task.py 66.4 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
25
import shortuuid
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
31
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.api.registry import (
33
34
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    get_aggregation,
36
    get_metric,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
39
)
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
43
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

44

45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

lintangsutawika's avatar
lintangsutawika committed
55
56
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
57
58
59
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
60
    tag_to_task: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
61
62
63
    aggregate_metric: Optional[str] = False
    aggregate_fn: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
64
    metric_alias: Optional[str] = None  # Still a placeholder
lintangsutawika's avatar
lintangsutawika committed
65
66
67
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
lintangsutawika's avatar
lintangsutawika committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
lintangsutawika's avatar
lintangsutawika committed
88
            if callable(v):
lintangsutawika's avatar
lintangsutawika committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
109
110
111
112
113
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
lintangsutawika's avatar
lintangsutawika committed
114
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
115
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
116
117
118
119
120
        self._config = GroupConfig(**config)

    @property
    def group(self):
        return self._config.group
121

lintangsutawika's avatar
lintangsutawika committed
122
123
124
    @property
    def group_alias(self):
        return self._config.group_alias
125
126
127
128
129

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
130
131
132
133
    @property
    def config(self):
        return self._config.to_dict()

lintangsutawika's avatar
lintangsutawika committed
134
135
    @property
    def task_id(self) -> Any:
lintangsutawika's avatar
lintangsutawika committed
136
137
138
139
140
        return "-".join((self.group_name, self._task_id))

    @property
    def group_name(self) -> Any:
        return self._config.group
lintangsutawika's avatar
lintangsutawika committed
141

lintangsutawika's avatar
lintangsutawika committed
142
143
    def __repr__(self):
        return (
144
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
145
146
        )

147

148
149
@dataclass
class TaskConfig(dict):
150
    # task naming/registry
151
152
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
153
    tag: Optional[Union[str, list]] = None
154
    group: Optional[Union[str, list]] = None
155
156
157
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
158
159
160
161
162
163
164
165
166
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
167
168
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
169
170
171
172
173
174
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
175
    description: str = ""
176
177
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
178
    fewshot_config: Optional[dict] = None
179
    # runtime configuration options
180
    num_fewshot: Optional[int] = None
181
    # scoring options
182
183
184
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
185
    repeats: int = 1
186
    filter_list: Optional[Union[str, list]] = None
187
    should_decontaminate: bool = False
188
189
190
191
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
192

Ethan Smith's avatar
Ethan Smith committed
193
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
194
        if self.generation_kwargs is not None:
195
            if self.output_type != "generate_until":
196
                eval_logger.warning(
197
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
198
199
200
201
202
203
204
205
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
206
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
207
        else:
208
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
209
210
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
211
212
213
214
215
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
216
217
                    "do_sample": False,
                }
218

219
220
221
    def __getitem__(self, item):
        return getattr(self, item)

222
223
224
    def __setitem__(self, item, value):
        return setattr(self, item, value)

225
    def to_dict(self, keep_callable: bool = False) -> dict:
226
227
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
228
        Used for dumping results alongside full task configuration
229

haileyschoelkopf's avatar
haileyschoelkopf committed
230
231
232
233
234
235
236
237
238
239
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
240
241
242
243
244
245
246
247
248
249
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
250
        return cfg_dict
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

268
269
270
271
272
273
274
275
276
277
278

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

279
    VERSION: Optional[Union[int, str]] = None
280

281
282
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
283
    DATASET_PATH: Optional[str] = None
284
285

    # The name of a subset within `DATASET_PATH`.
286
    DATASET_NAME: Optional[str] = None
287

288
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
289

290
291
    def __init__(
        self,
292
293
294
295
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
296
    ) -> None:
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
319
320
321
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
322

323
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
324
        self._task_id = shortuuid.uuid()[:8]
325
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
326

lintangsutawika's avatar
lintangsutawika committed
327
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
328
329
330
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
331

332
333
334
335
336
337
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
362
363
364
365
366
367
368
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
369

370
    @property
371
    def config(self) -> TaskConfig:
372
373
374
        """Returns the TaskConfig associated with this class."""
        return self._config

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

390
    def training_docs(self) -> Iterable:
391
392
393
394
395
396
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

397
    def validation_docs(self) -> Iterable:
398
399
400
401
402
403
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

404
    def test_docs(self) -> Iterable:
405
406
407
408
409
410
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

411
    def fewshot_docs(self) -> Iterable:
412
413
414
415
416
417
418
419
420
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
421
            eval_logger.warning(
422
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
423
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
424
            )
425
426
            return self.test_docs()

