task.py 48.7 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
7
8
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
from typing import Any, List, Literal, Tuple, Union
9
10
11
12
13

import datasets
import numpy as np

from lm_eval import utils
14
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
15
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
16
from lm_eval.api.metrics import (
17
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
18
19
20
21
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
22
23
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
24
    get_aggregation,
25
    get_metric,
26
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
27
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
28
)
29
30
31
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

32

33
34
35
36
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
37
    "generate_until",
38
39
]

lintangsutawika's avatar
lintangsutawika committed
40

41
eval_logger = logging.getLogger("lm-eval")
42

lintangsutawika's avatar
lintangsutawika committed
43

44
45
@dataclass
class TaskConfig(dict):
46
    # task naming/registry
47
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
48
    task_alias: str = None
49
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
50
    group_alias: Union[str, list] = None
51
52
53
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
54
55
    dataset_path: str = None
    dataset_name: str = None
56
    dataset_kwargs: dict = None
57
58
59
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
60
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
61
62
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
63
    process_docs: Callable = None
64
65
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
66
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
67
    process_results: Union[Callable, str] = None
68
    use_prompt: str = None
69
    description: str = ""
70
71
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
72
    fewshot_config: dict = None
73
    # runtime configuration options
74
    num_fewshot: int = None
75
    # scoring options
76
    metric_list: list = None
77
    output_type: str = "generate_until"
78
    generation_kwargs: dict = None
79
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
80
    filter_list: Union[str, list] = None
81
82
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
83

lintangsutawika's avatar
lintangsutawika committed
84
85
86
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
87

Ethan Smith's avatar
Ethan Smith committed
88
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
89
        if self.generation_kwargs is not None:
90
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
91
                eval_logger.warning(
92
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
93
                )
94
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
95
96
97
98
99
100
101

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
102
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
103
        else:
104
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
107
                    "until": None
108
109
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
110
111
                    "do_sample": False,
                }
112

haileyschoelkopf's avatar
haileyschoelkopf committed
113
114
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

115
116
117
    def __getitem__(self, item):
        return getattr(self, item)

118
119
120
    def __setitem__(self, item, value):
        return setattr(self, item, value)

121
    def to_dict(self):
122
123
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
124
        Used for dumping results alongside full task configuration
125

haileyschoelkopf's avatar
haileyschoelkopf committed
126
127
128
129
130
131
132
133
134
135
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
139
        return cfg_dict
140

141
142
143
144
145
146
147
148
149
150
151
152

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
153

154
155
156
157
158
159
160
161
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
162

163
164
165
166
167
168
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
169
    ) -> None:
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
196
        self._config = TaskConfig({**config}) if config else TaskConfig()
197

lintangsutawika's avatar
lintangsutawika committed
198
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
199

Ethan Smith's avatar
Ethan Smith committed
200
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
225
226
227
228
229
230
231
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
232

233
234
235
236
237
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

274
275
276
277
278
279
280
281
282
283
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
284
            eval_logger.warning(
285
                "has_training_docs and has_validation_docs are False"
286
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
287
            )
288
289
            return self.test_docs()

290
291
292
293
294
295
296
297
298
299
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
300

301
302
303
304
305
306
307
308
309
310
311
312
313
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
314
    def doc_to_decontamination_query(self, doc) -> None:
315
316
317
318
319
320
321
322
323
324
325
326
327
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
328
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
329
330
331
332
333
334
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
335
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
336

337
        eval_logger.info(f"Building contexts for task on rank {rank}...")
338

339
        instances = []
340
341
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
342
        ):
343
            # sample fewshot context #TODO: need to offset doc_id by rank now!
344
            fewshot_ctx = self.fewshot_context(
345
                doc,
346
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
347
            )
348

349
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
350
351
352
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
353
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
354
            )
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
380
            The number of times each instance in a dataset is inferred on. Defaults to 1,
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
416
417
418
419
420
421
422
423
424
425
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

426
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
427
    def fewshot_context(
428
429
430
431
432
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
433
    ):
434
435
436
437
438
439
440
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
441
442
443
444
445
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
446
447
448
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
449
450
451
452
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

453
        description = description if description else ""
454
455

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
456
            labeled_examples = ""
457
        else:
lintangsutawika's avatar
lintangsutawika committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
482
            )
483
484

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
485
        return description + labeled_examples + example
486
487

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
488
489
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
490
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
491
492
493
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
494

baberabb's avatar
baberabb committed
495
    def dump_config(self) -> dict:
496
        """Returns a dictionary representing the task's config.
497
498
499
500
501

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
502
        # (num_fewshot)
503
        return self.config.to_dict()
504

505
506

class ConfigurableTask(Task):
507
    VERSION = "Yaml"
508
    OUTPUT_TYPE = None
509
    CONFIG = None
510
511
512

