task.py 49.1 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3

4
import os
5
import re
6
import ast
lintangsutawika's avatar
lintangsutawika committed
7
import yaml
lintangsutawika's avatar
lintangsutawika committed
8
import logging
9
10
11
import evaluate
import random
import itertools
12
import functools
13
from tqdm import tqdm
14
15
16
17

import datasets
import numpy as np

baberabb's avatar
baberabb committed
18
from typing import Union, List, Any, Tuple, Literal
19
from collections.abc import Callable
20

21
from lm_eval import utils
22
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
23
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
24
from lm_eval.api.filter import FilterEnsemble
25
26
27

from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
32
    metric_max_over_ground_truths,
lintangsutawika's avatar
lintangsutawika committed
33
34
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
35
36
    get_metric,
    get_aggregation,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
39
40
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
41
42
    AGGREGATION_REGISTRY,
)
43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

lintangsutawika's avatar
lintangsutawika committed
51

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

55
56
@dataclass
class TaskConfig(dict):
57
    # task naming/registry
58
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
59
    task_alias: str = None
60
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
61
    group_alias: Union[str, list] = None
62
63
64
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
65
66
    dataset_path: str = None
    dataset_name: str = None
67
    dataset_kwargs: dict = None
68
69
70
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
71
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
72
73
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
74
    process_docs: Callable = None
75
76
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
77
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
78
    process_results: Union[Callable, str] = None
79
    use_prompt: str = None
80
    description: str = ""
81
82
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
83
    fewshot_config: dict = None
84
    # runtime configuration options
85
    num_fewshot: int = None
86
    # scoring options
87
    metric_list: list = None
88
    output_type: str = "generate_until"
89
    generation_kwargs: dict = None
90
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
91
    filter_list: Union[str, list] = None
92
93
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
94

lintangsutawika's avatar
lintangsutawika committed
95
96
97
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
98

Ethan Smith's avatar
Ethan Smith committed
99
    def __post_init__(self) -> None:
100
        if self.dataset_path and os.path.exists(os.path.dirname(self.dataset_path)):
lintangsutawika's avatar
lintangsutawika committed
101
102
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
103

lintangsutawika's avatar
lintangsutawika committed
104
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
105

Lintang Sutawika's avatar
Lintang Sutawika committed
106
        if self.generation_kwargs is not None:
107
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
108
                eval_logger.warning(
109
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
110
                )
111
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
112
113
114
115
116
117
118

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
119
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
120
        else:
121
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
124
                    "until": None
125
126
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
127
128
                    "do_sample": False,
                }
129

haileyschoelkopf's avatar
haileyschoelkopf committed
130
131
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

132
133
134
    def __getitem__(self, item):
        return getattr(self, item)

135
136
137
    def __setitem__(self, item, value):
        return setattr(self, item, value)

138
    def to_dict(self):
139
140
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
141
        Used for dumping results alongside full task configuration
142

haileyschoelkopf's avatar
haileyschoelkopf committed
143
144
145
146
147
148
149
150
151
152
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
153
154
155
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
156
        return cfg_dict
157

158
159
160
161
162
163
164
165
166
167
168
169

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
170

171
172
173
174
175
176
177
178
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
179

180
181
182
183
184
185
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
186
    ) -> None:
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
213
        self._config = TaskConfig({**config}) if config else TaskConfig()
214

lintangsutawika's avatar
lintangsutawika committed
215
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
216

Ethan Smith's avatar
Ethan Smith committed
217
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
242
243
244
245
246
247
248
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
249

250
251
252
253
254
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

291
292
293
294
295
296
297
298
299
300
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
301
            eval_logger.warning(
302
                "has_training_docs and has_validation_docs are False"
303
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
304
            )
305
306
            return self.test_docs()

307
308
309
310
311
312
313
314
315
316
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
317

318
319
320
321
322
323
324
325
326
327
328
329
330
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
331
    def doc_to_decontamination_query(self, doc) -> None:
332
333
334
335
336
337
338
339
340
341
342
343
344
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
345
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
346
347
348
349
350
351
352
353
354
355
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

356
        eval_logger.info(f"Building contexts for task on rank {rank}...")
357

358
        instances = []
359
360
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
361
        ):
362
            # sample fewshot context #TODO: need to offset doc_id by rank now!
363
            fewshot_ctx = self.fewshot_context(
364
                doc,
365
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
366
            )
367

368
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
369
370
371
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
372
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
373
            )
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
399
            The number of times each instance in a dataset is inferred on. Defaults to 1,
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
435
436
437
438
439
440
441
442
443
444
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

445
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
446
    def fewshot_context(
447
448
449
450
451
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
452
    ):
453
454
455
456
457
458
459
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
460
461
462
463
464
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
465
466
467
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
468
469
470
471
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