427
    def _process_doc(self, doc: dict) -> dict:
428
429
430
431
432
433
434
435
436
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
437

438
    @property
439
    def instances(self) -> List[Instance]:
440
441
442
443
444
445
446
447
448
449
450
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

451
452
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
453
454
455
456
457
458
459
460
461
462
463
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

464
465
    def build_all_requests(
        self,
466
        *,
467
468
469
470
471
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
472
473
474
475
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
476
    ) -> None:
477
        """Build a set of Instances for a task, and store them in task.instances"""
478
479
480
481

        # used with caching
        og_limit = limit

482
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
483
484
485
486
487
488
489
490
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
506
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
507

508
        instances = []
509
510
511
512
513
514
515
516
517
518

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
519
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
520
521
522
523
524
525
526
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
527
        ):
528
            # sample fewshot context #TODO: need to offset doc_id by rank now!
529
            fewshot_ctx = self.fewshot_context(
530
                doc,
531
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
532
533
534
535
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
536
            )
537

538
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
539
540
541
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
542
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
543
            )
544
545
546
547

            if not isinstance(inst, list):
                inst = [inst]

548
549
550
551
552
553
554
555
556
557
558
559
560
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
561

562
563
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
564

565
566
567
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
584
            The number of times each instance in a dataset is inferred on. Defaults to 1,
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

620
621
622
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
623
624
625
626
627
628
629
630
631
632
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

633
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
634
    def fewshot_context(
635
636
637
        self,
        doc,
        num_fewshot,
638
        rnd=None,
639
        description=None,
lintangsutawika's avatar
lintangsutawika committed
640
    ):
641
642
643
644
645
646
647
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
648
649
650
651
652
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
653
654
655
        :returns: str
            The fewshot context.
        """
656
        if rnd is None:
657
658
659
660
661
662
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
663

664
        description = description if description else ""
665
666

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
667
            labeled_examples = ""
668
        else:
lintangsutawika's avatar
lintangsutawika committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
693
            )
694
695

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
696
        return description + labeled_examples + example
697

698
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
699
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
700
701
        if hasattr(self, "_filters"):
            for f in self._filters:
702
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
703
704
705
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
706

baberabb's avatar
baberabb committed
707
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
708
        """Returns the config as a dictionary."""
709
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
710
        # (num_fewshot)
711
        return self.config.to_dict()
712

Baber Abbasi's avatar
Baber Abbasi committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

753
754
755
756
757
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

758
759
760
761
762
763
764
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
765
766
767
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
768
769
770
771
772
773
774
775
776
777
778
779
780

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

781
782
783
    @property
    def task_id(self) -> Any:
        return self._task_id
784

785

786
class ConfigurableTask(Task):
787
    VERSION = "Yaml"
788
    OUTPUT_TYPE = None
789
    CONFIG = None
790
791

    def __init__(
792
793
794
795
796
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
797
    ) -> None:  # TODO no super() call here
lintangsutawika's avatar
lintangsutawika committed
798
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
799
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
800

801
        # Get pre-configured attributes
802
        self._config = self.CONFIG
803

804
        # Use new configurations if there was no preconfiguration
805
        if self.config is None:
806
            self._config = TaskConfig(**config)
807
808
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
809
            if config is not None:
810
                self._config.__dict__.update(config)
811

812
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
813
814
815
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
816

817
818
819
820
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

821
        if self.config.output_type is not None:
822
823
824
825
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
826
            self.OUTPUT_TYPE = self.config.output_type
827

828
829
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
830

831
832
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
833

834
835
836
837
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
838

839
        if self.config.metric_list is None:
840
            # TODO: handle this in TaskConfig.__post_init__ ?
841
842
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

843
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
844
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
845
                self._metric_fn_kwargs[metric_name] = {}
846
847
848
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
849
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
850
        else:
851
            for metric_config in self.config.metric_list:
852
853
854
855
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
856
857
858
859
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
860
861
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
862
                }
Chris's avatar
Chris committed
863
864
865
866
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
867

868
                if self.config.process_results is not None:
869
870
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
871
872
873
874
875
876
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
877
878
879
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
880
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
881

882
                if "aggregation" in metric_config:
883
                    agg_name = metric_config["aggregation"]
884
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
885
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
886
                    elif callable(agg_name):  # noqa: E721
887
888
889
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
890
                else:
891
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
892
                    metric_agg = get_metric_aggregation(metric_name)
893
                    eval_logger.warning(
894
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
895
896
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
897
                    )
898
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
899