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
513
    ) -> None:  # TODO no super() call here
514
        # Get pre-configured attributes
515
        self._config = self.CONFIG
516

517
        # Use new configurations if there was no preconfiguration
518
        if self.config is None:
519
            self._config = TaskConfig(**config)
520
521
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
522
            if config is not None:
523
                self._config.__dict__.update(config)
524

525
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
526
527
528
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
529

530
531
532
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
533

534
535
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
536

537
538
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
539

540
541
542
543
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
544

545
        if self.config.metric_list is None:
546
            # TODO: handle this in TaskConfig.__post_init__ ?
547
548
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

549
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
550
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
551
                self._metric_fn_kwargs[metric_name] = {}
552
553
554
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
555
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
556
        else:
557
            for metric_config in self.config.metric_list:
558
559
560
561
562
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
563
564
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
565
                }
Chris's avatar
Chris committed
566
567
568
569
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
570

571
                if self.config.process_results is not None:
572
573
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
574
575
576
577
578
579
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
580
581
582
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
583
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
584

585
                if "aggregation" in metric_config:
586
                    agg_name = metric_config["aggregation"]
587
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
588
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
589
                    elif callable(agg_name):  # noqa: E721
590
591
592
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
593
                else:
594
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
595
                    metric_agg = get_metric_aggregation(metric_name)
596
                    eval_logger.warning(
baberabb's avatar
baberabb committed
597
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
598
599
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
600
                    )
601
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
602

603
604
605
606
607
608
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
609
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
610
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
611
                        f"higher_is_better={is_higher_better(metric_name)}"
612
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
613
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
614

615
        self.download(self.config.dataset_kwargs)
616
617
618
        self._training_docs = None
        self._fewshot_docs = None

619
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
620
            self._filters = []
621
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
622
623
624
625
626
627
628
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
629
630
631
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
632
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
633
        else:
634
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
635

636
637
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
638
            self.prompt = get_prompt(
639
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
640
            )
641
642
643
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
644
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
645
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
646
647
648
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
649
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
650

651
        if self.has_test_docs():
652
            self.task_docs = self.test_docs()
653
        elif self.has_validation_docs():
654
            self.task_docs = self.validation_docs()
655
        else:
656
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
657

658
        # Test One Doc
659
        self.features = list(self.task_docs.features.keys())
660
661
        self.multiple_input = 0
        self.multiple_target = 0
662
        test_doc = self.task_docs[0]
663
        test_text = self.doc_to_text(test_doc)
664
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
665

666
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
667
            test_choice = self.doc_to_choice(test_doc)
668
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
669
                eval_logger.error("doc_to_choice must return list")
670
671
            else:
                num_choice = len(test_choice)
672

673
            if isinstance(test_text, int):
674
                self.multiple_input = num_choice
675
676
        else:
            test_choice = None
677

678
        if isinstance(test_target, list):
679
            self.multiple_target = len(test_target)
680
        else:
681
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
682
                test_target = test_choice[test_target]
683
            else:
lintangsutawika's avatar
lintangsutawika committed
684
                test_target = str(test_target)
685

686
687
688
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
689
            check_choices = [test_target]
690
691
692
693
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
694
695
                    True
                    if self.config.target_delimiter.rstrip()
696
                    != self.config.target_delimiter
697
                    else False
698
                )
699

700
                if delimiter_has_whitespace and choice_has_whitespace:
701
702
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
703
704
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
705
                    eval_logger.debug(
706
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
707
708
                    )

Ethan Smith's avatar
Ethan Smith committed
709
    def download(self, dataset_kwargs=None) -> None:
710
711
712
713
714
715
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
716
    def has_training_docs(self) -> bool:
717
        if self.config.training_split is not None:
718
719
720
721
            return True
        else:
            return False

baberabb's avatar
baberabb committed
722
    def has_validation_docs(self) -> bool:
723
        if self.config.validation_split is not None:
724
725
726
727
            return True
        else:
            return False

baberabb's avatar
baberabb committed
728
    def has_test_docs(self) -> bool:
729
        if self.config.test_split is not None:
730
731
732
733
            return True
        else:
            return False

baberabb's avatar
baberabb committed
734
    def training_docs(self) -> datasets.Dataset:
735
        if self.has_training_docs():
736
737
738
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
739
                )
740
            return self.dataset[self.config.training_split]
741

baberabb's avatar
baberabb committed
742
    def validation_docs(self) -> datasets.Dataset:
743
        if self.has_validation_docs():
744
745
746
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
747
                )
748
            return self.dataset[self.config.validation_split]
749

baberabb's avatar
baberabb committed
750
    def test_docs(self) -> datasets.Dataset:
751
        if self.has_test_docs():
752
753
754
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
755