472
        description = description if description else ""
473
474

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
475
            labeled_examples = ""
476
        else:
lintangsutawika's avatar
lintangsutawika committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
501
            )
502
503

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
504
        return description + labeled_examples + example
505
506

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
507
508
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
509
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
510
511
512
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
513

baberabb's avatar
baberabb committed
514
    def dump_config(self) -> dict:
515
        """Returns a dictionary representing the task's config.
516
517
518
519
520

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
521
        # (num_fewshot)
522
        return self.config.to_dict()
523

524
525

class ConfigurableTask(Task):
526
    VERSION = "Yaml"
527
    OUTPUT_TYPE = None
528
    CONFIG = None
529
530
531

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
532
    ) -> None:  # TODO no super() call here
533
        # Get pre-configured attributes
534
        self._config = self.CONFIG
535

536
        # Use new configurations if there was no preconfiguration
537
        if self.config is None:
538
            self._config = TaskConfig(**config)
539
540
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
541
            if config is not None:
542
                self._config.__dict__.update(config)
543

544
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
545
546
547
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
548

549
550
551
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
552

553
554
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
555

556
557
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
558

559
560
561
562
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
563

564
        if self.config.metric_list is None:
565
            # TODO: handle this in TaskConfig.__post_init__ ?
566
567
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

568
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
569
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
570
                self._metric_fn_kwargs[metric_name] = {}
571
572
573
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
574
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
575
        else:
576
            for metric_config in self.config.metric_list:
577
578
579
580
581
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
582
583
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
584
                }
Chris's avatar
Chris committed
585
586
587
588
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
589

590
                if self.config.process_results is not None:
591
592
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
593
594
595
596
597
598
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
599
600
601
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
602
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
603

604
                if "aggregation" in metric_config:
605
                    agg_name = metric_config["aggregation"]
606
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
607
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
608
609
610
611
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
612
                else:
613
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
614
                    metric_agg = get_metric_aggregation(metric_name)
615
                    eval_logger.warning(
baberabb's avatar
baberabb committed
616
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but aggregation is not. "
617
618
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
619
                    )
620
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
621

622
623
624
625
626
627
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
baberabb's avatar
baberabb committed
628
                        f"[Task: {self._config.task}] metric {metric_name} is defined, but higher_is_better is not. "
629
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
630
                        f"higher_is_better={is_higher_better(metric_name)}"
631
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
632
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
633

634
        self.download(self.config.dataset_kwargs)
635
636
637
        self._training_docs = None
        self._fewshot_docs = None

638
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
639
            self._filters = []
640
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
641
642
643
644
645
646
647
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
648
649
650
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
651
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
652
        else:
653
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
654

655
656
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
657
            self.prompt = get_prompt(
658
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
659
            )
660
661
662
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
663
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
664
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
665
666
667
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
668
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
669

670
        if self.has_test_docs():
671
            self.task_docs = self.test_docs()
672
        elif self.has_validation_docs():
673
            self.task_docs = self.validation_docs()
674
675
676
677
678
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

679
        # Test One Doc
680
        self.features = list(self.task_docs.features.keys())
681
682
        self.multiple_input = 0
        self.multiple_target = 0
683
        test_doc = self.task_docs[0]
684
        test_text = self.doc_to_text(test_doc)
685
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
686

687
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
688
689
690
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
691
692
            else:
                num_choice = len(test_choice)
693

694
695
            if type(test_text) is int:
                self.multiple_input = num_choice
696
697
        else:
            test_choice = None
698

699
        if type(test_target) is list:
700
            self.multiple_target = len(test_target)
701
        else:
lintangsutawika's avatar
lintangsutawika committed
702
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
703
                test_target = test_choice[test_target]
704
            else:
lintangsutawika's avatar
lintangsutawika committed
705
                test_target = str(test_target)
706

707
708
709
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
710
            check_choices = [test_target]
711
712
713
714
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
715
716
                    True
                    if self.config.target_delimiter.rstrip()
717
                    != self.config.target_delimiter
718
                    else False
719
                )
720

721
722
723
724
725
726
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
727
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
728
729
                    )

Ethan Smith's avatar
Ethan Smith committed
730
    def download(self, dataset_kwargs=None) -> None:
731
732
733
734
735
736
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
737
    def has_training_docs(self) -> bool:
738
        if self.config.training_split is not None:
739
740
741
742
            return True
        else:
            return False

baberabb's avatar
baberabb committed
743
    def has_validation_docs(self) -> bool:
744
        if self.config.validation_split is not None:
745
746
747
748
            return True
        else:
            return False

baberabb's avatar
baberabb committed
749
    def has_test_docs(self) -> bool:
750
        if self.config.test_split is not None:
751
752
753
754
            return True
        else:
            return False

baberabb's avatar
baberabb committed
755
    def training_docs(self) -> datasets.Dataset:
756
        if self.has_training_docs():
757
758
759
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
760
                )
761
            return self.dataset[self.config.training_split]
762

baberabb's avatar
baberabb committed
763
    def validation_docs(self) -> datasets.Dataset:
764
        if self.has_validation_docs():
765
766
767
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
768
                )
769
            return self.dataset[self.config.validation_split]
770

baberabb's avatar
baberabb committed
771
    def test_docs(self) -> datasets.Dataset:
772
        if self.has_test_docs():
773
774
775
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
776