900
901
902
903
904
905
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
906
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
907
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
908
                        f"higher_is_better={is_higher_better(metric_name)}"
909
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
910
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
911

912
        self.download(self.config.dataset_kwargs)
913
914
915
        self._training_docs = None
        self._fewshot_docs = None

916
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
917
            self._filters = []
918
            for filter_config in self.config.filter_list:
919
920
921
922
923
924
925
926
927
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
928
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
929
        else:
930
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
931

932
933
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
934
            self.prompt = get_prompt(
935
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
936
            )
937
938
939
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
940
        if self.fewshot_docs() is not None:
941
942
943
944
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
945
946
947
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
964

965
        self.task_docs = self.eval_docs
966

967
        # Test One Doc
968
        self.features = list(self.task_docs.features.keys())
969
970
        self.multiple_input = 0
        self.multiple_target = 0
971
        test_doc = self.task_docs[0]
972
        test_text = self.doc_to_text(test_doc)
973
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
974

975
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
976
            test_choice = self.doc_to_choice(test_doc)
977
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
978
                eval_logger.error("doc_to_choice must return list")
979
980
            else:
                num_choice = len(test_choice)
981

982
            if isinstance(test_text, int):
983
                self.multiple_input = num_choice
984
985
        else:
            test_choice = None
986

987
        if isinstance(test_target, list):
988
            self.multiple_target = len(test_target)
989
        else:
990
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
991
                test_target = test_choice[test_target]
992
            else:
lintangsutawika's avatar
lintangsutawika committed
993
                test_target = str(test_target)
994

995
996
997
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
998
            check_choices = [test_target]
999
1000
1001
1002
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1003
1004
                    True
                    if self.config.target_delimiter.rstrip()
1005
                    != self.config.target_delimiter
1006
                    else False
1007
                )
1008

1009
                if delimiter_has_whitespace and choice_has_whitespace:
1010
1011
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1012
1013
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1014
                    eval_logger.debug(
1015
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1016
1017
                    )

1018
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
1019
1020
1021
1022
1023
1024
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
1025
    def has_training_docs(self) -> bool:
1026
        if self.config.training_split is not None:
1027
1028
1029
1030
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1031
    def has_validation_docs(self) -> bool:
1032
        if self.config.validation_split is not None:
1033
1034
1035
1036
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1037
    def has_test_docs(self) -> bool:
1038
        if self.config.test_split is not None:
1039
1040
1041
1042
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1043
    def training_docs(self) -> datasets.Dataset:
1044
        if self.has_training_docs():
1045
1046
1047
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1048
                )
1049
            return self.dataset[self.config.training_split]
1050

baberabb's avatar
baberabb committed
1051
    def validation_docs(self) -> datasets.Dataset:
1052
        if self.has_validation_docs():
1053
1054
1055
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1056
                )
1057
            return self.dataset[self.config.validation_split]
1058

baberabb's avatar
baberabb committed
1059
    def test_docs(self) -> datasets.Dataset:
1060
        if self.has_test_docs():
1061
1062
1063
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1064

1065
    def fewshot_docs(self):
1066
        if self.config.fewshot_split is not None:
1067
1068
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1069
            return self.dataset[self.config.fewshot_split]
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1082
        else:
1083
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1084
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1085
                    f"[Task: {self.config.task}] "
1086
1087
1088
1089
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1090

KonradSzafer's avatar
KonradSzafer committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1112
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1122
1123
1124
1125
1126
1127
1128
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1129
1130
1131
1132
1133
1134
1135
1136
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1137
1138
1139
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1140
1141
1142
1143
1144
1145
1146

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1147
1148
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1149

KonradSzafer's avatar
KonradSzafer committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1159
        else:
KonradSzafer's avatar
KonradSzafer committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1179
1180

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1210
        else:
KonradSzafer's avatar
KonradSzafer committed
1211
1212
            if self.multiple_input:
                return labeled_examples
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1223

1224
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1225
        """Iterates over FilterEnsembles and applies them to instances"""
1226
1227
        if hasattr(self, "_filters"):
            for f in self._filters:
1228
                f.apply(self._instances)
1229
1230
1231
1232
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1233
    def should_decontaminate(self):
1234
        return self.config.should_decontaminate
1235
1236

    def doc_to_decontamination_query(self, doc):
1237
        if self.config.should_decontaminate:
1238
1239
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1240
            else:
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1252

1253
    def _process_doc(self, doc: dict) -> dict:
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1265
1266
        if self.prompt is not None:
            doc_to_text = self.prompt
1267
        else:
1268
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1269