756
    def fewshot_docs(self):
757
758
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
759
        else:
760
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
761
                eval_logger.warning(
762
                    f"Task '{self.config.task}': "
763
764
765
766
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
767

lintangsutawika's avatar
lintangsutawika committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
790
        if isinstance(example, str):
lintangsutawika's avatar
lintangsutawika committed
791
            return labeled_examples + example
792
        elif isinstance(example, list):
lintangsutawika's avatar
lintangsutawika committed
793
            return [labeled_examples + ex for ex in example]
794
        elif isinstance(example, int):
lintangsutawika's avatar
lintangsutawika committed
795
796
797
798
799
800
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

801
802
803
804
805
806
807
808
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

809
    def should_decontaminate(self):
810
        return self.config.should_decontaminate
811
812

    def doc_to_decontamination_query(self, doc):
813
        if self.config.should_decontaminate:
814
815
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
816
            else:
817
818
819
820
821
822
823
824
825
826
827
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
828

829
830
831
832
833
834
835
836
837
838
839
840
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
841
842
        if self.prompt is not None:
            doc_to_text = self.prompt
843
        else:
844
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
845

846
        if isinstance(doc_to_text, int):
847
            return doc_to_text
848
        elif isinstance(doc_to_text, str):
849
            if doc_to_text in self.features:
850
                # if self.config.doc_to_choice is not None:
851
852
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
853
854
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
855
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
856
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
857
858
859
                    return ast.literal_eval(text_string)
                else:
                    return text_string
860
        elif callable(doc_to_text):
861
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
862
        # Used when applying a Promptsource template
863
        elif hasattr(doc_to_text, "apply"):
864
865
866
867
868
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
869
                return self.config.fewshot_delimiter
870
        else:
871
            print(type(doc_to_text))
872
            raise TypeError
873

874
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
875
876
        if self.prompt is not None:
            doc_to_target = self.prompt
877
        else:
878
            doc_to_target = self.config.doc_to_target
879

880
        if isinstance(doc_to_target, int):
881
            return doc_to_target
882
        elif isinstance(doc_to_target, str):
883
            if doc_to_target in self.features:
884
                # if self.config.doc_to_choice is not None:
885
886
887
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
888
            else:
lintangsutawika's avatar
lintangsutawika committed
889
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
890
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
891
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
892
893
894
895
896
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
897
898
899
900
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
901
902
                else:
                    return target_string
903
        elif isinstance(doc_to_target, list):
904
            return doc_to_target
905
        elif callable(doc_to_target):
906
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
907
        # Used when applying a Promptsource template
908
        elif hasattr(doc_to_target, "apply"):
909
            applied_prompt = doc_to_target.apply(doc)
910
911
912
913
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
914
                return self.config.fewshot_delimiter
915
916
        else:
            raise TypeError
917

baberabb's avatar
baberabb committed
918
    def doc_to_choice(self, doc: Any) -> List[str]:
919
920
        if self.prompt is not None:
            doc_to_choice = self.prompt
921
        elif self.config.doc_to_choice is None:
922
923
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
924
            doc_to_choice = self.config.doc_to_choice
925

926
        if isinstance(doc_to_choice, str):
927
928
929
930
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
931
        elif isinstance(doc_to_choice, list):
932
            return doc_to_choice
933
        elif isinstance(doc_to_choice, dict):
934
935
936
937
938
939
940
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
941

baberabb's avatar
baberabb committed
942
943
944
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
945
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
946
            arguments = (ctx, self.doc_to_target(doc))
947
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
948
            arguments = (self.doc_to_target(doc),)
949
        elif self.OUTPUT_TYPE == "multiple_choice":
950
            choices = self.doc_to_choice(doc)
951
            target_delimiter = self.config.target_delimiter
952
953
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
954
                cont = self.doc_to_target(doc)
955
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
956
            else:
957
                # Otherwise they are placed in the continuation
958
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
959

960
            request_list = [
961
962
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
963
                    doc=doc,
964
                    arguments=arg,
965
                    idx=i,
966
967
                    **kwargs,
                )
968
                for i, arg in enumerate(arguments)
969
            ]
970
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
971
            if "acc_mutual_info" in self._metric_fn_list.keys():
972
973
974
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
975
                # here mutual info refers to calculating
976
977
978
979
980
981
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
982
                            doc=doc,
983
                            arguments=("", "{}".format(choice)),
984
985
986
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
987
                        for i, choice in enumerate(choices)
988
989
990
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
991

992
        elif self.OUTPUT_TYPE == "generate_until":
993
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
994
995

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
996
997
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
998
999

    def process_results(self, doc, results):
1000
1001
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1002