777
    def fewshot_docs(self):
778
779
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
780
        else:
781
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
782
                eval_logger.warning(
783
                    f"Task '{self.config.task}': "
784
785
786
787
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
788

lintangsutawika's avatar
lintangsutawika committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
        elif type(example) == int:
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

822
823
824
825
826
827
828
829
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

830
    def should_decontaminate(self):
831
        return self.config.should_decontaminate
832
833

    def doc_to_decontamination_query(self, doc):
834
        if self.config.should_decontaminate:
835
836
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
837
            else:
838
839
840
841
842
843
844
845
846
847
848
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
849

850
851
852
853
854
855
856
857
858
859
860
861
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
862
863
        if self.prompt is not None:
            doc_to_text = self.prompt
864
        else:
865
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
866

867
868
869
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
870
            if doc_to_text in self.features:
871
                # if self.config.doc_to_choice is not None:
872
873
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
874
875
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
876
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
877
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
878
879
880
                    return ast.literal_eval(text_string)
                else:
                    return text_string
881
        elif callable(doc_to_text):
882
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
883
        # Used when applying a Promptsource template
884
        elif hasattr(doc_to_text, "apply"):
885
886
887
888
889
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
890
                return self.config.fewshot_delimiter
891
        else:
892
            print(type(doc_to_text))
893
            raise TypeError
894

895
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
896
897
        if self.prompt is not None:
            doc_to_target = self.prompt
898
        else:
899
            doc_to_target = self.config.doc_to_target
900

901
902
903
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
904
            if doc_to_target in self.features:
905
                # if self.config.doc_to_choice is not None:
906
907
908
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
909
            else:
lintangsutawika's avatar
lintangsutawika committed
910
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
911
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
912
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
913
914
915
916
917
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
918
919
920
921
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
922
923
                else:
                    return target_string
924
925
        elif type(doc_to_target) == list:
            return doc_to_target
926
        elif callable(doc_to_target):
927
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
928
        # Used when applying a Promptsource template
929
        elif hasattr(doc_to_target, "apply"):
930
            applied_prompt = doc_to_target.apply(doc)
931
932
933
934
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
935
                return self.config.fewshot_delimiter
936
937
        else:
            raise TypeError
938

baberabb's avatar
baberabb committed
939
    def doc_to_choice(self, doc: Any) -> List[str]:
940
941
        if self.prompt is not None:
            doc_to_choice = self.prompt
942
        elif self.config.doc_to_choice is None:
943
944
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
945
            doc_to_choice = self.config.doc_to_choice
946
947

        if type(doc_to_choice) == str:
948
949
950
951
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
952
953
954
955
956
957
958
959
960
961
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
962

baberabb's avatar
baberabb committed
963
964
965
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
966
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
967
            arguments = (ctx, self.doc_to_target(doc))
968
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
969
            arguments = (self.doc_to_target(doc),)
970
        elif self.OUTPUT_TYPE == "multiple_choice":
971
            choices = self.doc_to_choice(doc)
972
            target_delimiter = self.config.target_delimiter
973
974
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
975
                cont = self.doc_to_target(doc)
976
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
977
            else:
978
                # Otherwise they are placed in the continuation
979
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
980

981
            request_list = [
982
983
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
984
                    doc=doc,
985
                    arguments=arg,
986
                    idx=i,
987
988
                    **kwargs,
                )
989
                for i, arg in enumerate(arguments)
990
            ]
991
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
992
            if "acc_mutual_info" in self._metric_fn_list.keys():
993
994
995
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
996
                # here mutual info refers to calculating
997
998
999
1000
1001
1002
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1003
                            doc=doc,
1004
                            arguments=("", "{}".format(choice)),
1005
1006
1007
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1008
                        for i, choice in enumerate(choices)
1009
1010
1011
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1012

1013
        elif self.OUTPUT_TYPE == "generate_until":
1014
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1015
1016

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1017
1018
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1019
1020

    def process_results(self, doc, results):
1021
1022
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1023

1024
        result_dict = {}
1025
        use_metric = list(self._metric_fn_list.keys())
1026
1027
1028
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1029
1030
1031
1032
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1033
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1034
            (loglikelihood,) = results
1035
1036
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1037
            return {
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1053
            }
1054
        elif self.OUTPUT_TYPE == "multiple_choice":
1055
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1056