1270
        if isinstance(doc_to_text, int):
1271
            return doc_to_text
1272
        elif isinstance(doc_to_text, str):
1273
            if doc_to_text in self.features:
1274
                # if self.config.doc_to_choice is not None:
1275
1276
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1277
1278
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1279
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1280
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1281
1282
1283
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1284
        elif callable(doc_to_text):
1285
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1286
        # Used when applying a Promptsource template
1287
        elif hasattr(doc_to_text, "apply"):
1288
1289
1290
1291
1292
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1293
                return self.config.fewshot_delimiter
1294
        else:
1295
            print(type(doc_to_text))
1296
            raise TypeError
1297

1298
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1299
1300
        if self.prompt is not None:
            doc_to_target = self.prompt
1301
        else:
1302
            doc_to_target = self.config.doc_to_target
1303

1304
        if isinstance(doc_to_target, int):
1305
            return doc_to_target
1306
        elif isinstance(doc_to_target, str):
1307
            if doc_to_target in self.features:
1308
                # if self.config.doc_to_choice is not None:
1309
1310
1311
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1312
            else:
lintangsutawika's avatar
lintangsutawika committed
1313
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1314
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1315
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1316
1317
1318
1319
1320
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1321
1322
1323
1324
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1325
1326
                else:
                    return target_string
1327
        elif isinstance(doc_to_target, list):
1328
            return doc_to_target
1329
        elif callable(doc_to_target):
1330
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1331
        # Used when applying a Promptsource template
1332
        elif hasattr(doc_to_target, "apply"):
1333
            applied_prompt = doc_to_target.apply(doc)
1334
1335
1336
1337
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1338
                return self.config.fewshot_delimiter
1339
1340
        else:
            raise TypeError
1341

baberabb's avatar
baberabb committed
1342
    def doc_to_choice(self, doc: Any) -> List[str]:
1343
1344
        if self.prompt is not None:
            doc_to_choice = self.prompt
1345
        elif self.config.doc_to_choice is None:
1346
1347
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1348
            doc_to_choice = self.config.doc_to_choice
1349

1350
        if isinstance(doc_to_choice, str):
1351
1352
1353
1354
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1355
        elif isinstance(doc_to_choice, list):
1356
            return doc_to_choice
1357
        elif isinstance(doc_to_choice, dict):
1358
1359
1360
1361
1362
1363
1364
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1365

baberabb's avatar
baberabb committed
1366
1367
1368
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1369
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1370
            arguments = (ctx, self.doc_to_target(doc))
1371
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1372
            arguments = (self.doc_to_target(doc),)
1373
        elif self.OUTPUT_TYPE == "multiple_choice":
1374
            choices = self.doc_to_choice(doc)
1375
            target_delimiter = self.config.target_delimiter
1376
1377
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1378
                cont = self.doc_to_target(doc)
1379
1380
1381
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1382
            else:
1383
                # Otherwise they are placed in the continuation
1384
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1385

1386
            request_list = [
1387
1388
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1389
                    doc=doc,
1390
                    arguments=arg,
1391
                    idx=i,
1392
1393
                    **kwargs,
                )
1394
                for i, arg in enumerate(arguments)
1395
            ]
1396
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1397
            if "acc_mutual_info" in self._metric_fn_list.keys():
1398
1399
1400
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1401
                # here mutual info refers to calculating
1402
1403
1404
1405
1406
1407
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1408
                            doc=doc,
1409
                            arguments=("", "{}".format(choice)),
1410
1411
1412
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1413
                        for i, choice in enumerate(choices)
1414
1415
1416
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1417

1418
        elif self.OUTPUT_TYPE == "generate_until":
1419
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1420
1421

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1422
1423
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1424
1425

    def process_results(self, doc, results):
1426
1427
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1428

1429
        result_dict = {}
1430
        use_metric = list(self._metric_fn_list.keys())
1431
1432
1433
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1434
1435
1436
1437
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1438
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1439
            (loglikelihood,) = results
1440
1441
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1442
            return {
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1458
            }
1459
        elif self.OUTPUT_TYPE == "multiple_choice":
1460
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1461

1462
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1463
            choices = self.doc_to_choice(doc)
1464
1465
            completion_len = np.array([float(len(i)) for i in choices])

1466
1467
            if (
                2 * len(choices) == len(lls)
1468
                and "acc_mutual_info" in self._metric_fn_list.keys()
1469
1470
1471
1472
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1473
1474
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1475
1476
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1477

1478
1479
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1480

1481
1482
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1483
            else:
1484
                gold = self.doc_to_target(doc)
1485
1486

            gold_index_error = False
1487
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1488
1489
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1490
1491
                    gold_index_error = True
            else:
1492
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1493
                    gold = gold if gold < len(choices) else -100
1494
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1495
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1496

Lintang Sutawika's avatar
Lintang Sutawika committed
1497
                if gold == -100:
1498
1499
1500
1501
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1502
                    f"Label index was not in within range of available choices,"
1503
1504
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1505

1506
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1507
1508
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1509
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1510
1511
1512
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1513
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1514
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1515

Lintang Sutawika's avatar
Lintang Sutawika committed
1516
1517
1518
1519
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1520
            result_dict = {
1521
                **({"acc": acc} if "acc" in use_metric else {}),
1522
1523
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1524
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1525
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1526
1527
1528
1529
1530
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1531
1532
            }

1533
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1534
1535
1536
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1537
1538
1539
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1540
        elif self.OUTPUT_TYPE == "generate_until":
1541
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1542
            result = results[0]
1543
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1544
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1545
                # it assumes that doc_to_target returns a number.
1546
1547
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1548
1549
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1550
                gold = list(gold)
Chris's avatar
Chris committed
1551
1552
1553
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1554

lintangsutawika's avatar
lintangsutawika committed
1555
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1556
1557
1558
1559
1560
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1561
1562
1563
1564
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1565
1566
1567
1568
1569
1570
1571
1572
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1573
                    else:
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1595
                else:
1596
                    try:
1597
                        result_score = self._metric_fn_list[metric](
1598
1599
                            references=[gold],
                            predictions=[result],
1600
                            **self._metric_fn_kwargs[metric],
1601
                        )
1602
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1603
                        result_score = self._metric_fn_list[metric]([gold, result])
1604
1605
1606
1607
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1608
        else:
lintangsutawika's avatar
lintangsutawika committed
1609
1610
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1611
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1612
            )
1613
1614
1615

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1616
    def aggregation(self) -> dict:
1617
1618
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1619
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1620
        return self._higher_is_better
1621

Baber Abbasi's avatar
Baber Abbasi committed
1622
1623
1624
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

lintangsutawika's avatar
lintangsutawika committed
1625
1626
    @property
    def task_id(self) -> Any:
lintangsutawika's avatar
lintangsutawika committed
1627
1628
1629
1630
1631
        return "-".join((self.task_name, self._task_id))

    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)
lintangsutawika's avatar
lintangsutawika committed
1632

1633
1634
1635
1636
1637
1638
1639
1640
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1641
1642

class MultipleChoiceTask(Task):
1643
    OUTPUT_TYPE = "loglikelihood"
1644

baberabb's avatar
baberabb committed
1645
    def doc_to_target(self, doc: dict) -> str:
1646
1647
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1648
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1649
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1650
1651
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1652
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1653
                doc=doc,
1654
                arguments=(ctx, " {}".format(choice)),
1655
                idx=i,
1656
1657
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1658
1659
            for i, choice in enumerate(doc["choices"])
        ]
1660

1661
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1662
1663
1664
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1676
    def higher_is_better(self) -> dict:
1677
1678
1679
1680
1681
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1682
    def aggregation(self) -> dict:
1683
1684
1685
1686
1687
1688
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1689
class PerplexityTask(Task):
1690
1691
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1692
    def has_training_docs(self) -> bool:
1693
1694
        return False

baberabb's avatar
baberabb committed
1695
    def fewshot_examples(self, k: int, rnd) -> List:
1696
1697
1698
1699
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1700
1701
        return []

baberabb's avatar
baberabb committed
1702
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1703
1704
1705
1706
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1707
1708
1709

        return ""

baberabb's avatar
baberabb committed
1710
    def higher_is_better(self) -> dict:
1711
1712
1713
1714
1715
1716
1717
1718
1719
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1720
    def doc_to_text(self, doc) -> str:
1721
1722
1723
1724
1725
        return ""

    def doc_to_target(self, doc):
        return doc

1726
1727
1728
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1729

lintangsutawika's avatar
lintangsutawika committed
1730
1731
1732
1733
1734
1735
1736
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1737

1738
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1739
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1740
1741
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1742
1743
1744
1745
1746
1747
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1748
    def aggregation(self) -> dict:
1749
1750
1751
1752
1753
1754
1755
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1756
    def count_bytes(cls, doc) -> int:
1757
1758
1759
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1760
    def count_words(cls, doc) -> int:
1761
1762
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))