3)
def openai_mock_completion(**kwargs):
# Mock completion function
# Loads from a cached+pickled response if it exists, otherwise it will actually try to ping
os.makedirs("tests/testdata", exist_ok=True)
hash = hashlib.sha256(
json.dumps(kwargs, sort_keys=True).encode("utf-8")
).hexdigest()
fname = f"tests/testdata/gpt3_test_{hash}.pkl"
if os.path.exists(fname):
with open(fname, "rb") as fh:
return pickle.load(fh)
ret = client.completions.create(**kwargs)
ret.api_key = ""
with open(fname, "wb") as fh:
pickle.dump(ret, fh)
return ret
@mock.patch("lm_eval.models.gpt3.oa_completion", new=openai_mock_completion)
def test_gpt3():
if "OPENAI_API_SECRET_KEY" not in os.environ:
os.environ["OPENAI_API_SECRET_KEY"] = ""
gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
(
(ll_dog, ig_dog),
(ll_cat, ig_cat),
(_, ll_max_0),
(_, ll_max_1),
(_, ll_max_2),
*vals,
) = gpt3.loglikelihood(LOGLIKELIHOOD_TEST_CASES)
assert ll_dog > ll_cat
assert not ig_cat
assert ig_dog
assert not ll_max_0
assert not ll_max_1
assert not ll_max_2
# test empty context
gpt3.loglikelihood([("", "test")])
(gen,) = gpt3.generate_until(
[("The quick brown fox jumps over the lazy", [".", "\n"])]
)
assert gen == " dog"
print([x[0] for x in vals])
targets = [
-34.848301606999996,
-47.148329679999996,
-45.44380149599999,
-5.285246016,
-133.97821690686004,
-321.2616693239001,
-658.0299524401041,
-34.848301606999996,
-7.525115,
]
for (pred, _), tgt in zip(vals, targets):
assert pred == pytest.approx(tgt, rel=1e-3)
@mock.patch("lm_eval.models.gpt3.oa_completion", new=openai_mock_completion)
def test_gpt3_perplexity():
if "OPENAI_API_SECRET_KEY" not in os.environ:
os.environ["OPENAI_API_SECRET_KEY"] = ""
gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
test_string = "We study empirical scaling laws for language model performance on the cross-entropy loss."
perplexity = gpt3.loglikelihood_rolling([(test_string,)])[0]
tgt = -84.38819608
assert perplexity == pytest.approx(tgt, rel=1e-3)
# Hack: modify gpt3 to have shorter context length to induce rolling windows
with mock.patch.object(
models.gpt3.GPT3LM, "max_length", new_callable=mock.PropertyMock
) as mock_max_length:
mock_max_length.return_value = 5
gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
perplexity = gpt3.loglikelihood_rolling([(test_string,)])[0]
tgt = -101.81967209999999
assert perplexity == pytest.approx(tgt, rel=1e-3)
# Test TextSynth Models (GPT-J)
def textsynth_mock_completion(**kwargs):
# Mock completion function
# Loads from a cached+pickled response if it exists, otherwise it will actually try to ping
import requests
os.makedirs("tests/testdata", exist_ok=True)
hash_kwargs = {k: v for k, v in kwargs.items() if k != "headers"}
hash = hashlib.sha256(
json.dumps(hash_kwargs, sort_keys=True).encode("utf-8")
).hexdigest()
fname = f"tests/testdata/textsynth_test_{hash}.pkl"
if os.path.exists(fname):
with open(fname, "rb") as fh:
return pickle.load(fh)
ret = requests.post(**kwargs)
with open(fname, "wb") as fh:
pickle.dump(ret, fh)
return ret
@mock.patch(
"lm_eval.models.textsynth.textsynth_completion", new=textsynth_mock_completion
)
def test_textsynth():
if "TEXTSYNTH_API_SECRET_KEY" not in os.environ:
os.environ["TEXTSYNTH_API_SECRET_KEY"] = ""
textsynth = models.get_model("textsynth").create_from_arg_string("engine=gptj_6B")
(
(ll_dog, ig_dog),
(ll_cat, ig_cat),
(_, ll_max_0),
(_, ll_max_1),
(_, ll_max_2),
*vals,