1057
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1058
            choices = self.doc_to_choice(doc)
1059
1060
            completion_len = np.array([float(len(i)) for i in choices])

1061
1062
            if (
                2 * len(choices) == len(lls)
1063
                and "acc_mutual_info" in self._metric_fn_list.keys()
1064
1065
1066
1067
1068
1069
1070
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1071

1072
1073
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1074

1075
1076
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1077
            else:
1078
                gold = self.doc_to_target(doc)
1079
1080
1081

            gold_index_error = False
            if type(gold) is list:
Lintang Sutawika's avatar
Lintang Sutawika committed
1082
1083
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1084
1085
1086
                    gold_index_error = True
            else:
                if type(gold) is int:
Lintang Sutawika's avatar
Lintang Sutawika committed
1087
                    gold = gold if gold < len(choices) else -100
1088
                elif type(gold) is str:
Lintang Sutawika's avatar
Lintang Sutawika committed
1089
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1090

Lintang Sutawika's avatar
Lintang Sutawika committed
1091
                if gold == -100:
1092
1093
1094
1095
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1096
                    f"Label index was not in within range of available choices,"
1097
1098
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1099

1100
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1101
1102
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1103
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1104
1105
1106
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1107
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1108
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1109
1110

            result_dict = {
1111
                **({"acc": acc} if "acc" in use_metric else {}),
1112
1113
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1114
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1115
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1116
1117
            }

1118
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1119
1120
1121
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1122
1123
1124
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1125
        elif self.OUTPUT_TYPE == "generate_until":
1126
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1127
            result = results[0]
1128
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1129
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1130
                # it assumes that doc_to_target returns a number.
1131
1132
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1133
1134
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1135
                gold = list(gold)
Chris's avatar
Chris committed
1136
1137
1138
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1139

lintangsutawika's avatar
lintangsutawika committed
1140
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1141
1142
1143
1144
1145
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1146
1147
1148
1149
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1150
                    for gold_option in gold:
1151
                        try:
1152
                            result_score = self._metric_fn_list[metric](
1153
1154
                                references=[gold_option],
                                predictions=[result],
1155
                                **self._metric_fn_kwargs[metric],
1156
                            )
baberabb's avatar
baberabb committed
1157
1158
1159
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1160
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1161
1162
1163
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1164
                            # TODO: this handles the case where HF evaluate returns a dict.
1165
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1166
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1167
                    if any(scores):
1168
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1169
                    else:
1170
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1171
                else:
1172
                    try:
1173
                        result_score = self._metric_fn_list[metric](
1174
1175
                            references=[gold],
                            predictions=[result],
1176
                            **self._metric_fn_kwargs[metric],
1177
                        )
baberabb's avatar
baberabb committed
1178
1179
1180
                    except (
                        TypeError
                    ):  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1181
                        result_score = self._metric_fn_list[metric]([gold, result])
1182
1183
1184
1185
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1186
        else:
lintangsutawika's avatar
lintangsutawika committed
1187
1188
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1189
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1190
            )
1191
1192
1193
1194
1195
1196
1197

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1198
        return self._higher_is_better
1199
1200
1201
1202
1203


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1204
    def doc_to_target(self, doc: dict) -> str:
1205
1206
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1207
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1208
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1209
1210
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1211
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1212
                doc=doc,
1213
                arguments=(ctx, " {}".format(choice)),
1214
                idx=i,
1215
1216
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1217
1218
            for i, choice in enumerate(doc["choices"])
        ]
1219

baberabb's avatar
baberabb committed
1220
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1221
1222
1223
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1235
    def higher_is_better(self) -> dict:
1236
1237
1238
1239
1240
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1241
    def aggregation(self) -> dict:
1242
1243
1244
1245
1246
1247
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1248
class PerplexityTask(Task):
1249
1250
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1251
    def has_training_docs(self) -> bool:
1252
1253
        return False

baberabb's avatar
baberabb committed
1254
    def fewshot_examples(self, k: int, rnd) -> List:
1255
1256
1257
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1258
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1259
1260
1261
1262
1263
1264
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1265
    def higher_is_better(self) -> dict:
1266
1267
1268
1269
1270
1271
1272
1273
1274
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1275
    def doc_to_text(self, doc) -> str:
1276
1277
1278
1279
1280
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1281
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1282
1283
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1284
1285
1286
1287
1288
1289
1290
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1291

baberabb's avatar
baberabb committed
1292
    def process_results(self, doc: dict, results: float) -> dict:
1293
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1294
1295
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1296
1297
1298
1299
1300
1301
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1302
    def aggregation(self) -> dict:
1303
1304
1305
1306
1307
1308
1309
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1310
    def count_bytes(cls, doc) -> int:
1311
1312
1313
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1314
    def count_words(cls, doc) -> int:
1315
1316
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))