1003
        result_dict = {}
1004
        use_metric = list(self._metric_fn_list.keys())
1005
1006
1007
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1008
1009
1010
1011
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1012
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1013
            (loglikelihood,) = results
1014
1015
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1016
            return {
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1032
            }
1033
        elif self.OUTPUT_TYPE == "multiple_choice":
1034
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1035

1036
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1037
            choices = self.doc_to_choice(doc)
1038
1039
            completion_len = np.array([float(len(i)) for i in choices])

1040
1041
            if (
                2 * len(choices) == len(lls)
1042
                and "acc_mutual_info" in self._metric_fn_list.keys()
1043
1044
1045
1046
1047
1048
1049
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1050

1051
1052
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1053

1054
1055
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1056
            else:
1057
                gold = self.doc_to_target(doc)
1058
1059

            gold_index_error = False
1060
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1061
1062
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1063
1064
                    gold_index_error = True
            else:
1065
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1066
                    gold = gold if gold < len(choices) else -100
1067
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1068
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1069

Lintang Sutawika's avatar
Lintang Sutawika committed
1070
                if gold == -100:
1071
1072
1073
1074
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1075
                    f"Label index was not in within range of available choices,"
1076
1077
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1078

1079
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1080
1081
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1082
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1083
1084
1085
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1086
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1087
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1088
1089

            result_dict = {
1090
                **({"acc": acc} if "acc" in use_metric else {}),
1091
1092
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1093
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1094
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1095
1096
            }

1097
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1098
1099
1100
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1101
1102
1103
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1104
        elif self.OUTPUT_TYPE == "generate_until":
1105
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1106
            result = results[0]
1107
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1108
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1109
                # it assumes that doc_to_target returns a number.
1110
1111
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1112
1113
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1114
                gold = list(gold)
Chris's avatar
Chris committed
1115
1116
1117
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1118

lintangsutawika's avatar
lintangsutawika committed
1119
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1120
1121
1122
1123
1124
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1125
1126
1127
1128
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1129
                    for gold_option in gold:
1130
                        try:
1131
                            result_score = self._metric_fn_list[metric](
1132
1133
                                references=[gold_option],
                                predictions=[result],
1134
                                **self._metric_fn_kwargs[metric],
1135
                            )
baberabb's avatar
baberabb committed
1136
1137
1138
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1139
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1140
1141
1142
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1143
                            # TODO: this handles the case where HF evaluate returns a dict.
1144
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1145
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1146
                    if any(scores):
1147
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1148
                    else:
1149
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1150
                else:
1151
                    try:
1152
                        result_score = self._metric_fn_list[metric](
1153
1154
                            references=[gold],
                            predictions=[result],
1155
                            **self._metric_fn_kwargs[metric],
1156
                        )
1157
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1158
                        result_score = self._metric_fn_list[metric]([gold, result])
1159
1160
1161
1162
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1163
        else:
lintangsutawika's avatar
lintangsutawika committed
1164
1165
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1166
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1167
            )
1168
1169
1170
1171
1172
1173
1174

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1175
        return self._higher_is_better
1176
1177
1178
1179
1180


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1181
    def doc_to_target(self, doc: dict) -> str:
1182
1183
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1184
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1185
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1186
1187
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1188
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1189
                doc=doc,
1190
                arguments=(ctx, " {}".format(choice)),
1191
                idx=i,
1192
1193
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1194
1195
            for i, choice in enumerate(doc["choices"])
        ]
1196

baberabb's avatar
baberabb committed
1197
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1198
1199
1200
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1212
    def higher_is_better(self) -> dict:
1213
1214
1215
1216
1217
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1218
    def aggregation(self) -> dict:
1219
1220
1221
1222
1223
1224
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1225
class PerplexityTask(Task):
1226
1227
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1228
    def has_training_docs(self) -> bool:
1229
1230
        return False

baberabb's avatar
baberabb committed
1231
    def fewshot_examples(self, k: int, rnd) -> List:
1232
1233
1234
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1235
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1236
1237
1238
1239
1240
1241
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1242
    def higher_is_better(self) -> dict:
1243
1244
1245
1246
1247
1248
1249
1250
1251
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1252
    def doc_to_text(self, doc) -> str:
1253
1254
1255
1256
1257
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1258
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1259
1260
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1261
1262
1263
1264
1265
1266
1267
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1268

baberabb's avatar
baberabb committed
1269
    def process_results(self, doc: dict, results: float) -> dict:
1270
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1271
1272
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1273
1274
1275
1276
1277
1278
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1279
    def aggregation(self) -> dict:
1280
1281
1282
1283
1284
1285
1286
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1287
    def count_bytes(cls, doc) -> int:
1288
1289
1290
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1291
    def count_words(cls, doc) -> int:
1292
1293
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))