) = textsynth.loglikelihood(LOGLIKELIHOOD_TEST_CASES)
assert ll_dog > ll_cat
assert not ig_cat
assert ig_dog
assert not ll_max_0
assert not ll_max_1
assert not ll_max_2
# test empty context
textsynth.loglikelihood([("", "test")])
(gen,) = textsynth.generate_until(
[("The quick brown fox jumps over the lazy", [".", "\n"])]
)
assert gen == " dog"
print([x[0] for x in vals])
targets = [
-17.90513712817,
-41.83518912287,
-33.82445643841,
-2.377361565302,
-99.53018069754,
-243.5642283598,
-528.6862613790,
-17.90513712817,
-5.041000672142,
]
for (pred, _), tgt in zip(vals, targets):
assert pred == pytest.approx(tgt, rel=1e-3)
import collections
import hashlib
import json
import os
import random
import pytest
import lm_eval.evaluator as evaluator
import lm_eval.models as models
import lm_eval.tasks as tasks
os.makedirs("tests/testdata", exist_ok=True)
def assert_target(name, ob):
fname = f"tests/testdata/{name}.json"
if os.path.exists(fname):
with open(fname) as fh:
# Use relative tolerance of 1e-5 and absolute tolerance of 1e-8
# assuming most metrics work on `float32` values, which is the common
# default floating type across popular libraries (PyTorch, Tensorflow, and JAX).
assert flatten(json.load(fh)) == pytest.approx(
flatten(json.loads(json.dumps(ob, sort_keys=True))), rel=1e-5, abs=1e-8
)
else:
with open(fname, "w") as fh:
json.dump(ob, fh, sort_keys=True)
def assert_target_hashed(name, ob):
fname = f"tests/testdata/{name}"
if os.path.exists(fname):
with open(fname) as fh:
assert (
fh.read()
== hashlib.sha256(
json.dumps([o.__dict__ for o in ob], sort_keys=True).encode("utf-8")
).hexdigest()
)
else:
with open(fname, "w") as fh:
fh.write(
hashlib.sha256(
json.dumps([o.__dict__ for o in ob], sort_keys=True).encode("utf-8")
).hexdigest()
)
# from https://stackoverflow.com/a/6027615
def flatten(d, parent_key="", sep="."):
items = []
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, collections.abc.MutableMapping):
items.extend(flatten(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
# make sure eval results for a task version are stable
@pytest.mark.parametrize("taskname,task_class", tasks.TASK_REGISTRY.items())
def test_versions_stable(taskname, task_class):
task_dict = tasks.get_task_dict([taskname])
lm = models.get_model("dummy")()
def ll_fn(reqs):
for ctx, cont in [req.args for req in reqs]:
if len(ctx) == 0:
continue
# space convention
assert ctx[-1] != " "
assert cont[0] == " " or ctx[-1] == "\n"
assert_target_hashed(f"{taskname}-v{task_class.VERSION}-loglikelihood", reqs)
res = []
random.seed(42)
for _ in reqs:
res.append((-random.random(), False))
return res
def ll_perp_fn(reqs):
for (string,) in [req.args for req in reqs]:
assert isinstance(string, str)
assert_target_hashed(
f"{taskname}-v{task_class.VERSION}-loglikelihood_rolling", reqs
)
res = []
random.seed(42)
for _ in reqs:
res.append(-random.random())
return res
def generate_until(reqs):
res = []
assert_target_hashed(f"{taskname}-v{task_class.VERSION}-generate_until", reqs)
for ctx, _ in [req.args for req in reqs]:
res.append("lol")
assert ctx.strip() != ""
return res
lm.loglikelihood = ll_fn
lm.loglikelihood_rolling = ll_perp_fn
lm.generate_until = generate_until
limit = None
result = evaluator.evaluate(
lm=lm,
task_dict=task_dict,
num_fewshot=0,
limit=limit,
bootstrap_iters=10,
)
assert_target(f"{taskname}-v{task_class.VERSION}-res", result)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment